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Preface
This class taught by Jerry (Xiaoheng) Wang in Winter 2024. The topics covered are:

1. Absolute Values: Absolute values, Topology, Classifying local fields, Hensel’s
lemma, Newton polygon, Extensions of absolute values for complete valued fields.

2. Ramification: Totally ramified, Tamely ramified, Unramified extensions, item
Ramification groups, Discriminant, Upper numbering ramification groups, Local
Kronecker-Weber, Serre’s mass formula.

3. Absolute values over Global fields: Places of global fields, Product formula,
Discriminant again, Decomposition groups, Inertia and Frobenius, Chebotarev
density theorem, Cyclotomic extensions, global Kronecker-Weber.

4. Local Class Field Theory via Lubin-Tate theory: Main theorems of LCFT,
Formal groups, Lubin-Tate extension, little-bit of GCFT.

The main prerequisites are commutative algebra, Real Analysis, General (Point-set)
Topology and Algebraic Number Theory, but it is recommended to know basic algebraic
geometry (but not mandatory).





1 Absolute Values

§1.1 Introduction
The main objects of interest of algebraic number theory are the algebraic extensions of
Q. By Galois theory, this amounts to studying the absolute Galois group Gal(Q̄/Q) and
its closed subgroups. This turns out to be way too difficult! If we restrict our attention
to abelian extensions (i.e. Galois extensions with abelian Galois groups), things are a lot
cleaner.

Theorem 1.1.1
(Kronecker-Weber) Every finite abelian extension of Q lies in a cyclotomic extension
Q(ζm).

We will prove this result in this course. Let’s look at some toy examples first. Notice
that The icosahedron problem in 2023 Putnam A4 is related to Q(

√
5) ⊆ Q(ζ5) with

√
5 = 2(ζ5 + ζ−1

5 ) + 1.

Similar to 3, one can check that
√

7 /∈ Q(ζ7) as the real subfield of Q(ζ7) has odd degree
over Q. Instead, we use ∏

1≤i<j≤p−1
(ζ i

p − ζj
p)2 = p∗ · pp−3

where p∗ = (−1)(p−1)/2p. This means that Q(√p∗) ⊆ Q(ζp). By throwing in ζ4 if needed,
we have

Q(√p) ⊆ Q(ζp, ζ4) = Q(ζ4p).
Since every quadratic extension of Q is a compositum of Q(√p) and Q(

√
−1), we have

proved Theorem ?? in the degree 2 case. The degree 3 case also has some very interesting
examples. A C3-extension of Q is of the form Q[x]/(f(x)) where f(x) ∈ Q[x] is irreducible
with square discriminant. For example, for f(x) = x3 − 3x+ 1, we have

∆(f) = −4(−3)3 − 27(1)2 = 81.

My 145 students/TAs would recognize x3− 3x+ 1 as the minimal polynomial of ζ9 + ζ−1
9 .

So
Q[x]/(x3 − 3x+ 1) ∼= Q(ζ9 + ζ−1

9 ) ⊆ Q(ζ9).
Exercise: If you are told that the discriminant of x3 + x2 − 2x− 1 is 49, what would
you guess the field Q[x]/(x3 + x2 − 2x− 1) to be? This is Q(ζ7 + ζ−1

7 ). You can check
this, and the x3 − 3x+ 1 example, by computing f(x+ x−1).

As another example, we take g(x) = x3 − 9x+ 9 which has discriminant −4(−9)3 −
27(9)2 = 93 = 36. Which cyclotomic extension contains Q[x]/(x3− 9x+ 9)? Testing some
small values gives

g(−1) = 17, and g(−2) = 19.
This implies that g(x) factors mod 17 and mod 19. Since Q[x]/(g(x)) is Galois, we
see that g(x) splits completely mod 17 and mod 19. Trying more values leads one to
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conjecture that g(x) splits completely mod p if and only if p = 3 or p ≡ ±1 (mod 9).
A couple of results we will prove in this course say that Galois extensions are uniquely
determined by the set of primes that split completely; and that the primes that split
completely in Q(ζ9 + ζ−1

9 ) are exactly these as well. So this suggests as well that

Q[x]/(x3 − 9x+ 9) ∼= Q(ζ9 + ζ−1
9 ).

It is then not to hard to do some calculation to find that x3 − 9x + 9 is the minimal
polynomial of ζ9 + ζ−1

9 − ζ2
9 − ζ−2

9 . So the above is in fact true as Q(ζ9 + ζ−1
9 − ζ2

9 − ζ−2
9 )

is a subfield of Q(ζ9 + ζ−1
9 ) of the same degree over Q.

There are some important observations from these examples:

• The discriminant gives us information on which cyclotomic extension Q(ζm) to
consider and which mod to consider.

• The set of primes that split completely are given by congruence conditions mod
the above.

We will see that these are the artifacts of abelian extensions! There is an even more
important idea to be learnt here: we should study the extension one prime at a time.
The process of “localizing” Z so that only the prime (p) matters is called localization.
The ring Z(p) is formed by adjoining the inverses of every integer not divisible by p. The
ring Zp of p-adic integers is formed by taking its (ring-theoretic) completion at (p):

Zp = lim←−
n

Z/pnZ = {(bn) ∈
∞∏

n=1
Z/pnZ : bn+1 ≡ bn (mod pn)}.

More concretely, we can write every element of Zp as the formal infinite series

a0 + a1p+ a2p
2 + a3p

3 + · · ·

where each ai = 0, . . . , p− 1 so that a0 + a1p+ · · ·+ an−1p
n−1 ≡ bn (mod pn). The field

Qp of p-adic numbers is the field of fraction of Zp. It is an example of a local field and
we will be studying extensions of it. For example, we will prove the local version of
Kronecker-Weber: every finite abelian extension of Qp is contained in some Qp(ζm). We
will then use this to prove the global version after studying how the Galois group of the
local extension and the Galois group of the global extension relate to each other.

How does the field Qp relate to the field Q? The field Qp is uncountable, and so is not
algebraic over Q. One can show that the p-adic integer

∞∑
n=0

pn!

is transcendental over Q. The proof of this is very similar to the proof that the real
number ∑∞

n=0 10−n! is transcendental over Q: that it can be approximated too well by a
rational number. Now to say that a real number α is approximated well by a rational
number r, we are saying that the absolute value |r − α| is small. Can we define a notion
of p-adic absolute value on Q (and extend naturally to Qp)? Yes! We can define it using
the p-adic valuation. For any nonzero integer a, we define its p-adic valuation µp(a) as
the largest integer k such that pk | a and we extend it to Q via µp(a/b) = µp(a)− µp(b)
and µp(0) =∞. It behaves fairly well with respect to addition and multiplication: for
any r, s ∈ Q,

µp(rs) = µp(r) + µp(s), and µp(r + s) ≥ min{µp(r), µp(s)}.
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We then define the multiplicative p-adic absolute value by |r|p = p−νp(r) for any r ∈ Q.
It is multiplicative |rs|p = |r|p|s|p and satisfies the ultrametric inequality:

|r + s|p ≤ max{|r|p, |s|p}

which is stronger than the triangle inequality

|r + s|p ≤ |r|p + |s|p.

We now have the p-adic metric on Q: dp(r, s) = |r − s|p so that two rational numbers
are close p-adically if and only if their difference is highly divisible by p. Just as R
can be defined as the completion of Q with respect to the usual archimedean distance
d∞(r, s) = |r − s|∞, the field Qp can be defined as the completion of Q with respect to
the p-adic metric dp(r, s).

Are there any other interesting absolute values on Q? To answer this, we should
properly define the notion of absolute values on fields.

§1.2 Absolute values
Let K be a field. An absolute value on K is a function |.| : K → R such that for any
x, y ∈ K:

1. (Positivity) |x| ≥ 0 with equality if and only if x = 0;

2. (Multiplicativity) |xy| = |x||y|;

3. (Triangle inequality) |x+ y| ≤ |x|+ |y|.

Absolute values that satisfy the stronger ultrametric inequality:

|x+ y| ≤ max{|x|, |y|}

are said to be non-archimedean.
Example: What are the absolute values of a finite field Fq? From multiplicativity, we
see that |1| = 1 and so for any root of unity u with um = 1, we have |u| = 1. Every
nonzero element of a finite field is a root of unity and so the only absolute value on Fq is
the trivial one: sending 0 to 0, and everything else to 1.

Our first goal is to classify all absolute values on Q. Let’s make some general observa-
tions first.

1. Every field has the trivial absolute value defined by |x| = 1 for all x ̸= 0.

2. For any absolute value |.|, we have |1| = | − 1| = 1, and |ζ| = 1 if ζ ∈ K is a root
of unity.

3. For any positive integer n, we have |n|≤ |1 + 1 + · · · 1| ≤n.

4. If |.| is an absolute value on K, then for any a ∈ (0, 1], |.|a is also an absolute value.

5. If |.| is a non-archimedean absolute value on K, then for any a> 0, |.|a is also a
non-archimedean absolute value.

6. On Q, |.|a∞ is not an absolute value if a> 1 and |.|ap is not an absolute value if a< 0.
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Theorem 1.2.1
(Ostrowski) Every nontrivial absolute value on Q is of the form |.|a∞ for some a ∈ (0, 1]
or of the form |.|ap for some prime p and some a > 0.

Proof. We make the following comparison between |m| and |n| for any two integers
m,n > 1. For any k ∈ N, we express mk in base n to get

mk = a0 + a1n+ · · ·+ arn
r

with ai = 0, . . . , n− 1 and r ≤ k logm/ log n. So

|m|k ≤ (a0 + a1 + · · ·+ ar) max{1, |n|}r ≤ n(1 + r) max{1, |n|}r.

Taking k-th root and letting k →∞, we get

|m| ≤ max{1, |n|}log m/ log n. (1.1)

Suppose first that |p| > 1 for all primes p > 1, and so also for all integers n > 1. Then
(??) gives

|m|1/ log m ≤ |n|1/ log n

for any integers m,n > 1. Swapping m and n shows that they are all equal. Let c > 1
be the common value. Then

|m| = clog m = |m|log c
∞ .

This completes the case of archimedean absolute values.
Suppose now that |p| ≤ 1 for some prime p. Then by (??), |q| ≤ 1 for all primes

q. Hence |n| ≤ 1 for every integer n. Suppose further than |p| < 1. Suppose for a
contradiction that there is a prime q with |q| < 1 and q ̸= p. Then there exist integers
a, b such that ap+ bq = 1. Then

1 ≤ max{|a||p|, |b||q|} < 1.

Contradiction. Therefore, |.| = |.|ap where a = log1/p |p| > 0.

What about the field Fq(t)? As the following results show, we only need to consider
the non-archimedean ones.

Proposition 1.2.2
An absolute value |.| on K is non-archimedean if and only if the set {|n| : n ∈ Z} is
bounded (and so by 1).

Proof. (⇒) is easy: |n|= |1 + · · ·+ 1| ≤ max{|1|, . . . , |1|} =1.
(⇐): Suppose |n| ≤M for some M > 0 for all n ∈ Z. Then for any x, y ∈ K and any

k ∈ N,

|x+ y|k ≤
k∑

i=0
|
(
k

i

)
||x|i|y|k−i ≤ (k + 1) max{|x|k, |y|k}.

Take k-th root and take limit as k →∞.
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Corollary 1.2.3
If K has positive characteristic, then all absolute values on K are non-archimedean.

We can now classify the absolute values on Fq(t) in the same way as non-archimedean
absolute values on Q. Suppose first that |t| > 1. Then for any polynomial, we have

|adt
d + · · ·+ a0| = |t|d

by Proposition ??(a), since every summand has a different absolute value . Let |.|∞ be
the absolute value on Fq(t) defined by |f(t)|∞ = qdeg(f) for any nonzero polynomial f(t)
and then extended by multiplicativity. Then |.| = |.|a∞ for a = logq |t| > 0.

Suppose now |t| ≤ 1. Then for any polynomial f(t), we have |f(t)| ≤ 1. We can then
use the same argument to conclude that there is a unique irreducible polynomial π(t) such
that |π(t)| < 1. Let |.|π(t) be the absolute value on Fq(t) defined by |π(t)|π(t) = q− deg(π)

and |f(t)|π(t) = 1 for any other irreducible polynomial f(t) and then extended by
multiplicativity. Then |.| = |.|aπ(t) for a = logq− deg(π) |π(t)| > 0.

Theorem 1.2.4
Absolute values on Fq(t) are all of the form |.|a∞ or |.|aπ(t) for some irreducible
polynomial π(t) and some a > 0.

There is also a ring-theoretic treatment of non-archimedean absolute values.

Proposition 1.2.5
Let |.| be a non-archimedean absolute value on K. Then:

(a) If x, y ∈ K with |x| ≠ |y|, then |x+ y| = max{|x|, |y|}.

(b) The set O = {x ∈ K : |x| ≤ 1} is a local ring with group of units O× = {x ∈
K : |x| = 1} and maximal ideal m = {x ∈ K : |x| < 1}.

Suppose now |.| is a nontrivial absolute value on K where K = Q or Fq(t). Let R = Z
or Fq[t] and we suppose that R ⊆ O. Then m ∩R is a proper nonzero prime ideal of R.
Since R is a PID, we have m ∩R = (π) for some irreducible π ∈ R and |.| is some power
of |.|π.

§1.3 Topology
Absolute values on a field K define metrics by d(x, y) = |x− y| and then topologies on
K. Two absolute values are equivalent if they define the same topology. One important
property about equivalent absolute values is that

|x|1 < 1⇐⇒ |x|2 < 1⇐⇒ lim
n→∞

xn = 0.

Note also that

|x|1 > 1⇐⇒ |x−1|1 < 1⇐⇒ |x−1|2 < 1⇐⇒ |x|2 > 1

and that |x|1 = 1⇐⇒ |x|2 = 1. Only the trivial absolute value is equivalent to the trivial
absolute value, which defines the discrete topology.
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Proposition 1.3.1
Two absolute values |.|1, |.|2 on K are equivalent if and only if |.|2 = |.|a1 for some
a > 0.

Proof. The backwards direction is obvious. Suppose now |.|1, |.|2 are equivalent and
suppose they are nontrivial. The key is that for m1,m2, n1, n2 ∈ N and x, y ∈ K×, we
have

|x|m1/n1
1 < |y|1 < |x|m2/n2

1 ⇐⇒ |x|m1/n1
2 < |y|2 < |x|m2/n2

2 .

This follows by considering yn1/xm1 and yn2/xm2 . For any positive real number b, by
choosing m1,m2, n1, n2 ∈ N so that m1/n1 → b− and m2/n2 → b+, we see that

|y|1 = |x|b1 ⇐⇒ |y|2 = |x|b2.

Hence log |x|2/ log |x|1 is constant over x ∈ K× with |x|1 ̸= 1.

When K = Q, the absolute values equivalent to |.|∞ induce the usual Euclidean
topology, and the absolute values equivalent to |.|p induce the p-adic topology. Since
only powers of p are possible values of |x|p for x ̸= 0, we see that |Q×|p is a discrete
subgroup of R× and open balls and closed balls are the same thing and they are of the
form r + pnZ for some r ∈ Q and some n ∈ Z.

An absolute value |.| on a field K turns K into a metric space which can then be
completed into a complete metric space K̂ in which K is dense. Recall that the completion
K̂ of K can be constructed as the set of equivalence classes of Cauchy sequences in K. It
is easy to check that term-wise addition, multiplication, negation, inversion give K̂ the
structure of a field and the map K → K̂ sending x to (x, x, . . .) is a field homomorphism.
The absolute value |.| extends naturally to K̂ making it a complete valued field. It is
universal in the sense that if (L, |.|) is a complete valued field, then any homomorphism
(K, |.|)→ (L, |.|) preserving the absolute value extends uniquely to (K̂, |.|).

The completion of (Q, |.|∞) is R. The completion of (Q, |.|p) is the field Qp of p-adic
numbers. If (xn) is a Cauchy sequence in Q such that lim |xn|p ̸= 0, then eventually,
|xn−xm|p < |xn|p causing |xn|p to be eventually constant. Elements in Qp can be viewed
as formal series of the form

a−np
−n + · · ·+ a−1p

−1 + a0 + a1p+ · · ·+ amp
m + · · ·

with 0 ≤ ai < p and 1 ≤ a−n < p. Its p-adic absolute value is pn. The ring Zp of
p-adic integers is the subset of Qp consisting of elements with |.|p≤ 1. It is a local ring
containing Z, with maximal ideal pZp and residue field Zp/pZp

∼= Z/pZ ∼= Fp. Given any
positive integer n, Zp can be covered by pn open balls of the form r + pnZp. Hence Zp is
totally bounded, and since it is a complete metric space, it is also compact. As a result,
Qp is locally compact.

