#2 How \(abc\)-conjecture \(\implies\) Fermat's Last Theorem!

March 31, 2024

How amazingly beautiful is it when one of the most important conjecture implies another "world famous" theorem? How often does this happen? Not so often! In this blog, I will primarily describe how \(abc\)-conjecture (a unsolved problem constructed by Masser and Oesterle in 1985), implies the "world famous" Fermat's Last Theorem, but I will also talk about some other important conjecture it implies. What is the \(abc\)-conjecture? Before stating the original statement, I will state what a radical of a integer is.

2.1 \(abc\)-conjecture and its implication to Fermat's Last Theorem

Definition (Radical). Let \(N \in \mathbb{Z}\). The radical of \(N\) is defined as the product of its unique primes factors, i.e., \[ \begin{aligned} \text{rad}(N) = \prod_{p \mid N} p \end{aligned} \] By the unique factorization theorem, we can write \[ \begin{aligned} N = p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_r^{\alpha_r} \end{aligned} \] where \(p_1, p_2, \dots, p_r\) are distinct primes numbers and \(\alpha_1, \alpha_2, \dots, \alpha_r\) are positive integer powers. Then \[ \begin{aligned} \text{rad}(N) = p_1 p_2 \cdots p_r \end{aligned} \]

Now, let's state our conjecture

Conjecture (\(abc\)). For each \(\varepsilon > 0\) there exists a constant \(\lambda_\varepsilon > 0\) such that whenever \(a, b, c \in \mathbb{Z} \setminus \{0\}\) with \(a + b = c\) and \(\gcd(a, b) = 1\), \[ \begin{aligned} \max(|a|, |b|, |c|) \le \lambda_\varepsilon \text{rad}(abc)^{1 + \varepsilon} \end{aligned} \]

At an overview, the \(abc\)-conjecture compares the radical \(\text{rad}(abc)\) of the product \(abc\) with \(c\). A trivial bound is \[ \begin{aligned} \text{rad}(abc) \le abc < c^3 \end{aligned} \] However, the conjecture asserts that we can also bound \(c\) by a power of \(\text{rad}(abc)\).

Theorem (Fermat's Last Theorem). Let \(x, y, z \in \mathbb{N}\) and \(n > 2\), then \(x^n + y^n = z^n\) has no non-trivial integer solutions.

Proof. We will prove that if \(abc\)-conjecture is true, then Fermat's Last Theorem holds. Suppose for the sake of contradiction, \(x^n + y^n = z^n\) with \(n > 2\) and \(x, y, z \in \mathbb{N}\). We may take \(\gcd(x, y) = 1\). Suppose the \(abc\)-conjecture is proved for some \(\varepsilon\). Then, \[ \begin{aligned} z^n &\le \lambda_\varepsilon \text{rad}(x^n y^n z^n)^{1 + \varepsilon} \\ &= \lambda_\varepsilon \text{rad}(xyz)^{1 + \varepsilon} \\ &\le \lambda_\varepsilon (xyz)^{1 + \varepsilon} \\ &\le \lambda_\varepsilon z^{3(1 + \varepsilon)} \end{aligned} \] For \(n > 3(1 + \varepsilon)\) \[ \begin{aligned} z \le \lambda_\varepsilon^{1/(n-3(1 + \varepsilon))} < 2 \text{ for large } n \end{aligned} \] so \(n\) is bounded above. if \(abc\)-conjecture holds for some \(\varepsilon < 1/3\), then for any \(n \ge 4 > 3(1 + \varepsilon)\), we have \(z \le \lambda_\varepsilon^{1/(n - 3(1 + \varepsilon))}\), so Fermat's Last Theorem is a finite calculation for remaining exponents. So, we proved a general bound on \(n\). Now, let's be more specific, suppose we take \(\lambda_1 = 1\) (i.e., \(\varepsilon = 1\)), such that \(\max(|a|, |b|, |c|) \le \text{rad}(abc)^2\). Then, we have \[ \begin{aligned} z^n &\le \text{rad}(x^n y^n z^n)^{2} \\ &= \text{rad}(xyz)^{2} \\ &\le (xyz)^{2} \\ &\le z^{6} \end{aligned} \] so \(n \le 6\). Thus we have Fermat's Last Theorem for \(n \ge 6\). Also, we have indiviual "elementary" (still complicated, but does not heavily rely on advanced algebraic or analytic techniques, like Taylor-Wiles' Proof) proofs by Euler (for \(n = 3\)), Fermat (for \(n = 4\)), and Legendre (for \(n = 5\)).