The completion of (Fq(t), |.|∞) is Fq((1/t)). The completion of (Fq(t), |.|t) is Fq((t)).
For any irreducible polynomial π(t) ∈ Fq[t], we will show below that the completion is
isomorphic to k((t)) where k = Fq[t]/(π(t)). They are all locally compact for the same
reason that Zp is compact: finite residue field.

A local field is a locally compact valued field (K, |.|). It is automatically complete,
since completeness is a local property and a compact metric space is complete. Since
scaling is a homeomorphism, the locally compact condition is also equivalent to saying
that the closed unit ball (or any closed ball of finite radius) is compact.
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Theorem 1.3.2
Every local field is isomorphic to:

1. (Archimedean) R or C with the usual absolute value;

2. (Non-archimedean) a finite extension of Qp or Fq((t)).

Suppose first that K is an archimedean local field with absolute value |.|. Then K
contains Q and |.| restricts to an absolute value on Q, which must be archimedean since
being archimedean or not can be checked on Z. Since K is complete, K will also contain
R. Suppose for any r ∈ R, |r| = |r|a∞ for some a ∈ (0, 1]. Viewing K as an R-vector space,
we see that its local compactness implies that K is finite-dimensional over R. Then by
the fundamental theorem of algebra, we see that K = R or K = C.

There is a little subtlety in the above argument. Since the absolute value on K may
not restrict to the usual absolute value on R, we need to be a bit careful in applying
the usual results from analysis. In this case, we are using Riesz’s Lemma to construct,
in the case dimRK = ∞, an infinite sequence (xn) ⊆ K such that each |xn| = 1 and
|xn − xm| ≥ r for any fixed r < 1. Indeed, suppose we have x1, . . . , xn constructed. Let
U = SpanR{x1, . . . , xn} which is a closed proper subspace in K (note that this uses the
completeness of R). Take any y /∈ U . Let R = infx∈U |x − y|. Fix any ϵ > 0 and let
z ∈ U be such that |y − z| ≤ R + ϵ. Let t ∈ R be a positive real number such that
|t| = 1/|y − z|. Take xn+1 = t(y − z). Then for any x ∈ U ,

|x− xn+1| = |t(x/t− (y − z))| = |t||(x/t+ z)− y| ≥ R

R + ϵ
≥ r

for ϵ small enough. The sequence (xn) has no convergent subsequence and so K is not
locally compact.

We now focus on the non-archimedean case. We define some adjectives.

• A non-archimedean complete valued field is a field K equipped with a non-
archimedean absolute value with respect to which K is complete.

• A complete discrete valued field is a field K equipped with a discrete absolute
value with respect to which K is complete.

• An absolute value |.| on K is discrete if |K×| = {|a| : a ∈ K×} is discrete in R>0.

Exercise: Prove that a discrete absolute value is non-archimedean.

Proposition 1.3.3
If (K, |.|) is a non-archimedean local field, then |K×| is discrete in R>0.

Proof. Similar to the analysis of Cauchy sequences in Q, non-archimedean absolute values
have the important property that if (xn) converges to some nonzero limit x, then the
absolute values |xn| are eventually constant. If a ̸= 0 is an accumulation point of |K×|,
then there exists a sequence (xn) with distinct absolute values such that |xn| → a. Then
eventually xn belongs to the closed ball of radius 2a centered at 0, which is compact, but
(xn) has no convergent subsequence.
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In other words, we have the following containments:

{non-archi. complete valued fields} ⊇ {complete discrete valued fields} ⊇ {non-archi. local fields}.

For example, C((t)) where we define |λ| = 1 for every λ ∈ C× and |t| = 1/69 is a complete
discrete valued field that is not a local field, because it is not compact. Its algebraic
closure is the field

K =
⋃

n≥1
C((t1/n))

of Puiseux series over C where we extend the absolute value by |t1/n| = 69−1/n. By HW1
P1, K will not be complete, but its completion will be a non-archimedean complete
valued field with a non-discrete absolute value.

Proposition 1.3.4
Suppose |.| is a discrete absolute value on K and K is complete. Then m is principal.
In other words, O is a discrete valuation ring. Moreover, O is compact if and only if
the residue field k = O/m is finite.

Proof. Since |.| is discrete, there exists π ∈ m with the largest absolute value. Then for
any a ∈ m, |a/π| ≤ 1 and so a ∈ (π).

Since m is open and O can be covered by #(O/m) cosets of m, we see that if O is
compact, then the residue field is finite. Suppose conversely that O/m is finite. Let
S ⊂ O be a complete set of representatives for O/m. Then every element a ∈ O can be
written uniquely as

a = a0 + a1π + a2π
2 + · · ·

with ai ∈ S. Note that completeness implies that the above sum converges and

O ∼= lim←−
n

O/mn.

The same argument for Zp now proves that O is totally bounded and so compact.

Note that if we have a ring homomorphism α : O/m→ O such that the composition
O/m → O → O/m is the identity map, then we have O ∼= (O/m)[[t]]. Such a ring
homomorphism certainly doesn’t exist if char(O/m)= p but char(O)= 0, for example
when O = Zp. We call this the mixed characteristic case. The issue here is that no
additive map α can exist. However, it is posible to define α to be multiplicative.

Consider the example of O = Zp. Then we are looking for a group homomorphism
α : F×

p → Z×
p . In other words, for any integer j such that p ∤ j, we need an element

α(j) of Zp that is congruent to j mod p and is a root of f(x) = xp−1 − 1. The standard
method is Hensel’s lift, in other words, p-adic Newton’s method. We note that for any
a ∈ Z such that p ∤ a,

f ′(a) = (p− 1)ap−2 ≡ −a−1 (mod p)

and
a− f(a)
−a−1 = a+ (ap−1 − 1)a = ap.

Hence, we have
α(j) = lim

n→∞
jpn

.
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This is the Teichmüller lift.
In general, we have O/m ∼= Fq where q is some power of p. For any j ∈ F×

q , we lift it
arbitrarily to some aj ∈ O and then apply Hensel’s lift to find a root of xq−1 − 1 that is
congruent to aj mod m by taking

α(j) = lim
n→∞

aqn

j .

We note first that α(j) is independent on the choice of the lift aj . Let π be a uniformizer,
so that m = (π). Then p ∈ (π). Hence if aj ≡ bj (mod π), we have

ap
j ≡ bp

j + p(aj − bj)bp−1
j ≡ bp

j (mod π2).

Hence the sequences aqn

j and bqn

j have the same limits. It then follows that α is multi-
plicative. If O = p, then α is also additive, in which case α is a ring homomorphism and
O ∼= Fq[[t]].
Remark 1: We don’t actually need O/m to be finite to define α. All that is needed is
that O/m is perfect, so that the Frobenius map x 7→ xp is an automorphism. Fix any
λ ∈ O/m. For every integer n ≥ 1, there exists a unique λn ∈ O/m such that λpn

n = λ.
Let an be any element in O lifting λn and define

α(λ) = lim
n→∞

apn

n .

For any m > n, since apm−n

m ≡ an (mod π), we have apm

m ≡ apn

n (mod πn+1). Hence the
limit exists. The independence on the lift an and the multiplicativity (and additivity in
the equal characteristic case) follow as before.
Remark 2: When the residue field k = O/m has characteristic 0, it is also true that
O ∼= k[[t]]. This is treated in more detail in Serre’s Local Field p.34. Here is a sketch.
The natural map Z→ O sends nonzero integers to units since it is injective to k, so Q
is a subring of O. Let S be the maximal subfield of O containing Q, which exists by
Zorn’s Lemma. Then prove that the composition of the natural maps S ↪→ O → k is an
isomorphism.

We focus on the case char(O) = 0. In this case, Q ↪→ K and by completeness, K is an
extension of Qp, of finite dimension n by compactness. The ring O is a finite Zp-module
free of rank n since it is torsion-free. We fix a uniformizer π so that m = (π). The
ramification degree e is defined to be the positive integer such that (p) = (π)e. The
residue degree f is defined to be degree of the residue field extension [O/m : Fp]. Let
b1, . . . , bf be elements in O such that their images in O/m form an Fp-basis. Let

S = {biπ
j : 1 ≤ i ≤ f, 0 ≤ j ≤ e− 1} ⊂ O.

Then S forms a basis for the Fp-module O/(p). Hence by Nakayama’s lemma, S forms a
basis for the Zp-module O. Hence, we have n = ef .

What about the structure of K×? Using the uniformizer π and the multiplicative
α : F×

q → O× where Fq
∼= O/m, we have

K× ∼= ⟨π⟩ × F×
q × (1 + m) ∼= Z× ⟨ζq−1⟩ × (1 + πO).

The group 1 + m admits a filtration by Un = 1 + πnO. Consider the case of O = Zp.
Then we have

(1 + pna)p = 1 + pn+1a+ higher order terms + pnpap

= 1 + pn+1a (mod pn+2) if n >
1

p− 1 .
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Hence if p is odd, we have isomorphisms Z/pℓZ ∼= U1/Uℓ+1 sending m to (1 + p)m; and
when p = 2, we have isomorphisms Z/2ℓZ ∼= U2/Uℓ+2 sending m to (1 + 4)m. Taking
inverse limits gives isomorphisms

Zp
∼= 1 + pZp, and Z2 ∼= 1 + 4Z2.

Putting things together:

Q×
p
∼= Z× ⟨ζp−1⟩ × Zp, for p > 2,

Q×
2
∼= Z× ⟨−1⟩ × Z2.

Remark 1: In HW 2 P6, using p-adic logarithms, one can show that 1 + πnO ∼= O for
n > e/(p− 1).
Remark 2: In fact, Q×

2 is a special case of

Qp(ζp)× ∼= Z× ⟨ζp−1⟩ × ⟨ζp⟩ × Zp−1
p .

The minimal polynomial of ζp − 1 over Qp is

Φp(x+ 1) = (x+ 1)p − 1
x

= xp−1 + pxp−2 +
(
p

2

)
xp−3 + · · ·+ p,

which is irreducible in Qp[x] since it is Eisenstein. Since ζp−1 is a root of this polynomial,
we see that in Qp(ζp) (assuming that the p-adic absolute value of Qp extends),

|ζp − 1|p−1 = |p|.

Since [Qp(ζp) : Qp] = p − 1. We see that ζp − 1 is a uniformizer so that ζp ∈ U1, the
ramification degree e = p− 1 so that U2 ∼= O ∼= Zp−1

p and the residue degree f = 1 so
that (O/m)× ∼= ⟨ζp−1⟩. This is an example of a totally ramified extension.
Exercise: Prove that an absolute value on Qp(ζp) exists where |ζp − 1|p−1 = |p|. Note
from the theory of normed vector spaces over a complete field, any two nontrivial absolute
values on Qp(ζp) are equivalent.
Exercise: Prove that Zp

∼= Z[[x]]/(x− p). How much can you generalize this?

§1.4 Hensel’s Lemma and Non-archimedean complete
valued field

Our next goal is to understand what finite extensions of Qp look like. We say a field K is
a non-archimedean complete valued field if it is equipped with a non-archimedean
absolute value |.| with respect to which K is complete. We then have the associated
valuation ring O, maximal ideal m and residue field k = O/m:

O = {a ∈ K : |a| ≤ 1},
m = {a ∈ K : |a| < 1}.

We do not assume that the absolute value is discrete so m may not be principal. We
do not assume that the residue field k is finite so O may not be compact. For any
f(x) ∈ O[x], let f̄(x) denote its image in k[x]. We say f(x) ∈ O[x] is primitive if f̄ ̸= 0.
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Theorem 1.4.1
(Hensel’s Lemma) Suppose f(x) ∈ O[x] is primitive and f̄(x) factors as a product
g0h0 of coprime polynomials g0, h0 in k[x]. Then there exist polynomials g, h ∈ O[x]
such that f = gh, deg(g) = deg(g0) and ḡ = g0, h̄ = h0. Moreover, (g, h) = O[x] and
the factorization is unique up to scaling by elements in 1 + m.

Proof. We note first that since deg(g) = deg(g0), the leading coefficient of g(x) is a unit
and so O[x]/(g, h) is a finite O-module and so is trivial by Nakayama’s Lemma. We
construct g, h by induction. We lift g0, h0 arbitrarily to O[x]. There exist polynomials
a, b ∈ O[x] such that ag0 + bh0 − 1 ∈ m[x]. Let π be the coefficient of minimal valuation
among those of f−g0h0 and ag0+bh0−1. Then f−g0h0 ∈ πO[x] and ag0+bh0−1 ∈ πO[x].
Suppose we have constructed monic polynomials gn, hn ∈ O[x] with gn − gn−1 ∈ πnO[x],
hn−hn−1 ∈ πnO[x] and such that f −gnhn ∈ πn+1O[x]. We seek polynomials u, v ∈ O[x]
with deg u < deg g0, deg v < deg h0 such that

f − (gn + πn+1u)(hn + πn+1v) ∈ πn+2O[x].

This amounts to gnv + hnu− (f − gnhn)/πn+1 ∈ πO[x]. This can be achieved with

v = a(f − gnhn)/πn+1, u = b(f − gnhn)/πn+1

without the requirement on their degrees. If deg u ≥ deg g0, we apply the division
algorithm to write u = gnq + r with deg r < deg g0. Then

gnv + hnu = gn(v + hnq) + hnr

and we replace u, v by r, v + hnq. Taking g = lim gn and h = lim hn does the job.
To prove uniqueness, suppose (g′, h′) is another coprime factorization. Then (g, h′) =
O[x] since (ḡ, h̄′) = k[x]. So gr + h′s = 1 for some r, s ∈ O[x]. Multiply by g′ to get
g | g′. Similarly, we have g′ | g and so they differ by a scalar that reduces to 1 in k.

The condition that g0 and h0 are coprime is important. The polynomial x8 + x2 + 1
factors as (x4 + x+ 1)2 in F2[x], but it is a simple bash to show that it doesn’t factor as
a product of two quartics in (Z/4Z)[x] so it is irreducible in Q2[x]. (Exercise:) Prove
that x8 + x2 + 1 factors in Qp[x] for every prime p. Indeed, its discriminant 28 · 2292

is a square but the discriminant of an irreducible polynomial in Fp[x] of degree d is a
quadratic residue mod p if and only if d is odd. This implies that it factors in Fp[x]. For
p ̸= 229, since it has no repeated factors in Fp[x], the factorization in Fp[x] lifts to Zp[x].
When p = 229, Wolfram alpha gives

x8 + x2 + 1 = (x+ 103)2(x+ 126)2(x2 + 110x+ 171)(x2 + 119x+ 171) ∈ F229[x].

Hensel’s lemma lifts this to a product of 4 polynomials of degree 2 in Z229[x]. Note also
that if c is a root of x8 +x2 +1, then so is −c. Hence for any p, the polynomial x8 +x2 +1
has no irreducible factors of degree 5 or 7. The Galois group of the splitting field of
x8 +x2 + 1 over Q is F3

2 ⋊S4, where the action of S4 on F3
2 is via its 3-dimensional regular

representation. When viewed as permutations on the 8 roots, we see that there are no
5-cycles or 7-cycles. The underlying principle here is the Chebotarev density theorem.

For another example, the polynomial xp−1−1 ∈ Zp[x] factors as (x−1) · · · (x−(p−1)) ∈
Fp[x]. Hence it must also split completely over Zp[x].
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Corollary 1.4.2
Suppose f(x) ∈ O[x] with f̄ ̸= 0 and suppose a0 ∈ k is a simple root of f̄(x). Then
a0 lifts to a root a of f(x).

Proof. Simple root means that f̄(x) = (x−a0)h(x) where x−a0 and h are coprime.

Corollary 1.4.3
Suppose f(x) = anx

n + an−1x
n−1 + · · ·+ a0 ∈ K[x] is irreducible and ana0 ̸= 0. Let

r = 0, . . . , n be such that |ar| is maximal. Then r = 0 or r = n. In other words, if
f(x) ∈ O[x] is primitive and irreducible in K[x], then a0 or an is a unit. In particular,
if f(x) ∈ K[x] is irreducible with an = 1 and a0 ∈ O, then f(x) ∈ O[x].

Proof. Suppose f(x) ∈ O[x] is primitive with a0 ∈ m and an ∈ m. Then f̄ = xrh0(x) for
some h0(x) ∈ k[x] with h0(0) ̸= 0. The condition a0 ∈ m implies r ≥ 1. The condition
an ∈ m implies r < n. Hence the factor xr lifts to a nontrivial factor of f ..

Proposition 1.4.4
Suppose f(x) ∈ O[x] and suppose a0 ∈ O satisfies |f(a0)| < |f ′(a0)|2. Then there is
a unique root a ∈ O of f(x) with |a− a0| ≤ |f(a0)|/|f ′(a0)| < |f ′(a0)|.

Proof. Define
an+1 = an −

f(an)
f ′(an) .

It is easy to check that

|f(an+1)| ≤
|f(an)|2
|f ′(an)|2 < |f(an)|, |f ′(an+1)| = |f ′(an)|

and
|an+m − an| =

|f(an)|
|f ′(an)| = |f(an)|

|f ′(a0)|
→ 0.

Hence the sequence (an) converges to a desired root a. Note that the inequality |a−a0| <
|f ′(a0)| implies that |f ′(a)| = |f ′(a0)|.

Suppose now b ∈ O is another root with |b− a0| < |f ′(a0)| and |b− a| ≠ 0. Then

0 = f(b)− f(a) ≡ (b− a)f ′(a) (mod (b− a)2)

but since |b− a| < |f ′(a0)|, we have

|(b− a)2| < |b− a||f ′(a0)| = |(b− a)f ′(a)|.

Contradiction.

Corollary 1.4.5
Suppose m is a positive integer not divisible by char(O). Then every unit sufficiently
close to 1 has an m-th root in O.

Proof. Take a0 = 1 and f(x) = xm − u. Then we just need |u− 1| < |m|2.
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Corollary 1.4.6
For any positive integer n, the equation xn + 1 = zn has nonzero solutions in Zp. In
other words, Fermat’s Last Theorem can’t be proved by purely local methods.

For which m does
√
m exist in Z2? Clearly any m with µ2(m) odd is not a square

and if µ2(m) is even, we may divide m by powers of 4. So it suffices to consider
m ∈ Z×

2 = 1 + 2Z2. Since odd squares are all 1 mod 8. We see that m ∈ 1 + 8Z2 in order
to be a square. Now if m ∈ 1 + 8Z2, then consider f(x) = x2 −m with a0 = 1. We have
f(a0) ∈ 8Z2 and f ′(a0) = 2 and so |f(a0)| < |f ′(a0)|2. Hence m has a square root in
1 + 4Z2. Alternatively, one can show that 2n2 + n = k is always solvable in Z2 by lifting
the root k in F2. In other words,

Z×
2 /Z×2

2
∼= (1 + 2Z2)/(1 + 8Z2) ∼= Z/2Z× Z/2Z.

Consider now f(x) = (x2− 2)(x2− 17)(x2− 34). We know 17 is a square in Z2 and 2 is a
square in F17 and so also in Z17. For any other prime p, at least one of 2, 17, 34 is a square
in Fp and so a square in Zp. In other words, f(x) = 0 is solvable in Zp for all primes p
(called locally soluble), but not solvable in Z. Other examples include (x3 +x+1)(x2 +31)
and (x3− 19)(x2 + x+ 1). We will see later that such polynomials can’t be irreducible in
Z[x]. It is not hard to check it can’t be a product of two irreducible degree 2 polynomials.
Exercise: Prove that the Dedekind polynomial f(x) = x3−x2− 2x− 8 splits completely
in Q2[x].
Exercise: (Weierstrass preparation) Let f(x) ∈ O[[x]] be primitive and let d ≥ 0 be
the smallest integer such that the coefficient of xd in f(x) is a unit. Then there exist a
unique polynomial g(x) of degree d such that ḡ = xd and a unit h(x) ∈ O[[x]]× such that
f = gh. As a consequence, a primitive power series has finitely many roots in m.

Even though the statement looks just like Hensel’s lemma. The proof (that I know) is
quite different!
Exercise: Consider the field

K =
⋃

n≥1
C((t1/n))

of Puiseux series over C. Define a non-archimedean absolute value on K by |t1/n| = 69−1/n

and |λ| = 1 for every λ ∈ C×. Prove that K is algebraically closed.
For non-archimedean absolute values, we often also consider the asociated additive

valuations, defined by µ(a) = − logρ(|a|) for some fixed ρ > 1. The additive valuation
µ satisfies

1. µ(0) =∞;

2. µ(xy) = µ(x) + µ(y);

3. µ(x+ y) ≥ min{µ(x), µ(y)}, with equality when µ(x) ̸= µ(y);

4. O = {a ∈ K : µ(a) ≥ 0} and m = {a ∈ K : µ(a) > 0}.

Consider now a polynomial f(x) = a0 + a1x+ · · ·+ anx
n ∈ K[x] with a root α ∈ K.

Then
0 = f(α) = a0 + a1α + · · ·+ aiα

i + · · ·+ ajα
j + · · ·+ anα

n.

We note that the minimal µ(amα
m) must be achieved at least twice, say at i and j. That

is,
µ(ai) + iµ(α) = µ(aj) + jµ(α) ≤ µ(am) +mµ(α).
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Hence every point (m,µ(am)) lies above or on the line joining (i, µ(ai)) and (j, µ(aj)),
which has slope −µ(α). We define the Newton polygon of f as the lower convex hull
of the points (m,µ(am)) for m = 0, 1, . . . , n and (0,∞), (n,∞) on the plane. Its lower
edges consist of multiple segments of increasing slope.

Theorem 1.4.7
Suppose K is a non-archimedean (complete) valuation field. Suppose f(x) =
an(x− α1) · · · (x− αn) splits completely in K. If exactly m of the αi’s have additive
valuation s, then the Newton polygon of f has a segment of length m and slope −s.

Proof. Since the leading coefficient only has the effect of shifting the Newton polygon up
or down, we may assume an = 1. Suppose first that all n roots of f(x) have additive
valuation s. Then for i = 1, . . . , n−1, an−i is the sum of the i-fold products of the αj and
so is a sum of elements with additive valuation is. Hence µ(an−i) ≥ is. Since µ(an) = 0
and µ(a0) = ns, we see that the Newton polygon of f consists of one segment of length
n and slope −s.

We now proceed by induction on the number of different valuations of the roots. The
base case is proved above. In general, suppose α1, . . . , αm have the highest additive
valuations s. Let

g(x) = (x− α1) · · · (x− αm) = xm + bm−1x
m−1 + · · ·+ b0

with µ(bm−i) ≥ is and µ(b0) = ms. Let h(x) = f(x)/g(x) = xn−m + cn−m−1x
n−m−1 +

· · ·+ c0. Since the slopes for the Newton polygon of h are all bigger than −s, we see that
µ(cj+k) > µ(cj) − ks for any j and any k ̸= 0. This implies that µ(cj+kbm−k) > µ(cj)
and so

aj+m = cj + cj+1bm−1 + · · ·

has valuation µ(cj). In other words, the points (i, µ(ai)) for i = m, . . . , n are obtained
from the points (i, µ(ci)) for i = 0, . . . , n−m by shifting m units to the right. For any
i = 0, . . . ,m, we have

ai = c0bi + c1bi−1 + · · ·+ cib0

with
µ(cjbi−j) ≥ µ(c0)− js+ (m− (i− j))s = µ(c0) + (m− i)s

and µ(c0b0) = µ(c0) +ms. Hence we have an extra segment of length m and slope −s
from (0, µ(a0)) to (m,µ(am)).

Of course polynomials rarely split completely. Theorem ?? is the most useful after we
extend valuations to field extensions.

Theorem 1.4.8
Let K be a non-archimedean complete valuation ring with absolute value |.|K and
let L be a finite extension of K of degree n. Then the absolute value |.|K extends
uniquely to an absolute value |.|L on L, and L is complete with respect to |.|L.
Moreover, for any β ∈ L,

|β|L = |NL/K(β)|1/n
K .

Here, NL/K(β) is the determinant of the multiplication by β map on L.
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Proof. Uniqueness of the extension and completeness of L follow from general topology,
via the theory of finite dimensional normed vector spaces over a complete metric space.
It only remains to prove that the ultrametric inequality for |NL/K(β)|1/n

K . That is, given
nonzero β1, β2 ∈ L, we have

|NL/K(β1 + β2)|K ≤ max{|NL/K(β1)|K , |NL/K(β2)|K}.

Without loss of generality, suppose that |NL/K(β1β
−1
2 )|K ≤ 1. Hence we see that it

suffices to prove that

|NL/K(β)|K ≤ 1 =⇒ |NL/K(β + 1)|K ≤ 1.

Let OK denote the valuation ring of K and let OL denote its integral closure in L. In
other words, OL consists of β ∈ L whose minimal polynomial over K lies in OK [x].
Recall that

char poly of · β on L = (char poly of · β on K(β))[L:K(β)] = (min poly of β)[L:K(β)].

We see that if β ∈ OL, then its minimal polynomial is in OK [x] and so NL/K(β) ∈ OK .
Conversely, if NL/K(β) ∈ OK , then the minimal polynomial of β over K is an irreducible
polynomial of the form xd + · · ·+ a0 with a0 ∈ OK , and so lies in A[x] by Corollary ??.
Hence

OL = {β ∈ L : NL/K(β) ∈ OK}.

We are now done because OL is a ring.

Corollary 1.4.9
Let K be a complete field with a non-archimedean absolute value |.|K . Let Ω denote
an algebraic closure of K. Then |.|K extends uniquely to an absolute value |.|Ω on Ω.

Note the absolute value |.|Ω is still non-archimedean, but it is not discrete and Ω is
not necessarily complete unless |.|K is trivial. Consider K = Qp with |.|p and we also
denote by |.|p for its extension to Q̄p. Then for any positive integer n, we have p1/n ∈ Q̄p

and |p1/n|p = p−1/n which can be arbitrarily close to 1 as n goes to infinity. Since Q̄p has
countable dimension over Qp, we know from the Baire Category Theorem (any complete
metric space is not a countable union of nowhere dense subsets) that Q̄p is not complete.
The completion of Q̄p is Cp. Krasner’s Lemma can also be used to prove that Cp is
algebraically closed. In fact, Cp is (non-canonically) isomorphic to C assuming the axiom
of choice.

Theorem 1.4.10
Suppose K is a non-archimedean complete valued field. Let f(x) = an(x−α1) · · · (x−
αn) ∈ K[x] with α1, . . . , αn ∈ K̄. If exactly m of the αi’s have additive valuation s
(under the extension of the valuation on K to K̄), then the Newton polygon of f
has a segment of length m and slope −s.

Proof. Let L be a finite extension of K over which f splits. The extension of |.|K to L
also extends µ to L. Apply Theorem ?? to L.
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Corollary 1.4.11
Suppose K is a non-archimedean complete valued field and suppose f(x) = anx

n +
· · · + a0 ∈ K[x] is irreducible with ana0 ̸= 0. Then all the roots of f(x) have the
same valuation.

Proof. For any root β of f(x) in K̄, we have |β|K̄ = |β|K(β) = |a0/an|1/n
K .

Corollary 1.4.12
Let K be a complete field and an additive valuation µ. Let f(x) ∈ K[x] and suppose
that the Newton polygon of f has a segment of length m and slope −s. Then there
exists α1, . . . , αm ∈ K̄ with valuation s such that (x− α1) · · · (x− αm) ∈ K[x] and
divides f(x).

Proof. When f(x) is factored into a product of irreducible polynomials over K, the roots
of each irreducible factor have the same valuations.



2 Ramification
Suppose now K is a complete discrete valued field with valuation ring A, maximal

ideal p = (π), and residue field k. We normalize µ on K so that µ(π) = 1. Let L be
an algebraic extension of K. Then the absolute value |.| on K extends uniquely to an
absolute value |.| on L, with valuation ring B, maximal ideal q, and residue field ℓ. From
the proof of Theorem ??, we know that B is the integral closure of A in L. The ring A
is a discrete valuation ring. We say L/K is unramified if ℓ/k is separable and q = pB.
In other words, the ramification degree e = 1. We say L/K is totally ramified if ℓ = k.
In other words, the residue degree f = 1. Note that if L/K is finite of degree n, then
B is also a discrete valuation ring and recall that the ramification degree e and residue
degree f are defined more generally as

qe = pB, and f = [ℓ : k], with n = ef.

§2.1 Interlude on Dedekind domains and Discrete
Valuation Rings

A discrete valuation ring (DVR) is a PID with a unique nonzero prime ideal. The
localization Z(p) of Z at a prime ideal (p), so that integers not divisible by p are invertible,
is a DVR. If A is a DVR with maximal ideal m = (π) and field of fraction K, then every
element a ∈ K× can be written uniquely as πnu for some n ∈ Z and u ∈ A× and we
define an additive valuation µ : K× → Z by µ(a) = n.

Proposition 2.1.1
Suppose A is a local Noetherian integral domain whose maximal ideal is principal.
Then A is a DVR.

Proof. Suppose m = (π) for some π ∈ A. Suppose there exists y ∈ ⋂mn with y ̸= 0.
Then there is an infinite ascending chain

(y) ⊊ (yπ−1) ⊊ (yπ−2) ⊊ · · ·

contradicting Noetherian-ness. Hence every element in A can be written in the form
πnu for some non-negative integer n and unit u and if an ideal contains πnu, it also
contains πn. For any nonzero ideal I, let n be the smallest integer such that πn ∈ I, then
I = (πn).

Proposition 2.1.2
A Noetherian integral domain is a DVR if and only if it is integrally closed and has
a unique nonzero prime ideal.

Proof. Suppose A is a DVR with field of fraction K. We need to prove it is integrally
closed. Let x ∈ K be integral over A. Then xn + an−1x

n−1 + · · · + a0 = 0 for some
a0, . . . , an−1 ∈ A. If µ(x) = −m < 0, then µ(an−1x

n−1 + · · ·+ a0) ≥ −(n− 1)m > µ(xn).

21
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To prove the converse, suppose A is integrally closed and has a unique nonzero prime
ideal m. It suffices to show that m is principal. Fix some arbitrary nonzero c ∈ m. For
each b /∈ (c), let

Ib = {a ∈ A : ab ∈ (c)}.

Then each Ib is a nonzero proper ideal of A. Since A is Noetherian, let b /∈ (c) be
such that Ib is maximal among all such ideals. Suppose x, y ∈ A with xy ∈ Ib. Then
(x, Ib) ⊂ Iyb. Hence y /∈ Ib ⇒ yb /∈ (c)⇒ x ∈ Ib. Therefore, Ib = m is the unique nonzero
prime ideal of A.

Since Ib(b) ⊂ (c), we have Ib(b/c) ⊂ A. If Ib(b/c) ⊂ Ib, then b/c is integral as it
preserves a finitely generated A-module, which implies that b/c ∈ A since A is integrally
closed. This contradicts the assumption that b /∈ (c). Hence Ib(b/c) = A and so Ib = (c/b)
is principal.

§2.2 Extensions of non-archimedean absolute values
Recall that we have shown that every local field is isomorphic to R or C or Fq((t)) or a
finite extension of Qp. What do finite extensions of Qp look like?

Theorem 2.2.1
Let A be a complete DVR with field of fraction K and absolute value |.|K . Let L be
a finite extension of K of degree n. Then the integral closure B of A in L is finitely
generated as an A-module. The absolute value |.|K extends uniquely to a discrete
absolute value |.|L on L, and L is complete with respect to |.|L. Moreover, for any
α ∈ L,

|α|L = |NL/K(α)|1/n
K .

Proof. We note that the completeness of L follows from standard argument after the
extension is proven. Namely, fix a K-basis {e1, . . . , en}. Given any Cauchy sequence in
L, when each term is expressed in the above K-basis, each coefficient forms a Cauchy
sequence in K.

Let p denote the unique nonzero prime ideal of A. We suppose first that L/K is
separable. Then B is a Dedekind domain since A is. All nonzero prime ideals of B lie
above p and they each define in-equivalent absolute values on L. There are multiple ways
to prove that B has only one nonzero prime ideal, which implies that B is a DVR and
that |.|K extends uniquely to L.