2.2 \(abc\)-conjecture with \(\varepsilon = 0\)

Let's discuss an analogous case: for \(x \ge 1\), \(\log x \le B_{\varepsilon}x^\varepsilon\) for all \(\varepsilon > 0\), but \(\log x \not\le B\). Now, an obvious question about the \(abc\)-conjecture would arise. Why can't we take \(\varepsilon = 0\)?

If \(a + b = c\) with \(\gcd(a, b) = 1\), could \(\max(|a|, |b|, |c|) \le \lambda \text{rad}(abc)\)? Let \(p\) be a prime and take \(a = 2^{p(p-1)} - 1\), \(b = 1\), \(c = 2^{p(p-1)}\). Then, \[ \begin{aligned} 2^{p-1} \equiv 1 \pmod p \implies 2^{p(p-1)} \equiv 1 \pmod p^2 \end{aligned} \] So, \(p^2 \mid a\). Thus, \[ \begin{aligned} \text{rad}(abc) = \text{rad}(a \cdot 2) \le \frac{2a}{p} \end{aligned} \] so the \(abc\)-conjecture with \(\varepsilon = 0\) would say \[ \begin{aligned} a \le \lambda \cdot \frac{2a}{p} \implies p \le 2 \lambda \end{aligned} \] This is false for large primes \(p\)!

2.3 \(abc\)-conjecture and its other implications

\(abc\)-conjecture is believed to imply many of the most famous and important conjectures and theorem in diophantine geometry and algebraic number theory. I will discuss the proofs of the Catalan's Conjecture and (Weak) Hall conjecture using the \(abc\)-conjecture. It implies the following conjectures/theorems :

  • Fermat's Last Theorem for all large exponents (Wiles for all exponents, 1995)
  • Catalan's Conjecture for any large parameters (Mihailescu for all, 2002)
  • Roth's theorem (Roth, 1955) in a stronger form
  • The Mordell Conjecture (Faltings, 1983) in a stronger form
  • Hall Conjecture (M. Hall, 1969) in the weak form

Conjecture (Catalan, 1844) aka Mihailescu's Theorem. The only consecutive perfect powers in \(\mathbb{Z}^+\) are \(8 = 2^3\) and \(9 = 3^2\).

Reduced to finite but impractical number of cases by Tijdeman (1974), proved by Mihailescu (2002). What does \(abc\)-conjecture say? Suppose \(x^m - y^m = 1\) in \(\mathbb{Z}^+\) where \(m, n \ge 2\). Of course \(m \ne n\), so \(\frac{1}{m} + \frac{1}{n} \le \frac{1}{2} + \frac{1}{3} = \frac{5}{6}\). Since, \(\gcd(x, y) = 1\), by \(abc\)-conjecture \[ \begin{aligned} y^n < x^m \le \lambda_{\varepsilon} \text{rad}(x^my^n)^{1 + \varepsilon} = \lambda_{\varepsilon} \text{rad}(xy)^{1 + \varepsilon} \le \lambda_{\varepsilon} (xy)^{1 + \varepsilon} \end{aligned} \] Since, \(y^n < x^m\), \(y < x^{\frac{m}{n}}\), so \[ \begin{aligned} x^m < \lambda_{\varepsilon}(x^{1 + \frac{m}{n}})^{1 + \varepsilon} = \lambda_{\varepsilon} x^{m(\frac{1}{m} + \frac{1}{n})(1 + \varepsilon)} \le \lambda_{\varepsilon} x^{m(\frac{5}{6})(1 + \varepsilon)} \end{aligned} \] Then, \[ \begin{aligned} x^{\frac{m(1 - 5 \varepsilon)}{6}} < \lambda_{\varepsilon} \implies x < \lambda_{\varepsilon}^{\frac{6}{m(1 - 5 \varepsilon)}} \text{ for } 0 < \varepsilon < \frac{1}{5} \end{aligned} \] so, \[ \begin{aligned} y < x^{\frac{m}{n}} < \lambda_{\varepsilon}^{\frac{6}{n(1 - 5 \varepsilon)}} \end{aligned} \] We have for \(0 < \varepsilon < \frac{1}{5}\) that \[ \begin{aligned} x &< \lambda_{\varepsilon}^{\frac{6}{m(1 - 5 \varepsilon)}} \\ y &< \lambda_{\varepsilon}^{\frac{6}{n(1 - 5 \varepsilon)}} \end{aligned} \] Fix \(\varepsilon\). Large \(m\) and \(n\) for \(x < 2\) and \(y < 2\), so \(x = 1\) and \(y = 1\). So \(m\) and \(n\) are bounded above, and for each \(m\) and \(n\) we have upper bounds on \(x\) and \(y\): an effectively finite number of cases to check if the \(abc\)-conjecture is proved for a specific \(\varepsilon < \frac{1}{5}\). This application doesn't follow from abc-conjecture for \(\varepsilon = 1\).