(Proof 1): Since K is complete, any norm on a finite dimensional K-vector space
is equivalent (i.e. define the same topology) to the sup norm (defining the product
topology). (Cassels-Frohlich page 52)

(Proof 2): Suppose q1 and q2 are two prime ideals of B over p. Take β ∈ q1\q2. Then
q1 ∩ A[β] and q2 ∩ A[β] are two distinct prime ideals containing p. They then give
two distinct prime ideals in A[β]/p ∼= k[x]/(f̄(x)) where f(x) ∈ A[x] is the minimal
polynomial of β. By Hensel’s Lemma, since f(x) is irreducible, we see that f̄(x) = g(x)m

for some irreducible polynomial g ∈ k[x]. However, k[x]/(g(x)m) only has one prime
ideal, contradiction.

To prove the explicit formula for |.|L, let L′ denote the Galois closure of L/K. The
absolute value |.|K also extends uniquely to |.|L′ . For any σ ∈ Gal(L′/K), x 7→ |σ(x)|L′

is a discrete absolute value on L′ extending |.|K . Hence |σ(x)|L′ = |x|L′ . In other words,
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for any α ∈ L, the conjugates of α all have the same valuation. Let α1, . . . , αd be all the
conjugates of α. Then

|NL/K(α)|K = |(α1 · · ·αd)n/d|K = |(α1 · · ·αd)n/d|L′ = |α|nL.

Suppose now L/K is inseparable. Then there exists an intermediate field E such that
L/E is purely inseparable and E/K is separable. Applying the above to the extension
E/K, we may assume L/K is purely inseparable. Then exists a prime power q = pm

where p is the characteristic of K such that αq ∈ K for all α ∈ L. The extention of |.|K
to |.|L is then forced to be |α|L = |αq|1/q

K . The ultrametric inequality for |.|L and the
norm formula can be checked easily.

Finally, we prove that B is finite over A. This argument doesn’t use any separable
assumption. We claim first that B/pB is finite over A/p. Indeed, suppose {bi}i∈I ⊂ B/pB
is linearly independent over A/p. Lift each bi arbitrarily to βi ∈ B. Then {βi}i∈I is
linearly independent over A (take any linearly combination that gives 0, divide by a
power of a uniformizer π of A until some coefficients are units, reduce mod p). Then I is
finite since L/K is finite. Now let β1, . . . , βm for some m ≤ n be in B such that their
images in B/pB form a basis over A/p. We claim that they generate B as an A-module.
Take any b ∈ B. Then there exists aij ∈ A such that

b =
m∑

i=1
a0iβi + π

m∑
i=1

a1iβi + π2
m∑

i=1
a2iβi + · · ·

= lim
n

m∑
i=1

 n∑
j=0

ajiπ
j

 βi

belongs to Aβ1 + · · ·+ Aβm since A is complete.

Suppose now K is a complete discrete valued field with valuation ring A, maximal
ideal p, and residue field k. Let L be an algebraic extension of K. Then the absolute
value |.| on K extends uniquely to an absolute value |.| on L, with valuation ring B,
maximal ideal q, and residue field ℓ. We say L/K is unramified if ℓ/k is separable and
q = pB. In other words, the ramification degree e = 1. We say L/K is totally ramified
if ℓ = k. In other words, the residue degree f = 1.

§2.3 Totally ramified extensions

Theorem 2.3.1
Totally ramified extensions of a complete discrete valued field K of finite degrees are
all of the form K[x]/(f(x)) for some Eisenstein polynomial f(x). Moreover, for any
uniformizer β of B, we have B = A[β] ∼= A[x]/(f(x)).

Proof. Suppose L/K is totally ramified of degree n. Let β be a generator of the maximal
ideal of L. Then µ(β) = 1/n. The minimal polynomial f(x) of β is then of degree n
and its Newton polygon has a segment of length n and slope −1/n. This implies that
f(x) is Eisenstein: f(x) = xn + an−1x

n−1 + · · ·+ a0 with µ(ai) ≥ 1 and µ(a0) = 1; and
L = K(β) ∼= K[x]/(f(x)). Conversely, if f(x) is Eisenstein, then f(x) is irreducible (by
the usual proof of Eisenstein’s criterion or by Newton polygon) and any root β of f(x)
satisfies µ(β) = 1/n. Hence K(β) is totally ramified of degree n.
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Consider now the ring A[β] ∼= A[x]/(f(x)). It suffices to prove that it has a unique
maximal ideal and that it is principal, which would imply that A[β] is a DVR and so
integrally closed. Since A[β] is finite over A, by Nakayama’s lemma, any maximal ideal
m of A[β] must contain pA[β] (as m + pA[β] = A[β] would imply m = A[β]). Now
A[β]/pA[β] ∼= k[x]/(xn) has the unique maximal ideal (x). Hence m = (p, β) = (β) is
principal.

For any f = ∑
amx

m and g = ∑
bmx

m ∈ K[x] of degree n, we say that f and g are
close if |am−bm| is small for every m = 0, . . . , n. Our next main result is that K[x]/(f(x))
and K[x]/(g(x)) are isomorphic over K if f and g are close enough.

Proposition 2.3.2
(Krasner’s Lemma) Suppose K is a non-archimedean complete valued field. Suppose
β is algebraic over K and α is separable over K(β). Suppose α is closer to β than
to any conjugate of α. Then α ∈ K[β].

Proof. Any conjugate of α over K(β) is of the form σ(α) for some α : K(α, β) → K̄
fixing K(β). Then

|σ(α)− β| = |σ(α− β)| = |α− β|
and so

|σ(α)− α|= |(σ(α)− β)− (α− β)| ≤ |α− β|
which is only possible if σ(α) = α.

Corollary 2.3.3
Suppose K is a non-archimedean complete valued field. Let f(x) be a separable
irreducible polynomial in K[x] of degree n. Then for any polynomial g(x) ∈ K[x] of
degree n that is close enough to f(x), g is irreducible and K[x]/(g(x)) ∼= K[x]/(f(x)).

Proof. We may assume f(x) is monic and factors as (x − α1) · · · (x − αn) over some
separable extension of K. Let β be a root of g(x). Then for g close enough to f ,
|f(β)| = |(f−g)(β)| is small enough. Hence, one of the |β−αi| can be made smaller than
all |αj − αi|. Krasner’s Lemma then implies that K(αi) ⊂ K(β). Comparing degrees we
find that g is irreducible and K(αi) = K(β).

We can use this result to prove that Cp is algebraically closed. Fix any irreducible
polynomial f(x) = xn + an−1x

n−1 + · · ·+ a0 with ai ∈ Cp. Since Q̄p is dense in Cp, there
exist bi ∈ Q̄p close enough to ai such that g(x) = xn + bn−1x

n−1 + · · ·+ b0 is irreducible
in Cp[x]. Since g ∈ Q̄p[x] already splits in Q̄p, we have n = 1.

Corollary 2.3.4
Suppose K is a complete discrete valued field of characteristic 0 and finite residue
field (i.e. finite extension of Qp). Then for any positive integer n, there are only
finitely many totally ramified extensions of K of degree n up to isomorphism.

Proof. View each Eisenstein polynomial as an element in the compact set p×· · · p×(p\p2).
Two elements that are sufficiently close give isomorphic field extensions. Done by
compactness.
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In characteristic p, there could be infinitely many totally ramified extensions of degree
p. Consider K = Fp((t)) with µ(t) = 1 and Artin-Schreier extensions of the form
Kn = K[x]/(xp − x − t−n) for any positive integer n not divisible by p. Then Kn/K
is Galois with Galois group Z/pZ. The conjugate of any root α of xp − x − t−n are
α, α+ 1, . . . , α+ (p− 1) which all have the same valuation and multiply to t−n. Hence
µ(α) = −n/p. Since p ∤ n, we see that Kn/K is totally ramified. Now given any positive
n,m with p ∤ nm, it follows from general facts about Artin-Schreier extensions (or
bash-able) that if there do not exist a, a′ ∈ F×

p and b ∈ K such that at−n−a′t−m = bp− b,
then the extensions Kn/K and Km/K are not isomorphic. Indeed, any such b must
have negative valuation, but then µ(bp) < µ(b) so µ(bp − b) = µ(bp) = pµ(b) but
µ(at−n − a′t−m) = min{−n,−m} is not divisible by p.

§2.4 Totally tamely ramified extensions
A finite extension L/K of discrete valued fields with separable residue field extension is:
tamely ramified if char(k) ∤ e; wildly ramified if char(k) | e. We have a very nice
description for the totally tamely ramified extensions.

Theorem 2.4.1
Totally and tamely ramified extensions of a complete discrete valued field K of
degree e with char(k) ∤ e are all of the form K[x]/(xe − π) for some uniformizer π of
K.

Proof. It is clear that any extension of the form K( e
√
π) is totally and tamely ramified

since e
√
π is a root of xe− π which is Eisenstein. Suppose now L/K is totally and tamely

ramified of degree e. By (the proof of) Theorem ??, we know that L = K(β) for some
uniformizer β for L. The minimal polynomial of β is of the form xe+ae−1x

e−1+· · ·+a1x+a0
where µ(ai) ≥ 1 and a0 is a uniformizer. Then

βe = −a0 − a1β − · · · − ae−1β
e−1.

Let π = −a0. We see that
|βe − π| < |π| = |β|e.

Consider f(x) = xe − π. We will use Krasner’s Lemma to prove that f(x) has a root
in K(β) = L, which would imply that L = K[x]/(xe − π) since L is generated by any
uniformizer. Let α1, . . . , αe denote the roots of f(x). Then they all have the same
valuation as β and

|β|e > |βe − π| = |β − α1| · · · |β − αe|.
By renaming, suppose |β − α1| < |β| = |α1|. Now since |e| = 1, we have

|f ′(α1)| = |α1|e−1 = |α2 − α1| · · · |αe − α1|.

Hence all |αi − α1| = |α1| > |β − α1|. Hence α1 ∈ K(β) by Krasner’s Lemma.

Corollary 2.4.2
Suppose L/K is a totally ramified extension of a complete discrete valued field of
degree e. Let p = char(k) and let e′ = e/ gcd(e, p∞). Then there exists a tamely
ramified extension T/K contained in L of degree e′.
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Proof. This follows from the above proof. Let d = gcd(e, p∞). After getting |βe−π| < |β|e,
we let β′ = βd and consider f(x) = xe′ − π. Let L′ = K(β′) and the same proof above
implies that L′ contains a subfield T isomorphic to K[x]/(xe′ − π), which is tamely
ramified of degree e′.

Example: Consider L = Qp(ζpm) and K = Qp. The minimal polynomial of ζpm is

Φpm(x) = xpm − 1
xpm−1 − 1 = x(p−1)pm−1 +x(p−2)pm−1 + · · ·+xpm−1 +1 ≡ (x−1)(p−1)pm−1 mod p.

Then Φpm(x + 1) ≡ x(p−1)pm−1 (mod p) and Φpm(1) = p. Hence Φpm(x + 1) is an
Eisenstein polynomial and so L = Qp(ζpm − 1) is totally ramified of degree (p− 1)pm−1

with uniformizer β = ζpm − 1. We have

|(ζpm − 1)(p−1)pm−1 − (−p)| < |p|.

When m = 1, the extension is tamely ramified and we have Qp(ζp) = Qp((−p)1/(p−1)).
Note since Qp contains all the (p− 1)-th roots of unities, Qp((−p)1/(p−1)) is Galois over
Qp. In general, for m > 1, Qp(ζp) is the tame part of Qp(ζpm). We note that it is very
important that p is a uniformizer in K for this example.
Exercise: Find a finite extension K of Q3 such that K(ζ3)/K is not totally ramified.

Corollary 2.4.3
Suppose char(k) ∤ e. For any a ∈ K with gcd(e, µ(a)) = 1, the polynomial xe − a ∈
K[x] is irreducible and the extension K[x]/(xe − a) is totally and tamely ramified of
degree e.

Proof. From the Newton polygon, we see that the roots of xe− a in K̄ all have valuation
µ(a)/e. No product of any nonempty proper subset of them can have integer valuation.
Hence xe − a is irreducible. Let L = K[x]/(xe − a). Then µ(a)/e is some integer divided
by the ramification degree of L. Again from gcd(µ(a), e) = 1, we see that L/K is totally
ramified of degree e, and tame because char(k) ∤ e.

Corollary 2.4.4
Suppose K is a complete discrete valued field containing all e-th roots of unities
where char(k) ∤ e. For any positive integer t, the field K(α) where αe = πt is tamely
ramified over K of degree e/ gcd(e, t), where π is some uniformizer of K.

Proof. Let d = gcd(e, t). Then αe/d = ζπt/d for some ζ with ζd = 1. Since K contains all
e-th roots of unities, there exists some ζe ∈ K such that ζe/d

e = ζ. Then K(α) = K(α/ζe)
where (α/ζe)e/d = πt/d. Since now gcd(e/d, t/d) = 1, we are done by Corollary ??.

Remark: Let p = char(k). Then the subgroup U1 = 1 + πO has no prime-to-p torsion.
Suppose p ∤ e. Then the condition ζe ∈ K is equivalent to ζe ∈ k, which in the case k is
finite is equivalent to e | |k| − 1. Indeed, if d | e such that ζd

e ≡ 1 (mod π), then ζd
e ∈ U1

is e/d-torsion, which is impossible. Hence, if ζe ∈ K, then its reduction mod π in k also
has order e. Conversely, if ζe ∈ k, then we apply Hensel’s lemma to xe − 1 to lift it to K.
Note also that in order for L = K[x]/(xe − π) to be Galois, we must have ζe ∈ L, which
is equivalent to ζe ∈ k since L/K is totally ramified and so has the same residue field.
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Exercise: Suppose L/Qp is a Galois totally and tamely ramified extension of degree e.
Prove that e | p− 1 and Gal(L/Qp) ∼= Ce is cyclic.
Exercise: Let K be a local field and let n be a positive not divisible by char(k). How
“many” totally ramified extensions of K are there of degree n?

§2.5 Unramified extensions
In Theorem ??, we saw that in the totally ramified case, where f(x) reduces to x̄n,
the ring A[x]/(f(x)) is maximal in K[x]/(f(x)). This is also true in the other extreme
where f(x) reduces to an irreducible polynomial. In other words, when the extension is
unramified.

Theorem 2.5.1
Unramified extensions of a complete discrete valued field K of finite degrees are all
of the form K[x]/(f(x)) for some monic f(x) ∈ A[x] with f̄(x) ∈ k[x] irreducible
and separable. Moreover, the integral closure of A is B = Af = A[x]/(f(x)).

Proof. Suppose first that L/K is an unramified extension of degree n. Its residue field
extension ℓ/k is separable of degree n. By the primitive element theorem, there exists
α ∈ B such that ℓ = k(ᾱ) where ᾱ denotes the image of α in ℓ. Let f(x) ∈ A[x]
denote the minimal polynomial of α. Then f̄(ᾱ) = 0. Hence f(x) has degree n and
L = K[x]/(f(x)).

Conversely, suppose f(x) ∈ A[x] is monic with f̄(x) ∈ k[x] irreducible and separable.
Then f(x) is irreducible. Let L = K[x]/(f(x)) with residue field ℓ. Let π be a uniformizer
of A. Then similar to the totally ramified case, every maximal ideal of Af contains (π)
but Af/(π) ∼= A[x]/(π, f(x)) ∼= k[x]/(f̄(x)) which is a field. Hence the unique maximal
ideal of Af is (π) and Af is a DVR. So B = Af with maximal ideal pAf . Hence L/K is
unramified.

Corollary 2.5.2
Suppose K is a complete discrete valued field. Then a finite unramified extension
L/K is Galois if and only if the residue extension is Galois.

Proof. With the above notation, L/K is Galois if and only if L contains all the conjugates
of α, which happens if and only if f(x) splits in B if and only if f̄(x) splits in ℓ by
Hensel’s lemma, if and only if ℓ/k is Galois.

Suppose now L/K is finite unramified and suppose L′/K is any algebraic extension of K.
Denote the corresponding rings and maximal ideals and residue fields by B, q, ℓ, B′, q′, ℓ′.
Let σ ∈ HomK(L,L′) be a field homomorphism L→ L′ fixing K. Since |σ(α)| = |α| for
any α ∈ L (by the uniqueness of extensions of absolute values), we see that σ(B) ⊂ B′

and σ(q) ⊂ q′. Then σ descends to a map on the quotient σ : ℓ→ ℓ′ fixing k.

Proposition 2.5.3
Suppose L/K is finite unramified where K is a complete discrete valued field. Suppose
L′/K is any algebraic extension of K. The maps HomK(L,L′) −→ HomA(B,B′) −→
Homk(ℓ, ℓ′) defined above are bijections.
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Proof. The first map is clearly a bijection. The bijectivity of the second map follows
from Theorem ?? and Hensel’s lemma. Indeed, let f(x) ∈ A[x] monic with f̄(x) ∈ k[x]
irreducible and separable such that B = A[x]/(f(x)) and ℓ = k[x]/(f̄(x)). Then
HomA(B,B′) is in bijection with the set of roots of f(x) in B′. By replacing L′ by its
intersection with the splitting field of f(x), we may assume it is finite of K. Similarly
Homk(ℓ, ℓ′) is in bijection with the set of roots of f̄(x) in ℓ′ with the map given by
reduction. Since f̄ is separable and B′ is a complete DVR, every root of f̄ in ℓ′ lifts
uniquely to a root of f in B′.

Theorem 2.5.4
There is an equivalence of categories between unramified extensions of K and
separable extensions of k. Moreover, given any algebraic extension L/K with
separable residue field extension ℓ/k, there is a unique intermediate unramified field
extension E/K that contains all unramified extensions of K in L. The extension
L/E is totally ramified.

Proof. Proposition ?? implies the desired equivalence for finite extensions. The infinite
case follows by viewing any infinite algebraic extension as a direct limit of finite extensions.
More precisely, suppose ℓ/k is infinite separable. Then we express

ℓ = lim−→
ℓ′/k finite

ℓ′.

For each finite ℓ′/k, we have the associated finite unramified extension L′/K. For any
ℓ′

1 → ℓ′
2 in the direct system, we have the corresponding L′

1 → L′
2. We can now take L

as the direct limit of the L′.
For the second statement, let E be the unramified extension of K with residue field ℓ.

Identify E as a subfield of L via the identity map ℓ→ ℓ. For any unramified extension K ′

of K in L, the inclusion map k′ ↪→ ℓ induces an injection K ′ → E that when composed
with the inclusion E ↪→ L is the inclusion K ′ ↪→ L. Hence K ′ ⊂ E. Finally, L/E is
totally ramified since their residue fields are equal.

The maximal unramified extension of K is denoted Kun. Its residue field is the
separable closure of k with Galois group

Gal(Kun/K) ∼= Gal(ksep/k).

When the residue field k = Fq is finite (in other words when K is a local field), we can
be a lot more precise about their unramified extensions. Since finite extensions of Fq are
all Galois, all finite unramified extensions of K are Galois.
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Theorem 2.5.5
Let K be a complete discrete valued field with residue field k = Fq and characteristic
p.

1. For any positive integer n, K has a unique unramified extension L of degree
n, given by K(ζqn−1). It is Galois with Galois group Z/nZ, generated by the
automorphism σ defined by σ(x) ≡ xq (mod q) for every x ∈ B. The map σ
is called the Frobenius element of L/K, denoted FrobL/K .

2. Let m be a positive integer such that p ∤ m. Then for any unit u ∈ A×, the
extension K( m

√
u)/K is unramified. When u = 1, the extension K(ζm)/K has

degree d where d is the smallest positive integer such that qd ≡ 1 (mod m).

Proof. Let L/K be unramified of degree n. Suppose ᾱ ∈ Fqn generates F×
qn . Let f̄ be

the minimal polynomial of ᾱ over Fq. Then deg f̄ = n and f̄ | xqn−1 − 1. Since xqn−1 − 1
is separable, Hensel’s lemma implies that f̄ lifts to some irreducible f(x) ∈ A[x] that
divides xqn−1 − 1 and ᾱ lifts to some root α ∈ B of f(x). Then α is a (qn − 1)-th root
of unity, primitive because ᾱ is. Comparing degrees gives L = K(α) = K(ζqn−1). It is
clearly Galois because all the conjugates of ζqn−1 are powers of it.

Suppose p ∤ m. Let f(x) ∈ A[x] denote the minimal polynomial of m
√
u over K. Since

f(x) is irreducible in K[x], we see that f̄(x) = g(x)e for some irreducible g ∈ k[x] and
e ≥ 1. From f(x) | xm − u in A[x], we get f̄(x) | xm − ū in k[x], which has no repeated
factors over Fq when p ∤ m. Hence e = 1 and f̄(x) is irreducible. Hence K( m

√
u)/K is

unramified.
When u = 1, we have the better division f(x) | Φm(x) where Φm(x) is the m-

th cyclotomic polynomial since any element of order m is a root of Φm(x) from the
factorization formula xm− 1 = ∏

d|m Φd(x). We then have f̄(x) | Φm(x) in k[x]. In a field
of characteristic not dividing m, any root of Φm(x) has multiplicative order m. Indeed,
if ℓ | m is a proper divisor, then we have the factorization

xm − 1 = Φm(x)(xℓ − 1)G(x)

for some G(x) ∈ Z[x]. Since xm − 1 has no repeated root, we see that Φm(x) and xℓ − 1
can’t have a common root. Therefore, the residue field extension is Fq(ζm)/Fq. Finally,
we note that Fq(ζm) = Fqd where d is the smallest positive integer such that F×

qd contains
a cyclic group of order m.

Adjoining p-power roots of unities will result in a totally ramified extension if the base
field is unramified over Qp, similar to what we did previously for Qp where the important
ingredient is that p is a uniformizer so that Φpm(x+ 1) is Eisenstein.

Proposition 2.5.6
Let p be a prime and m be any positive integer. Let K/Qp be an unramified
extension. Then K(ζpm)/K is totally ramified of degree (p − 1)pm−1 and Galois
group (Z/pmZ)×. When m = 1, K(ζp)/K is totally and tamely ramified and in fact
K(ζp) = K((−p)1/(p−1)).

Proof. For each n ∈ (Z/pmZ)×, the map ζpm 7→ ζn
pm is a K-autmorphism of K(ζpm) and

by comparing sizes, we have Gal(K(ζpm)/K) ∼= (Z/pmZ)×.
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Remark: It is possible for K(ζp)/K to be a nontrivial unramified extension. As
an example, consider p = 3 and K = Q3(

√
3), which is a quadratic totally ramified

extension of Q3. The polynomial x2 + 1 is irreducible (and separable) over F3 and so
L = K[x]/(x2 +

√
3x+ 1) is unramified over K of degree 2. Let β ∈ L be the image of x.

Then

(
√

3β + 1)3 = 3
√

3β3 + 9β2 + 3
√

3β + 1 = 3
√

3β(β2 +
√

3β + 1) + 1 = 1.

Hence
√

3β + 1 = ζ3 and L = K(ζ3) is unramified over K. Note that since ζ3 is secretly√
−3, we have K(ζ3) = K(

√
−1) = K(ζ4) is unramified over K.

We now have a fairly nice decomposition of a finite extension L/K of a complete
discrete valued field with separable residue field extension into

K ⊂ E ⊂ T ⊂ L

where

1. E/K is unramified of degree f with residue field ℓ/k, generated by ζqf −1 if k = Fq;

2. T/E is totally and tamely ramified of degree e′ = e/ gcd(e, p∞), generated by some
β ∈ T where βe′ is some uniformizer of E;

3. L/T is totally and wildly ramified of degree e/e′.

When L/K is infinite, we have the same tower where E is the maximal unramified
extension of K in L from Theorem ??. The maximal tamely ramified extension T of K
exists by the following result.

Proposition 2.5.7
Let E be a finite extension of a complete discrete valued field K.

1. If E ⊃ F ⊃ K, then E/K is unramified/tamely ramified/totally ramified if
and only if E/F and F/K are.

2. If E/K is unramified/tamely ramified and L is a finite extension of K, then
EL/L is unramified/tamely ramified.

3. If E1/K and E2/K are both unramified/tamely ramified, then so is E1E2/K.

Proof. The first statement follows from the obvious multiplicative property of e (and f):

eE/K = eE/F eF/K , fE/K = fE/FfF/K .

The third statement follows from the first two. We prove the second statement first
when E/K is unramified. In this case, we have E = K(α) where the minimal polynomial
f(x) ∈ A[x] of α satisfy f̄(x) ∈ k[x] irreducible. Let ℓE denote the residue field of E.
Then ℓE = k(ᾱ). Let ℓ denote the residue field of L and let ḡ(x) be the minimal polynomial
of ᾱ over ℓ. We have the factorization f̄(x) = ḡ(x)h̄(x) of coprime polynomials, which
lifts to a factorization f(x) = g(x)h(x) in B[x] where B is the integral closure of A in L.
Since h̄(ᾱ) ̸= 0, we have h(α) ̸= 0. Hence g(α) = 0. Since ḡ(x) is irreducible, we see that
g(x) ∈ L[x] is irreducible and EL = L(α) is unramified over L.

It remains to consider the case where E/K is tamely ramified. Since we have proved
the result for unramified extensions, we may assume E/K is totally and tamely ramified
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of degree e. By Theorem ??, we know E = K(α) where αe = π is some uniformizer of K.
Let ω be a uniformizer of L and write π = uωt for some unit u in B. Now EL = L(α)
where αe = uωt. Let L′ = L( e

√
u, ζe), which is unramified by Theorem ?? and the earlier

result about unramified extensions. It suffices to prove that L′(α)/L′ is tame, for then
L′(α)/L is tame and so L(α)/L is tame. Now L′(α) = L′(α/ e

√
u) where (α/ e

√
u)e = ωt

and L′ contains all e-th roots of unities. We are done by Corollary ??.

The Remark right after Theorem ?? implies that these properties do not hold for
totally ramified extensions. Recall that K = Q3(

√
3) is totally ramified over Q3. The

field K ′ = Q3(ζ3) is also totally ramified over Q3. However, KK ′ = K(ζ3) is unramified
over K.

We saw that finite totally ramified and unramified extensions are monogenic, in the
sense that B = A[β] for some β ∈ B. In fact, the same is true for all finite extensions of
complete discrete valued fields with separable residue extensions.

Proposition 2.5.8
Let L/K be a finite extension of a complete discrete valued field K with separable
residue extension ℓ/k. Then the integral closure of A in L is monogenic.

Proof. Let β ∈ B such that its reduction β̄ in ℓ generates ℓ over k. Let f(x) ∈ A[x]
be a monic polynomial such that f̄(x) ∈ k[x] is the minimal polynomial of β̄. Since
ℓ/k is separable, we know that f ′(β) ∈ B× is a unit. Let ω be a uniformizer for B. If
µL(f(β)) ≥ 2, then f(β + ω) ≡ ωf ′(β) (mod ω2) has valuation 1. By replacing β by
β + ω if necessary, we may assume f(β) is a uniformizer of B. It is now easy to see that
B = A[β] (by Nakayama for example).

We can now be explicit about the maximal unramified E. Suppose B = A[β] for some
β ∈ L. Let f(x) ∈ A[x] be the minimal polynomial of β over K. Since f(x) is irreducible,
we see that f̄ = ḡe for some irreducible ḡ(x) ∈ k[x]. Now

B/πB ∼= A[x]/(f(x), π) ∼= k[x]/(ḡe).

Hence the residue field ℓ for L is then isomorphic to k[x]/(ḡ). Lift ḡ arbitrarily to a
monic polynomial g ∈ A[x] and Hensel lift some root of ḡ in ℓ to β′ ∈ B. We then have
an embedding from the unramified extension E = K[x]/(g(x)) to L sending x to β′. The
extension L/E is totally ramified of degree e.
Exercise: Find an example of an irreducible f(x) ∈ Zp[x] such that f̄ = ḡe for some
irreducible ḡ ∈ Fp[x] but the ramification degree of Qp[x]/(f(x)) over Qp is not e.

§2.6 Local Kronecker-Weber
We can now prove the local Kronecker-Weber theorem.

Theorem 2.6.1
Every finite abelian extension of Qp lies in a cyclotomic field Qp(ζn).

Proof. Firstly, we easily reduce to the case of cyclic extensions of prime powers degree
since every abelian extension is a compositum of linearly disjoint cyclic extensions of
prime powers degree. We consider the tame case first. Suppose K/Qp is finite abelian and



32 Sachin Kumar

tamely ramified. Let E be the maximal unramified subextension. Then K = E(π1/e) for
some uniformizer π of E. Write π = (−p)u for some unit u in E, which is possible since
p is a uniformizer of E. Then K(u1/e) = E(u1/e, (−p)1/e). Now E(u1/e) is unramified
over E and so also over Qp. Since unramified extensions are cyclotomic, we have

E(u1/e, (−p)1/(p−1)) = E(u1/e, ζp) = Qp(ζm, ζp)

for some m of the form pf − 1. It thus remains to prove that e | p− 1. The extension
K(u1/e)/Qp is abelian, as the compositum of the abelian extensions K and E(u1/e). The
subextension Qp((−p)1/e)/Qp is then Galois, implying that ζe ∈ Qp and so e | p− 1.

It remains to consider the case where K/Qp is cyclic of degree pr for some positive
integer r. Suppose first that p > 2. Let K1 = Qp(ζppr −1) and K2 = Qp(ζpr+1). Then
K1 is unramified with Galois group Z/prZ and K2 is totally ramified with Galois group
Z/prZ × Z/(p − 1)Z, and we expect K ⊆ K1K2. Suppose for contradiction that K is
not contained in K1K2. Then

Gal(KK1K2/Qp) ↪−→ (Z/prZ)× (Z/prZ× Z/(p− 1)Z)× (Z/prZ)

with order more than pr · pr(p− 1). This means that Qp has an abelian extension with
Galois group (Z/pZ)3.

If p = 2, we need to take K2 = Q2(ζ2r+2) so that Gal(K2/Qp) ∼= Z/2Z× Z/2rZ. Then
if K is not contained in K1K2, we have

Gal(KK1K2/Q2) ↪−→ (Z/2rZ)× (Z/2rZ× Z/2Z)× (Z/2rZ)

with order more than 2r · 2r+1. This means that Q2 has an abelian extension with Galois
group (Z/2Z)4 or (Z/4Z)3.

You will prove in HW3, with the help of some Kummer theory, that these extensions
of Qp and Q2 do not exist.

Local class field theory gives a correspondence between open subgroupsN ofK× of finite
index and finite abelian extensions L of K. Under this correspondence, N = NL/K(L×)
and Gal(L/K) ∼= K×/NL/K(L×). From the decompositions

Q×
p
∼= Z× ⟨ζp−1⟩ × Zp, for p > 2,

Q×
2
∼= Z× ⟨−1⟩ × Z2,

we see that

Q×
p /Q×p

p
∼= (Z/pZ)2, Q×

2 /Q×2
2
∼= (Z/2Z)3, Q×

2 /Q×4
2
∼= (Z/4Z)2 × (Z/2Z).

Hence Q×
p and Q×

2 do not contain finite index subgroups with the desired quotients.
As a consequence of the local Kronecker-Weber, we see that the maximal abelian

extension of Qp has the form

Qab
p = lim−→

f

Qp(ζpf −1) · lim−→
n

Qp(ζpn).

The first direct limit is the maximal unramified extension Qun
p of Qp. Taking Galois

groups gives
Gal(Qab

p /Qp) ∼= lim←−
f

Z/fZ× lim←−
n

(Z/pnZ)× ∼= Ẑ× Z×
p ,
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which is the profinite completion of Q×
p
∼= Z× Z×

p . There is a natural reciprocity map

ϕ : Q×
p → Gal(Qab

p /Qp)

sending pmu, where u is a unit, to the automorphism that acts as Frobm on Qun
p and

sends ζpn to ζu
pn on (Qp)p = lim−→Qp(ζpn). Computing the image of the norm map gives

N(Qp(ζpf −1)×) = pfZ × Z×
p ,

N(Qp(ζpn)×) = pZ × (1 + pnZp).

The first equality is a general fact about finite unramified extensions, which follows from
the fact that the norm and trace are surjective on finite fields. The second equality
actually follows from a general construction in the proof of local class field theory! If
we compare these norm groups to the action of ϕ(pmu), we see that there is some norm
compatibility result:

ϕ(a)|L = idL ⇐⇒ a ∈ NL/Qp(L×).