Now, we will see how \(abc\)-conjecture implies (Weak) Hall conjecture, an conjecture on Integral Solutions.

Conjecture (M. Hall, 1969). There exists a constant \(C > 0\) such that if \(y^2 = x^3 + k\) in \(\mathbb{Z}\) with \(k \ne 0\) then \(|x| \le C|k|^2\) and \(|y| \le C|k|^3\).

Conjecture (Weak Hall Conjecture). Pick \(\varepsilon > 0\). There exists a constant \(C_{\varepsilon} > 0\) such that for each \(k \in \mathbb{Z} \setminus \{0\}\), if \(y^2 = x^3 + k\) in \(\mathbb{Z}\) then \(|x| \le C_{\varepsilon}|k|^{2(1 + \varepsilon)}\) and \(|y| \le C_{\varepsilon}|k|^{3(1 + \varepsilon)}\).

We will prove the following theorem,

Theorem. If the \(abc\)-conjecture is true then for all \(\varepsilon > 0\), there exists a \(C_{\varepsilon} > 0\) such that whenever \(y^2 = x^3 + k\) in \(\mathbb{Z}\) with \(k \ne 0\) we have \[ \begin{aligned} |x| \le C_{\varepsilon}|k|^{2(1 + \varepsilon)} \text{ and } |y| \le C_{\varepsilon}|k|^{3(1 + \varepsilon)} \end{aligned} \]

Proof. May suppose \(x, y \ne 0\). Let \(d = \gcd(x^3, y^2)\), \[ \begin{aligned} \frac{y^2}{d} = \frac{x^3}{d} + \frac{k}{d} \end{aligned} \] Set \(a = \frac{x^3}{d}\), \(b = \frac{k}{d}\), \(c = \frac{y^2}{d}\), \(R = \text{rad}(abc)\). By \(abc\)-conjecture \[ \begin{aligned} \frac{|x|^3}{d} &\le \lambda_{\varepsilon} R^{1 + \varepsilon} \\ \frac{|y|^2}{d} &\le \lambda_{\varepsilon} R^{1 + \varepsilon} \end{aligned} \] An upper bound: \(\displaystyle R \le \prod_{p \mid ac}p \cdot \prod_{p \mid b} p \le |x||y| \cdot \text{rad}(b) \le |x||y|\frac{|k|}{d}\).
From \(\displaystyle R = \text{rad}(abc) \le \frac{|x||y||k|}{d}\), \[ \begin{aligned} |x|^3, |y|^2 \le d \lambda_{\varepsilon} R^{1 + \varepsilon} \le d \lambda_{\varepsilon} \left(\frac{|x||y||k|}{d}\right)^{1 + \varepsilon} < \lambda_{\varepsilon}(|x||y|)^{1 + \varepsilon}|k|^{1 + \varepsilon} \end{aligned} \] Now we take cases: \(|y|^2 \le |x|^3\) or \(|x|^3 \le |y|^2\).
Case 1: If \(|y|^2 \le |x|^3\), then \(|y| \le |x|^{\frac{3}{2}}\), so \[ \begin{aligned} |x|^3 < \lambda_{\varepsilon}|x|^{\frac{5}{2}(1 + \varepsilon)}|k|^{1 + \varepsilon} \implies |x|^{\frac{(1 - 5 \varepsilon)}{2}} < \lambda_{\varepsilon} |k|^{1 + \varepsilon} \end{aligned} \] So, for \(0 < \varepsilon < \frac{1}{5}\), \[ \begin{aligned} |x| < \lambda_{\varepsilon}^{\frac{2}{(1 - 5 \varepsilon)}}|k|^{\frac{2(1 + \varepsilon)}{(1 - 5 \varepsilon)}} \end{aligned} \] and \[ \begin{aligned} |y| < |x|^{\frac{3}{2}} < \lambda_{\varepsilon}^{\frac{3}{(1 - 5 \varepsilon)}}|k|^{\frac{3(1 + \varepsilon)}{(1 - 5 \varepsilon)}} \end{aligned} \] Case 2: If instead \(|x|^3 \le |y|^2\), then \(|x| \le |y|^{\frac{2}{3}}\), so \[ \begin{aligned} |y|^2 < \lambda_{\varepsilon} |y|^{\frac{5}{3}(1 + \varepsilon)}|k|^{1 + \varepsilon} \implies |y|^{\frac{1 - 5 \varepsilon}{3}} < \lambda_{\varepsilon} |k|^{1 + \varepsilon} \end{aligned} \] so for \(\displaystyle 0 < \varepsilon < \frac{1}{5}\) \[ \begin{aligned} |y| < \lambda_{\varepsilon}^{\frac{3}{1 - 5 \varepsilon}}|k|^{\frac{3(1 + \varepsilon)}{(1 - 5 \varepsilon)}} \end{aligned} \] and \[ \begin{aligned} |x| < |y|^{\frac{2}{3}} < \lambda_{\varepsilon}^{\frac{2}{1 - 5 \varepsilon}} |k|^{\frac{2(1 + \varepsilon)}{(1 - 5 \varepsilon)}} \end{aligned} \] We have the same \(x\)-bound and \(y\)-bound in both cases: \[ \begin{aligned} |x| < \lambda_{\varepsilon}^{\frac{2}{1 - 5 \varepsilon}} |k|^{\frac{2(1 + \varepsilon)}{(1 - 5 \varepsilon)}} \\ |y| < \lambda_{\varepsilon}^{\frac{3}{1 - 5 \varepsilon}} |k|^{\frac{3(1 + \varepsilon)}{(1 - 5 \varepsilon)}} \end{aligned} \] Hence proving our required result.