The construction of the totally ramified component (Qp)p for a general local field of
characteristic 0 is the meat of Lubin-Tate theory, recalling that we can no longer naively
adjoin p-power roots of unities.

The maximal tamely ramified extension Qtr
p is obtained from Qun

p by adjoining e-th
roots of p for positive integers e not divisible by p. These are Kummer extensions with
Galois group Z/eZ as Qun

p contains all e-th roots of unities for p ∤ e. So we have

Gal(Qtr
p /Qun

p ) ∼= lim←−
p∤n

Z/nZ =
∏
q ̸=p

Zq.

The wild ramification is more complicated. Iwasawa (On Galois Groups of Local Fields
1955) proved that Gal(Q̄p/Qtr

p ) is the pro-p completion of the free group on countably
many generators. Here the pro-p completion of any group G is the inverse limit of G/N
over normal subgroups N where G/N is a finite p-group. All of the above are true for any
finite extension of Qp, namely for any local field with mixed characteristic. In general, it
is known to be topologically finitely presented with known generators and relations.

§2.7 Ramification groups
Suppose K is a complete discrete valued field and L be a finite Galois extension of K
with Galois group G. Suppose the residue extension ℓ/k is separable. Let E be the
maximal unramified extension in L/K. Let A, B, AE be the valuation rings of K, L and
E.

Recall that we have the natural maps

HomK(L,L) −→ HomA(B,B) −→ Homk(ℓ, ℓ).

We also know that Gal(E/K) ∼= Gal(ℓ/k). By extending any K-automorphism of E to a
K-automorphism of L, we have the surjection Gal(L/K)→ Gal(ℓ/k). Its kernel is the
inertia group, IL/K :

IL/K = {σ ∈ Gal(L/K) : σ(b) ≡ b (mod q), ∀b ∈ B} ∼= Gal(L/E).
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Proposition 2.7.1
There is a short exact sequence

1→ IL/K → Gal(L/K)→ Gal(ℓ/k)→ 1.

The maximal unramified extension E is the fixed field of the inertia group IL/K .

If char(k) = 0, then T = L. If char(k) = p, then T is the maximal extension of E in L
with [L : T ] equal to the largest p-power divisor of [L : E]. In other words, Gal(L/T ) is
the Sylow p-subgroup of IL/K .

To understand the inertia group IL/K better, we fix a uniformizer π of L, which
automatically generates B as an AE-algebra. Then we have the map θ0 : IL/K → B× via
θ0(σ) = σ(π)/π. The group of units B× has a filtration

B× = U0 ⊃ U1 ⊃ U2 ⊃ · · ·

where Ui = 1 + qi for n ≥ 1, with

B×/U1 ∼= ℓ× and Ui/Ui+1 ∼= qi/qi+1 ∼= ℓ.

The ramification group RL/K is defined to be θ−1
0 (U1). More generally, we define all

the higher ramification groups: for any integer i ≥ 0,

Gi = {σ ∈ Gal(L/K) : σ(b) ≡ b (mod qi+1),∀b ∈ B}
= {σ ∈ Gal(L/K) : σ acts trivially on B/qi+1}
= {σ ∈ Gal(L/K) : σ(β) ≡ β (mod qi+1)}

where β ∈ B is any element with B = A[β], which exists by Proposition ??. Then by
definition, we have

IL/K = G0.

It is easy to see that each Gi is a normal subgroup of G: for any σ, τ ∈ Gal(L/K), we
have

σ(β) ≡ β (mod qi+1) =⇒ τστ−1(τ(β)) ≡ τ(β) (mod qi+1).

Now for any σ ∈ G0, since σ fixes AE the integral closure of A in E, and B = AE[π], we
have for any i ≥ 1,

Gi = {σ ∈ G0 : σ(π) ≡ π (mod qi+1)}
= {σ ∈ G0 : σ(π)/π ≡ 1 (mod qi)}
= θ−1

0 (Ui).

Note that if σ ∈ Gi and u ∈ B×, then from σ(u) ≡ u (mod qi+1), we have σ(u)/u ∈ Ui+1.
Hence, θ0 induces a map

θi : Gi/Gi+1 → Ui/Ui+1

which does not depend on the choice of π. It then follows that θi is an injective group
homomorphism. As a consequence, we have

G0/G1 ↪→ ℓ× and Gi/Gi+1 ↪→ ℓ.
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Proposition 2.7.2
The group G0/G1 is cyclic, mapped isomorphically by θ0 to a subgroup of the group
of roots of unities in ℓ× of order prime to char(k). Moreover:

1. If char(k) = 0, then G1 = {1};

2. If char(k) = p, then G1 is the Sylow p-subgroup of G0 and has a filtration
where the quotients are Z/pZ.

In particular, the maximal tamely ramified extension T is the fixed field of G1 = RL/K .

Proof. In the characteristic 0 case, ℓ has no nontrivial finite subgroup. In the characteristic
p case, ℓ is an Fp-vector space and so all of its (additive) subgroups are products of
Z/pZ.

Corollary 2.7.3
All finite Galois extensions of K are solvable.

Remark: The fact that a totally and tamely ramified Galois extension is cyclic (as
G0/G1 is cyclic) also follows from Kummer theory. If L = K[x]/(xe − π) is Galois over
K, then ζe ∈ L. Since p ∤ e, we know K(ζe)/K is unramified and so ζe ∈ K since L/K is
totally ramified. Hence by Kummer theory, K( e

√
π)/K is cyclic. Note since ζe is a unit,

it also follows that the residue field k contains ζe and so e | |k| − 1.
As another application of the filtration on the units, we have the following result.

Proposition 2.7.4
Suppose the residue field k is finite. Then there are finitely many totally and tamely
ramified extensions of K of degree e. When the residue field k is separably closed,
the totally and tamely ramified extension of K of degree e is unique.

Proof. We know that totally and tamely ramified extensions of K of degree e are all of
the form K[x]/(xe − π) for some uniformizer π of K. If two uniformizers π1, π2 in K
satisfy π1/π2 ∈ A×e, then K[x]/(xe − π1) and K[x]/(xe − π2) are isomorphic. Since p ∤ e,
we have A×/A×e ∼= k×/k×e is finite. When k is separably closed, this set is trivial.

Example 1: Let’s compute the ramification groups in the example of L = K[x]/(xp −
x − t−n) where K = Fp((t)) and p ∤ n. Since L/K is a degree p extension, there is an
integer s ≥ 1 such that Gs = Z/pZ and Gs+1 = {1}. We prove that s = n. Let α denote
the image of x. Then µK(α) = −n/p and so µL(α) = −n. Let π denote a uniformizer of
L. Now G is generated by σ where σ(α) = α + 1 and

σ(α−1)
α−1 = α

α + 1 = 1− 1
α + 1 ∈ Un\Un+1.

On the other hand α−1 = πnu for some unit u ∈ B×. We have σ(u)/u ∈ Us+1 and
σ(π)/π ∈ Us\Us+1. Since p ∤ n, we see that (σ(π)/π)n ∈ Us\Us+1. Therefore,

σ(α−1)
α−1 =

(
σ(π)
π

)n
σ(u)
u
∈ Us\Us+1.
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Thus, s = n. This gives another proof that the fields L for different n are non-isomorphic.
Example 2: As another example, consider the ramification groups of Qp(ζpn)/Qp. We
saw before that Qp(ζpn)/Qp is totally ramified of degree (p− 1)pn−1 and Galois group
G = G0 = (Z/pnZ)×. For any a ∈ (Z/pnZ)×, we write σa for the Galois element sending
ζpn to ζa

pn . For any m ≤ n, we have the subfield Qp(ζpm)) with Galois group

G(m) = Gal(Qp(ζpn)/Qp(ζpm)) = {σa ∈ G : a ≡ 1 (mod pm)}.

Let µm denote the normalized valuation on Qp(ζpm)) so that µm(ζpm − 1) = 1 for
m = 1, . . . , n. Fix any σa ̸= 1 in G. We compute

µn(σa(ζpn − 1)− (ζpn − 1)) = µn(ζa
pn − ζpn) = µn(ζa−1

pn − 1).

Let v ≥ 0 be the largest integer such that a ≡ 1 (mod pv). In other words, a ∈
G(v)\G(v + 1). Then ζa−1

pn is a primitive pm−v-th root of unity. Hence

µn(ζa−1
pn − 1) = pvµn−v(ζpn−v − 1) = pv.

In other words, we have, for any integer v = 0, . . . , n− 1,

Gpv−1 = Gpv−1+1 = · · · = Gpv−1 = G(v), and G≥pn−1 = 1.

We remark that all of the above remain true if Qp is replaced by an unramified extension
of Qp by Proposition ??, recalling that the key is that p is a uniformizer so Φpn(x+ 1) is
Eisenstein.

Note that (p−1)pv−1 of the ramification groups Gu equal G(v) and G/G(v) ∼= (Z/pvZ)×

has size (p− 1)pv−1. One is then lead to the conjecture that the number of ramification
groups that equal some fixed nontrivial (normal) subgroup H of G is divisible by [G : H].
This is true for abelian extensions, known as the Hasse-Arf theorem! In HW 3, you will
explore a Q8-extension (not a typo!) where

G0 = G1 = Q8 and G2 = G3 = {±1} and G4 = {1}.

Here there are only 2 ramification groups with index 4.

§2.8 Upper numbering ramification groups
Let K be complete discrete valued field and let L/K be a finite Galois extension with
separable residue extension. Let A and B denote the valuation rings of K and L
respectively. We know that B = A[β] for some β ∈ B. We let iG(σ) = µL(σ(β)− β) for
any σ ∈ G = Gal(L/K) so that the ramification groups Gi have the property that

iG(σ) = i+ 1⇐⇒ σ ∈ Gi\Gi+1.

Now if H is a subgroup of G, then H is the Galois group of some L/K ′ and iG(σ) = iH(σ).
Hence we have

Hi = H ∩Gi.

In other words, the lower numbering ramification groups behave well with subgroups.
However, they are not convenient when it comes to quotients.
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Proposition 2.8.1
Suppose H is normal. Let M = LH be the fixed field of H. Then for any σ ∈ G,

iG/H(σH) = 1
eL/M

∑
τ∈H

iG(στ) = 1
#H0

∑
τ∈H

iG(στ).

Proof. Let C denote the integral closure of A in M . Let γ ∈ C be such that C = A[γ].
We see that it suffices to prove that

µL(σ(γ)− γ) = µL

(∏
τ∈H

(στ(β)− β)
)
,

since then dividing by eL/M = #H0 gives the desired result. Let f(x) ∈ C[x] be the
minimal polynomial of β over C. Then

f(x) =
∏

τ∈H

(x− τ(β)).

For any f(x) = cdx
d + · · · c0 ∈ C[x], we write

fσ(x) = σ(cd)xd + · · ·+ σ(c0).

Note that every coefficient of fσ − f is of the form σ(c) − c for some c ∈ C. Since
C = A[γ], we see that every coefficient of fσ − f is divisible by σ(γ)− γ in C. Hence
σ(γ)− γ divides fσ(β)− f(β) in B where

fσ(β)− f(β) = fσ(β) =
∏

τ∈H

(β − στ(β)).

For the other division, let g(x) ∈ A[x] such that γ = g(β). Then g(x)− γ ∈ C[x] vanishes
at β and so

g(x)− γ = f(x)h(x)
for some h(x) ∈ C[x]. Note that gσ = g since g ∈ A[x]. Apply σ and then set x = β gives

γ − σ(γ) = fσ(β) · hσ(β)

which gives the division in B in the other direction.

There is a family of subgroups of G where the ramification groups behave well with
quotients.

Corollary 2.8.2
Suppose H = Gj for some j ≥ 0. Then (G/H)i = Gi/H for all i ≤ j and
(G/H)i = {1} for all i > j.

Proof. Take any σ ∈ G\H. Then iG(σ) < iG(τ) for any τ ∈ H since H = Gj, and so

iG(στ) = µL(στβ − β) = µL(σ(τβ − β) + σβ − β) = iG(σ)

since
µL(σ(τβ − β)) = µL(τβ − β) = iG(τ) > iG(σ).

Since H ⊂ G0, we have H0 = H. Then by Proposition ??, we have iG/H(σH) = iG(σ).
Hence (G/H)i = Gi/H for all i ≤ j; and for i > j, (G/H)i ⊂ (G/H)j = {1}.
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Note that we proved that:
iG(στ) ≥ min{iG(σ), iG(τ)}, with equality if iG(σ) ̸= iG(τ).

Suppose now H is a general normal subgroup of G, it is still reasonable to expect that
for any integer v ≥ 0, (G/H)v = GuH/H for some integer u ≥ 0. For example, when
v = 0, (G/H)0 corresponds to the maximal unramified extension of K in M , which
is the same as M intersecting with the maximal unramified extension of K in L. So
(G/H)0 = G0H/H. For any σ ∈ G\H, let

j(σ) = max
τ∈H

iG(στ).

Then
σH ∈ GuH/H ⇐⇒ j(σ)− 1 ≥ u

σH ∈ (G/H)v ⇐⇒ iG/H(σH)− 1 ≥ v.

Suppose iG(σ) = j(σ). Then for any τ ∈ H, if iG(τ) < iG(σ), then iG(στ) = iG(τ); if
iG(τ) ≥ iG(σ), then j(σ) ≥ iG(στ) ≥ iG(σ) = j(σ). In both cases, we have

iG(στ) = min{iG(τ), j(σ)}.
Hence, we have

iG/H(σH) = 1
#H0

∑
τ∈H

min{iG(τ), j(σ)}.

Note this formula implies that iG/H(σH) can be expressed as an increasing function in
j(σ). We define for any real number u ≥ −1, and any finite Galois extension L/K,

φL/K(u) = 1
#G0

(∑
σ∈G

min{iG(σ), u+ 1}
)
− 1 = 1

#G0

∑
σ∈G0

min{iG(σ)− 1, u}.

Then φL/K is a piece-wise linear non-decreasing function and for any integer u ≥ −1,
GuH/H = (G/H)φL/M (u).

Proposition 2.8.3
Let u ≥ −1 be any real number. Let m be an integer such that m ≤ u < m + 1.
Prove that

φL/K(u) = 1
#G0

(#G1 + · · ·+ #Gm + (u−m)#Gm+1).

In other words, φL/K(−1) = −1, is piece-wise linear, with slopes #Gm+1/#G0 in
[m,m+ 1].

Proof. (Proof by staring.) Since φL/K(−1) = −1 is clear and φL/K is piece-wise linear,
it suffice to prove the slope statement. Let u ∈ (m,m + 1) be a non-integer. Then
min{iG(σ)− 1, u} = u if and only if iG(σ)− 1 ≥ m+ 1 if and only if σ ∈ Gm+1.

Example: Consider the extension Qp(ζpn)/Qp. We computed earlier that G0 = (Z/pnZ)×

and
Gpv−1 = Gpv−1+1 = · · · = Gpv−1 = G(v) = 1 + pvZ/pnZ

with index (p− 1)pv−1 in G0 for v ≥ 1. Working out φ, we find that φ(pv − 1) = v for
v = 0, 1, 2, . . . and is piecewise linear joining them. In the case of the Q8-extension with
G0 = G1 = Q8 and G2 = G3 = {±1} and G4 = 1, we have φ(1) = 1 and φ(3) = 3/2.
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Lemma 2.8.4
If φL/K(u) ∈ Z, then u ∈ Z.

Proof. If v = φL/K(u) ∈ Z, then

(u−m)#Gm+1 = v#G0 − (#G1 + · · ·+ #Gm)

but every term on the right hand side is divisible by #Gm+1.

The Hasse-Arf theorem states that the points where the slopes change are all lattice
points (points with both coordinates integers). This is equivalent to our conjecture
earlier that the number of ramification groups equal to H is divisible by the index
[G : H].

Theorem 2.8.5
(Hasse-Arf) If G is abelian and Gu ̸= Gu+1, then φL/K(u) ∈ Z.

It is common to define Gu for any real number u ≥ −1 by Gu = G⌈u⌉ and G−1 = G.
We define the upper numbering ramification groups by

Gv = Gu where v = φL/K(u).

Note that Lemma ?? implies that if v ∈ Z, then u ∈ Z. The Hasse-Arf theorem implies
that if G is abelian, then Gv and Gv+1 (when v ∈ Z) are either equal, or are two
consecutive ramification groups and so Gv/Gv+1 is a subgroup of {1}, ℓ× or ℓ.