2.3.1 Weak Hall Conjecture \(\xrightarrow{?}\) \(abc\)-conjecture

Set \(\displaystyle \frac{1 + \varepsilon}{1 - 5 \varepsilon} = 1 + \varepsilon'\), so \(0 < \varepsilon' < \infty\) for \(\displaystyle 0 < \varepsilon < \frac{1}{5}\) and \(\varepsilon'\) is small if and only if \(\varepsilon\) is small. Let \(\displaystyle C_{\varepsilon'} = \max \left(\lambda_{\varepsilon}^{\frac{2}{(1 - 5 \varepsilon)}}, \lambda_{\varepsilon}^{\frac{3}{(1 - 5 \varepsilon)}}\right)\).

Theorem. Assume \(abc\)-conjecture. If \(y^2 = x^3 + k\) in \(\mathbb{Z} \setminus \{0\}\) and \(\gcd(x, y) = 1\), then \[ \begin{aligned} |x| \le C_{\varepsilon} \text{rad}(k)^{2(1 + \varepsilon)} \ , \ \ |y| \le C_{\varepsilon} \text{rad}(k)^{3(1 + \varepsilon)} \ \ \ \ \ \ \ \ (1) \end{aligned} \] If \(3y^2 = x^3 + k\) in \(\mathbb{Z} \setminus \{0\}\) and \(\gcd(x, 3y) = 1\), then \[ \begin{aligned} |x| \le B_{\varepsilon} \text{rad}(k)^{2(1 + \varepsilon)} \ , \ \ |y| \le B_{\varepsilon} \text{rad}(k)^{3(1 + \varepsilon)} \ \ \ \ \ \ \ \ (2) \end{aligned} \]

These bounds use \(\text{rad}(k)\), not \(|k|\), so they're e stronger than weak Hall conjecture (but only apply when \(\gcd(x, y) = 1\) or \(\gcd(x, 3y) = 1\)).

Theorem. Equations (1) and (2) imply the abc-conjecture, and thus are together equivalent to the \(abc\)-conjecture.

This shows Mordell's equation is a far more central equation than it at first may appear to be!

Suppose \(a + b = c\) in nonzero integers with \(\gcd(a,b) = 1\). Set \[ \begin{aligned} x &= a^2 + ab + b^2 \in \mathbb{Z}^+ \\ y &= \frac{(a-b)(a+2b)(2a+b)}{2} \in \mathbb{Z}\setminus \{0\} \end{aligned} \] Then, \[ \begin{aligned} y^2 &= x^3 - 27 \left(\frac{abc}{2}\right)^2 \\ \max(|a|, |b|, |c|) &\le 2 \sqrt{x} \\ \gcd(x, y) &= 1 \text{ or } 3 \end{aligned} \] We look here just at the case \(\gcd(x, y) = 1\). From equation (1), \[ \begin{aligned} |x| \le C_{\varepsilon} \text{rad}\left(-27\left(\frac{abc}{2}\right)^2\right)^{2(1 + \varepsilon)} \le C_{\varepsilon} (3 \cdot \text{rad}(abc))^{2(1 + \varepsilon)} \end{aligned} \] so \[ \begin{aligned} \max(|a|, |b|, |c|) \le 2\sqrt{x} \le 2 C_{\varepsilon}^{\frac{1}{2}}3^{1 + \varepsilon}\text{rad}(abc)^{1 + \varepsilon} \end{aligned} \]