The advantage of the upper numbering is that

GφL/K(u)H/H = GuH/H = (G/H)φL/M (u) = (G/H)φM/K(φL/M (u))

Proposition 2.8.6
For any u ≥ −1,

φL/K(u) = φM/K(φL/M(u)).
Therefore (Herbrand’s Theorem) for any v ≥ −1,

(G/H)v = GvH/H.

Proof. Since both sides are piecewise linear and start at (−1,−1). It suffices to prove the
two sides have the same slopes at non-integer points. Suppose u /∈ Z and v = φL/M(u).
Note that v /∈ Z. Then the derivative of the right hand side is

#(G/H)v

eM/K

· #Hu

eL/M

= #(GuH/H) ·#(Gu ∩H)
eL/K

= #Gu

eL/K

which equals the derivative of the left hand side.

The fact that the upper numbering ramification groups behave well with quotients
means that we can define them for infinite Galois extensions. Let L/K be an infinite
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Galois extension. Let Σ(L/K) denote the set of intermediate fields F such that F/K is
finite Galois. We have

Gal(L/K) = lim←−
F ∈Σ(L/K)

Gal(F/K)

= {(σF ) ∈
∏

F ∈Σ(L/K)
Gal(F/K) : σF1 |F1∩F2 = σF2|F1∩F2}.

If we give each Gal(F/K) the discrete topology and the product the product topology,
then the image of Gal(L/K) is closed and so is compact by Tychonoff’s Theorem.
Pulling back this topology gives the Krull topology on Gal(L/K), where a basis of open
neighborhood is given by σGal(L/F ) for any σ ∈ Gal(L/K) and any finite extension
F/K. Infinite Galois theory gives a correspondence between the closed subgroups of
Gal(L/K) and intermediate fields E/K. We can then define

Gal(L/K)v = lim←−
F ∈Σ(L/K)

Gal(F/K)v

=
⋂

F ∈Σ(L/K)
{σ ∈ Gal(L/K) : σ|F ∈ Gal(F/K)v}.

Note that they are all closed in Gal(L/K).
Example: Consider (Qp)p = lim−→Qp(ζpn). We have for v ≥ 1,

Gal((Qp)p/Qp) ∼= lim←−(Z/pnZ)× ∼= Z×
p ,

Gal((Qp)p/Qp)v ∼= lim←−(1 + pvZ/pnZ) ∼= 1 + pvZp.

We can give another proof of the local Kronecker-Weber theorem using Hasse-Arf!

Proposition 2.8.7
Suppose that L/Qp is abelian, totally ramified and contains (Qp)p. Then L = (Qp)p.

Proof. It suffices to assume L/(Qp)p is finite. Let G = Gal(L/Qp) and H = Gal(L/(Qp)p).
Then we have for any integers v ≥ 0

1 + pvZp
∼= (G/H)v = GvH/H ∼= Gv/(Gv ∩H).

From the following commuting diagram with exact rows and injective vertical maps

1 // Gv+1 ∩H //

��

Gv+1 //

��

1 + pv+1Zp
//

��

1

1 // Gv ∩H // Gv // 1 + pvZp
// 1

we have

#(Gv/Gv+1) = #(Gv ∩H/Gv+1 ∩H) ·
p− 1 if v = 0,
p if v ≥ 1.

In particular, the groups Gv have finite index in G. Hence their fixed field is some finite
extension Ev/K with Gal(Ev/K)v = {1}. Moreover,

Gv/Gv+1 =
⋂

F ∈Σ(L/Qp)
{σ ∈ Gal(Ev+1/Qp) : σ|F ∈ Gal(F/Qp)v}

↪→ Gal(Ev+1/Qp)v/Gal(Ev+1/Qp)v+1

↪→

F×
p if v = 0,

Fp if v ≥ 1,
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where the last inclusion uses Hasse-Arf. Hence, we see that for all v ≥ 0,

Gv ∩H = Gv+1 ∩H.

However, H ⊂ G0 = G0 and so H ⊂ Gv for all v ≥ 0. Therefore, H = 1 since ⋂v G
v = 1

as any σ ∈ ⋂v G
v is trivial on any finite F/K.

Corollary 2.8.8
(Local Kronecker-Weber) We have Qab

p = Qun
p · (Qp)p.

Proof. Extend the automorphism that acts as Frobenius on Qun
p and identity on (Qp)p

to an automorphism τ on Qab
p . Then for any finite abelian extension M/(Qp)p, the fixed

field of τ |M is a totally ramified extension of Qp that contains (Qp)p, and so is (Qp)p

itself by Proposition ??. In other words, Gal(M/(Qp)p) = ⟨τ |M⟩ is cyclic. Now if M1 and
M2 are two degree n extensions of (Qp)p in Qab

p , then since Gal(M1M2/(Qp)p) is cyclic
and has a unique subgroup of index n, we see that M1 = M2. Now the compositum
Qp(ζpn−1) · (Qp)p is degree n over (Qp)p. We conclude that any finite abelian extension
M/Qp is contained in Qun

p · (Qp)p

§2.9 Discriminant
Suppose L/K is a finite separable extension of a complete discrete valued field K with
separable residue extension ℓ/k. Then we know that the valuation ring B is monogenic:
there exists β ∈ B such that B = A[β]. Let f(x) ∈ A[x] be the minimal polynomial of β.
We define the discriminant of L/K as the principal ideal

Disc(L/K) = (NL/K(f ′(β)))

We will define the discriminant more generally later and show that they coincide in this
case.

To see the independence with β, we let σ1, . . . , σn denote the n embeddings of L = K(β)
into Ksep. In other words, they are determined by σi(β) = βi where the polynomial f(x)
factors as ∏n

i=1(x− βi) in Ksep. The embeddings together define an isomorphism

L⊗K Ksep ∼= (Ksep)n

of Ksep-vector spaces. The determinant of multiplication by f ′(β) on L as a K-vector
space equals the determinant of multiplication by (f ′(β1), . . . , f ′(βn)) in (Ksep)n. Hence,
we have the familiar

NL/K(f ′(β)) =
n∏

i=1
f ′(βi) = (−1)n(n−1)/2 ∏

1≤i<j≤n

(βi − βj)2 = (−1)n(n−1)/2∆(f).

we can write the discriminant ∆(f) as the square of the Vandermonde determinant of
the n×n matrix M whose (i, j)-entry is σi(βj−1). Now if {α1, . . . , αn} is another A-basis
for B, and M ′ is the matrix whose (i, j)-entry is σi(αj), then detM and detM ′ differ by
a unit in A×. Then, we also have the usual

Disc(L/K) = (det(σi(αj))2) = (det(TrL/K(αiαj))).
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If M/L is another finite separable extension with separable residue extension, then

Disc(M/K) = Disc(L/K)[M :L]NL/K(Disc(M/L)).

This can be checked by bashing out the matrices. We will give a more intrinsic proof
when we define discriminants in general later. Note that for any uniformizer ω of L, we
have

eL/K · µK(NL/K(ω)) = µL(NL/K(ω)) = [L : K].
Hence, we have

NL/K(q) = pfL/K .

Recall that when A is a Dedekind domain with field of fraction K and L/K a finite
separable extension, we have the inverse different of the integral closure B over A:

D−1
B/A = {a ∈ L : TrL/K(ab) ∈ A,∀b ∈ B}

and the discriminant

Disc(L/K) = Disc(B/A) = NL/K(DB/A).

When B is monogenic, that is, B = A[β] for some β ∈ B, from the proof of Theorem ??,
we can compute the inverse different using the basis {1, β, . . . , βn−1} to find

DB/A = (f ′(β)).

Taking norm gives the usual

Disc(L/K) = (∆(f)) = (
∏
i<j

(βi − βj)2)

where β1, . . . , βn denote the conjugates of β, and ∆(f) is the (polynomial) discriminant
of f(x). Let σ1, . . . , σn denote all the embeddings of L in Ksep so that βi = σi(β). Then
we can write ∆(f) as the square of the Vandermonde determinant of the matrix M whose
(i, j)-entry is σi(βj). Now if {α1, . . . , αn} is another A-basis for B, and M ′ is the matrix
whose (i, j)-entry is σi(αj), then detM and detM ′ differ by a unit in A×. Then, we also
have the usual

Disc(L/K) = (det(σi(αj))2) = (det(TrL/K(αiαj))).

Proposition 2.9.1
Let M/L be a finite separable extension and let C be the integral closure of A in M .
Then

DC/A = DC/BDB/A, Disc(M/K) = Disc(L/K)[M :L]NL/K(Disc(M/L)).

Proof. Let I be any fractional ideal of C (in M). Then

I ⊂ D−1
C/B ⇐⇒ TrM/L(IC) ⊂ B

⇐⇒ D−1
B/A TrM/L(I) ⊂ D−1

B/A

⇐⇒ TrL/K(D−1
B/AI) ⊂ A

⇐⇒ D−1
B/AI ⊂ D

−1
C/A

⇐⇒ I ⊂ DB/AD−1
C/A.

The statement about the discriminants follow from NM/K = NL/K ◦NM/L, which follows
from the same statement for elements and by localization.
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We will focus on the case K is a complete discrete valued field and when the residue
extension ℓ/k is separable. We will see later that the inverse different and the discriminant
behave well with respect to localization and completion.

Proposition 2.9.2
Let M/L be a finite separable extension and let C be the integral closure of A in M .
Then

DC/A = DC/BDB/A, Disc(M/K) = Disc(L/K)[M :L]NL/K(Disc(M/L)).

By Proposition ??, we know that there exists β ∈ B such that B = A[β] with minimal
polynomial f(x). Then we have:

Lemma 2.9.3
Suppose L/K is unramified. Then Disc(L/K) = (1).

Proof. In this case, β is a simple root of f(x) and so f ′(β) is a unit.

Corollary 2.9.4
Suppose E/K is the maximal unramified extension in L/K. Then

Disc(L/K) = NE/K(Disc(L/E)).

More explicitly, recall that any finite L/K is of the form L = K[x]/(f(x)) where f̄ = ḡe

for some irreducible ḡ(x) ∈ k[x]. Let E = K[x]/(g(x)). Then L/E is totally ramified
of degree e and E/K is unramified of degree deg(ḡ). Suppose char(k) ∤ e so that the
extension is tame. Then we have from the next calculation that Disc(L/E) = pe−1 and
Disc(E/K) = (1). Hence we have

Disc(L/K) = NE/K(Disc(L/E)) = pdeg(ḡ)(e−1).

As an immediate consequence, we see that if Disc(L/K) is squarefree and e ≥ 2, then
deg(ḡ) = 1 and e = 2.

Proposition 2.9.5
(Ore’s condition) Suppose L/K is totally ramified of degree e. Then Disc(L/K) = pm

with
e− 1 + µL((m mod e) + 1) ≤ m ≤ e− 1 + µL(e).

We have equality m = e− 1 if and only if L/K is tamely ramified. Moreover, any m
satisfying the above inequality can happen.

Proof. In this case, β is a uniformizer and f(x) is an Eisenstein polynomial f(x) =
xe + ae−1x

e−1 + · · ·+ a0 with ai ∈ p and a0 /∈ p2. Then

f ′(β) = eβe−1 + (e− 1)ae−1β
e−2 + · · ·+ a1.
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Note that µL(iaiβ
i−1) ≥ e for all i = 1, . . . , e− 1 since each ai ∈ p = qe and µL(eβe−1) =

µL(e) + e− 1. Hence µL(f ′(β)) ≥ e− 1 with equality if and only if µL(e) = 0 if and only
if char(k) ∤ e.

For the more precise bound, note that e | µL(iai) and so each µL(iaiβ
i−1) ≡ i −

1 (mod e). In other words, they all have distinct valuations. Hence µL(f ′(β)) ≤
µL(eβe−1) = e− 1 + µL(e). For the lower bound, suppose m ≡ s− 1 (mod e) for some
s = 1, . . . , e. This means that

m = µL(f ′(β)) = µL(sasβ
s−1) = µL(s) + µL(as) + s− 1.

If s = e, then this is exactly e − 1 + µL(s). If s < e, then µL(as) ≥ e and we have
m ≥ e− 1 + µL(s).

The last statement is obvious by choosing as to have the correct valuation and all
other ai’s to have huge valuations.

The extension Qp(ζp)/Qp is totally and tamely ramified of degree p− 1. Hence
Disc(Qp(ζp)/Qp) = (pp−2).

What about Disc(Qp(ζpn)/Qp)? We can use ramification groups!

Corollary 2.9.6
Suppose K is a complete discrete valued field with finite residue field. Then for any
integers e,m ≥ 1, there are only finitely many extensions L of K of degree e and
µ(Disc(L/K)) ≤ m.

Proof. From the uniqueness of unramified extensions of any degree, we may consider
only the totally ramified case.

Suppose now L/K is Galois with Galois group G. Then
f ′(β) =

∏
σ∈G,σ ̸=1

(β − σ(β)).

Recall that iG(σ) = µL(σ(β)− β). Hence, we have
µL(f ′(β)) =

∑
σ ̸=1

iG(σ)

= 1(|G0| − |G1|) + 2(|G1| − |G2|) + 3(|G2| − |G3|) + · · ·
= |G0|+ |G1|+ · · ·+ |Gm−1| −m,

where Gm is the first trivial ramification group.
We apply this to Gal(Qp(ζpn)/Qp) ∼= (Z/pnZ)×. Recall that for any v = 1, . . . , n− 1,

there are (p− 1)pv−1 ramification groups with index (p− 1)pv−1. The group G0 has order
(p− 1)pn−1 and the first trivial ramification group is Gpn−1 . Hence, we have

Disc(Qp(ζpn)/Qp) = (pϕ(pn)(n− 1
p−1 )) = (pnpn−(n+1)pn−1).

For the funny Q8 example with G0 = G1 = Q8, G2 = G3 = {±1}, G4 = 1, we have
Disc(L/K) = p16.

Finally consider the example Kn = K[x]/(xp − x− t−n) where K = Fp((t)) and p ∤ n.
We saw that Gs = Z/pZ for s = 0, . . . , n and Gn+1 = {1}. Hence we have

Disc(Kn/K) = (t(p−1)(n+1)).
Note that in this case e = p = 0 in L so the term µL(e) =∞ in Ore’s condition. Note also
that since p ∤ n, we have (p−1)(n+1) ̸≡ p−1 (mod p), so that (p−1)(n+1) mod p+1 ̸= p.
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Corollary 2.9.7
Suppose K is a complete discrete valued field and L/K is a finite extension with
separable residue extension. Let L′/K be the Galois closure. Then

µL(DB/A) = 1
eL′/L

∑
σ∈Gal(L′/K)\ Gal(L′/L)

iGal(L′/K)(σ).

Theorem 2.9.8
Suppose K is a complete discrete valued field. Let s ≥ 0 be any integer. Then for
any positive integer n, there are only finitely many Galois extensions L/K of degree
n and Gs = {1}.

Proof. The condition Gs = {1} implies µL(DB/A) ≤ (n− 1)s by Proposition ??.

§2.10 The mass formula of Serre and Bhargava
In this section, we discuss Serre’s beautiful mass formula about the number of totally
ramified extensions of a local field K of fixed degree n. Let Σn(K) denote the set of
degree n totally ramified extensions of K contained in (some fixed) Ksep. Let Σn(K)/ ∼
denote the set of these fields up to K-isomorphisms.

We consider the tame case p ∤ n first, where p = char(k) and k is finite. We know
they are all isomorphic to K( n

√
π) for some uniformizer π of K. Kummer theory implies

that K( n
√
π1) and K( n

√
π2) are isomorphic over K if and only if π2/π1 ∈ K×n, provided

that K contains all n-th roots of unities. Since adjoining the n-th root of a unit is an
unramified extension, the same holds without the assumption of ζn ∈ K. More precisely,
suppose K( n

√
π1) and K( n

√
π2) are isomorphic over K. Then n

√
u ∈ K( n

√
π1) where

u = π2/π1 ∈ A×. Since K( n
√
u)/K is unramified and K( n

√
π1)/K is totally ramified, we

see that n
√
u ∈ K. In other words, there is a bijection

Σn(K)/ ∼ ←→ A×/A×n ←→ k×/k×n.

On the other hand, we have the bijection

AutK(K( n
√
π)) ←→ A×[n] ←→ k×[n] ←→ k×/k×n.

In other words, we find that

∑
L∈Σn(K)/∼

1
# AutK(L) = 1.

In the general case, we also need to weight by the discriminant. Suppose that k ∼= Fq.
We write

Discq(L/K) = qµ(Disc(L/K)) = #(A/Disc(L/K)).

Recall that in the tame case, Discq(L/K) = qn−1.
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Theorem 2.10.1
Let K be a local field with residue field Fq. Let n ≥ 1 be a positive integer. Then

∑
L∈Σn(K)/∼

1
# AutK(L)

1
Discq(L/K) = 1

qn−1 ,

where AutK(L) denote the group of K-automophisms of L.

Remark 1: When counting isomorphism classes, it is standard to weight by the inverse of
the size of the stabilizers. We note that every L ∈ Σn(K) is isomorphic to n/# AutK(L)
many distinct field extensions of K contained within a fixed separable closure Ksep.
Hence, we also have ∑

L∈Σn(K)

1
Discq(L/K) = n

qn−1 .

Remark 2: When K has characteristic p, this is an infinite sum. Serre’s mass formula
then predicts that this sum converges. When K has characteristic 0, we already know
this is a finite sum.

Let mK and mL denote the normalized Haar measures on K and L. In other words, they
are translation invariant normalized so that mK(A) = mL(B) = 1 and so mK(p) = q−1.
Let

Pn = p× · · · × p× (p\p2) ⊂ pn

parameterize Eisenstein polynomials over K. Extend mK to mn
K on Kn via the product

measure. We have
mn

K(Pn) = q−n(1− q−1).
For any L ∈ Σn, let PL

n denote the subset of Pn consisting of polynomials f such that
L ∼= K[x]/(f(x)). Then

mn
K(Pn) = q−n(1− q−1) =

∑
L∈Σn(K)/∼

mn
K(PL

n ).

Note in the case K has positive characteristic, we need to remove the subset of Pn

consisting of the inseparable irreducible polynomials, but it is easy to prove that this
subset has measure 0. It now suffices to prove that

mn
K(PL

n ) = 1
# AutK(L)

1
Discq(L/K)q

−1(1− q−1).

We now fix L with valuation ring B and maximal ideal q. Let σ1, . . . , σn denote the
embeddings of L in Ksep. Consider the map

φL : q\q2 → PL
n

defined by
φL(π) = NL/K(x+ π) =

n∏
i=1

(x+ σi(π)).

The map φL is an # AutK(L)-to-1 surjective map. Indeed, given any f ∈ PL
n , fix an

isomorphism K[x]/(f(x)) → L and let π denote the image of −x. Then φL(π) = f .
Moreover, two elements π1, π2 ∈ q\q2 have the same image if and only if they are
conjugate.
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Since mL(q\q2) = q−1(1− q−1), it remains to compute the Jacobian of φL and prove
that for any π ∈ q\q2,

µ(Jac(φL)(π)) = µ(Disc(L/K)).
We fix an A-basis {e1, . . . , en} for B. This identified L as Kn, B as An, and Haar

measure mL as the product measure mK × · · · × mK . We can extend φL to a map
Kn → Kn as the composite of

φ1 : (b1, . . . , bn) 7→ (σ1(b1e1 + · · ·+ bnen), . . . , σn(b1e1 + · · ·+ bnen))

and
φ2 : (x1, . . . , xn) 7→ (x1 + · · ·+ xn, . . . , x1 · · ·xn).

We note that
Jac(φ1)(b1, . . . , bn) = det(σi(ej))

and
Jac(φ2)(x1, . . . , xn) =

∏
i<j

(xi − xj).

To see the latter formula, note that Jac(φL)(x1, . . . , xn) is homogeneous of degree n(n−
1)/2 and vanishes when xi = xj for any i < j. To find the leading constant, set xn = 0
and apply induction. Suppose now π ∈ q\q2 corresponds to some (b1, . . . , bn) ∈ An. Then

Jac(φL)(π) = det(σi(ej)) ·
∏
i<j

(σi(π)− σj(π)).

Since B = A[π], we know that the square of each factor above generates Disc(L/K). The
proof of Serre’s mass formula is now complete.

The map φL sending α ∈ OL to the coefficients of fα = NL/K(x+ α) is also of interest
when L is a degree n étale K-algebra or when B ̸= A[α]. That is, when L ∼= K[x]/(f(x))
for some polynomial f(x) ∈ K[x] of degree n and nonzero discriminant. In this case, we
have

|Jac(φL)(α)| = | det(σi(ej))| · |
∏
i<j

(σi(α)− σj(α)|

= 1
Discq(L/K)1/2 · |∆(fα)|1/2.

Let An
∼= An denote the space of monic degree n polynomials in A[x] equipped with the

measure mn
K and let ψ be a measurable function on An. For example, ψ could be the

characteristic function of the set of polynomial with squarefree discriminant. Then we
have ∫

An

ψ(f) df =
∑

[L:K]=n
étale/∼

1
# AutK(L)

1
Discq(L/K)1/2

∫
OL

ψ(fα) · |∆(fα)|1/2dα.

Let’s now consider generalizations of Serre’s mass formula due to Bhargava. First
let’s consider all field extensions. Fix positive integers e, f . We write the splitting type
(L/K) = (f e) if eL/K = e and fL/K = f . The totally ramified case corresponds to the
splitting type (1n). Let E be the unique unramified extension of degree f over K in Ksep.
Recall that by Corollary ?? that Disc(L/K) = NE/K(Disc(L/E)). Since NE/K(qE) = pf ,
we see that

DiscqE
(L/E) = (qf )µE(Disc(L/E)) = qµE(NE/K(Disc(L/E))) = Discq(L/K).
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Since E/K is Galois, any L/K with splitting type (f e) contains E. Therefore, by Serre’s
mass formula,

∑
(L/K)=(fe)

1
Discq(L/K) =

∑
(L/E)=(1e)

1
DiscqE

(L/K) = e

qf(e−1) .

In other words, we have proved:

Proposition 2.10.2
Let K be a local field with residue field Fq. Let e, f be positive integers. Then

∑
(L/K)=(fe)/∼

1
# Aut(L/K)

1
Discq(L/K) = 1

f

1
qf(e−1) .

An étale algebra L over K is a K-algebra that is isomorphic to a finite product of finite
separable field extensions of K. If L ∼= K1 × · · · ×Kr where each Ki is a finite separable
field extension of K with spliting type f ei

i , then we write the splitting type of L/K as
(L/K) = (f e1

1 · · · f er
r ). The discriminant of L/K is the product of the discriminants of

Ki/K, since both can be defined using the trace form. Counting isomorphism classes of
such L weighted by 1

# Aut(L/K) is the same as counting ordered products K1 × · · · ×Kr

weighted by
1

# Aut(K1/K) · · ·
1

# Aut(Kr/K) ·
1
N
,

where N denotes the number of permutations of the factors f ei
i preserving (f e1

1 · · · f er
r ).

For any splitting type σ = (f e1
1 · · · f er

r ), we define

Discq(σ) = qf1(e1−1)+···+fr(er−1), # Aut(σ) = Nf1 · · · fr.

For example, for σ = (1112233334), Discq(σ) = q10 and # Aut(σ) = 1·1·1·2·3·3·3·3·2!·3! =
1944. We therefore have:

Proposition 2.10.3
Let K be a local field with residue field Fq. Let σ be a splitting type for a degree n
étale algebra of K. Then

∑
(L/K)=σ/∼

1
# Aut(L/K)

1
Discq(L/K) = 1

# Aut(σ)
1

Discq(σ) .

We can now prove Bhargava’s mass formula using some combinatorics.

Theorem 2.10.4
Let K be a local field with residue field Fq. Then

∑
[L:K]=n étale/∼

1
# Aut(L/K)

1
Discq(L/K) =

n−1∑
k=0

p(k, n− k)
qk

,

where p(k, n− k) is the number of partitions of k into at most n− k parts.
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Proof. Fix any splitting type σ with

k = f1(e1 − 1) + · · ·+ fr(er − 1) ≥ 0.

The number # Aut(σ) should look familiar in terms of centralizers of conjugacy classes
in symmetric groups. For any t ≥ 0, let nt denote the sum of fi with ei − 1 = t. Note
that nk+1 = 0. Let χσ = (χ0, . . . , χk) denote the conjugacy class in G = Sn0 × · · · × Snk

where χt corresponds to the cycle structure (fi1 , . . . , fis) where these are all the fi with
ei = t. Then

# Aut(σ) = #CG(χσ),
where CG(χσ) denotes the centralizer of χσ. We write π(σ) = (n0, . . . , nk). Note that

k = n1 + 2n2 + · · ·+ knk

is a partition of k into n1 + · · ·+ nk ≤ n− k parts, since

k + n0 + n1 + · · ·+ nk =
∑

i

eifi = n.

Conversely, given any partition of k into at most n− k parts, we let nt be the number
of parts equal to t for t ≥ 1 and let n0 = n − k − n1 − · · · − nk ≥ 0. Hence there are
p(k, n− k) different (k + 1)-tuples (n0, . . . , nk) for which there exists a splitting type σ
with π(σ) = (n0, . . . , nk) and Discq(σ) = qk. Therefore, by Proposition ??, it remains to
prove that ∑

π(σ)=(n0,...,nk)

1
# Aut(σ) = 1.

This follows from the above interpretation of # Aut(σ) as #CG(χσ). Indeed, as σ vary
over all possible splitting types with π(σ) = (n0, . . . , nk), the conjugacy class χσ recovers
all conjugacy classes in G. Hence∑

π(σ)=(n0,...,nk)

#G
# Aut(σ) =

∑
χ⊂G conjugacy class

#χ = #G.

Canceling the #G completes the proof.

Corollary 2.10.5
Let K be a local field with residue field Fq. Then

∑
[L:K]=n unramified/∼

1
# Aut(L/K)

1
Discq(L/K) = 1.

Proof. Unramified étale extensions correspond to splitting types σ with k = 0 and
π(σ) = (n).

We also have similar mass formula for étale extensions of R. Degree n étale extensions
of R are of the form L ∼= Rn−2k ×Ck for some integer 0 ≤ k ≤ n/2. For such L, we have
# Aut(L/R) = (n− 2k)! · k! · 2k. We associate to it the conjugacy class χn,k ⊂ Sn whose
cycle structure consists of k 2’s so that

# Aut(L/R) = #CSn(χn,k).

The union of these χn,k over 0 ≤ k ≤ n/2 is exactly the set Sn[2] of 2-torsion elements of
Sn.
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Proposition 2.10.6
We have ∑

[L:R]=n étale/∼

1
# Aut(L/R) = #Sn[2]

n! .

Using these mass formula, Bhargava gave a conjectured formula for the number
N(Sn, X) of Sn-number fields of degree n and absolute discriminant bounded by X:

lim
X→∞

N(Sn, X)
X

= 1
2

(
#Sn[2]
n!

)
·
∏
p

(
p− 1
p

n−1∑
k=0

p(k, n− k)
pk

)
.

A similar heuristic formula can be written down for extensions of global fields. These
have been proven for n = 2, 3, 4, 5. The extra factor of 1/2 can be viewed as coming from
that |∆(fα)|1/2 in the formula for |Jac(φL)(α)| when K = R!



3 Absolute values over Global fields
A global field is a finite extension of Q or of Fp(t) for some prime p. We began this

semester classifying absolute values on Q and on Fp(t). What about their extensions?
We begin with a lemma that reduces to the case of finite separable extensions.

Lemma 3.0.1
Suppose L is a finite extension of Fp(t) for some prime p. Then there exists u ∈ L
such that L is finite separable over Fp(u).

Proof. (Sketch) Let K be a subfield of L that is separable over Fp(u) for some u ∈ L and
such that [L : K] is minimal. Suppose K ̸= L. Then let w ∈ L\K with wp ∈ K. Prove
that u is separable over Fp(w) and so K(w) is separable over Fp(w) with [L : K(w)] <
[L : K].

Theorem 3.0.2
Let K be a field with an absolute value |.| and completion K̂. Let L/K be a finite
separable extension. Then there are finitely many extensions |.|1, . . . , |.|r of |.| to L.
They correspond to the decomposition

L⊗K K̂ ∼=
r∏

i=1
Li

where each Li is a finite separable extension of K̂ and is the completion of L with
respect to |.|i.

Proof. Write L = K[β] for some β ∈ L. Let f(x) ∈ K[x] be its minimal polynomial
and suppose it factors as f(x) = g1(x) · · · gr(x) into irreducible polynomials in K̂[x]. Let
Li = K̂[x]/(gi(x)) for any i = 1, . . . , r. Then since L/K is separable,

L⊗K K̂ ∼= K̂[x]/(f(x)) ∼=
r∏

i=1
Li.

Suppose |.|′ is an absolute value on L extending |.|. Let L′ denote its completion and let
ι : L ↪→ L′ denote the natural embedding. Then L′ = K̂[ι(β)] = K̂(ι(β)) because K̂[ι(β)]
is complete and contains ι(L) as a dense subset. Let g(x) ∈ K̂[x] denote the minimal
polynomial of ι(β). Then since f(ι(β)) = 0, we see that g = gi for some i = 1, . . . , r and
so L′ ∼= Li.

Conversely, fix some i = 1, . . . , r. The absolute value |.| on K̂ extends uniquely to |.|i
on Li = K̂[x]/(gi(x)). We then have an embedding L ↪→ Li sending β to x. Restricting
|.|i to L then gives an absolute value on L.

We consider the archimedean absolute values, which only exist for number fields
(finite extension of Q). In this case, we have K = Q(β) ∼= Q[x]/(f(x)) for some monic
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irreducible f(x) ∈ Q[x]. We factor f(x) in R[x] into a product of r1 linear factors and r2
quadratic factors. Then r1 + 2r2 = n = [K : Q]. We have

K ⊗Q R ∼= Rr1 × Cr2 .

There are r1 real embeddings σ1, . . . , σr1 sending β to a real root of f(x); and 2r2
complex embeddings, namely σr1+1, . . . , σr1+r2 and their complex conjugates, sending β
to a complex root of f(x). We define the normalized absolute values by

||a||i = |σi(a)|, for i = 1, . . . , r1,

||a||i = |σi(a)|2, for i = r1 + 1, . . . , r1 + r2.

The choice of the normalizations is so that

|NK/Q(a)| =
r1+r2∏
i=1
||a||i.

As some concrete examples, we have

• Q(ζ3) ↪→ C : ζ3 7→ ζ3,

• Q(ζ5) ↪→ C× C : ζ5 7→ (ζ5, ζ
2
5 ),

• Q(
√

2) ↪→ R× R :
√

2 7→ (
√

2,−
√

2).

The ring of integers OK of K is isomorphic to Zn as an abelian group. Its image in
Rr1 × Cr2 is then a full rank lattice ΛK , upon identifying Rr1 × Cr2 ∼= Rn as R-vector
spaces.

Proposition 3.0.3
We have

|Disc(K/Q)| = 22r2Vol(Rn/ΛK)2 = 22r2Disc(ΛK)2,

where Vol is the usual Euclidean volume.

Proof. Let α1, . . . , αn be a Z-basis of OK . Recall that

Disc(K/Q) = det(σi(αj))2.

For each ℓ = 1, . . . , r2, adding the r1 + r2 + ℓ row to the r1 + ℓ row turns the r1 + ℓ row
into 2Re(σr1+ℓ(αj)). Then subtracting 1/2 of this new r1 + ℓ row from the r1 + r2 + ℓ
row turns it into −Im(σr1+ℓ(αj))i. In other words, if we write M for the n× n matrix
whose j-th column is the image of αj in Rn. Then

det(σi(αj)) = ±(−2i)r2 detM.

We are now done because | det(M)| is exactly the discriminant of ΛK .

Remark: One can get rid of the 22r2 using a different normalization of C ∼= R2.

Theorem 3.0.4
The images of OK in Rr1−1 × Cr2 and Rr1 × Cr2−1 are dense.
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For example, we have the familiar density result of Z[
√

2] ↪→ R and Z[ζ5] ↪→ C.

Proof. The key idea is Minkowski’s convex body theorem. Take a convex region in
Rr1 × Cr2 that is tiny in all but one directions and sufficiently large in that last one
direction so that its volume is bigger than 2nDisc(ΛK). Here we consider each C-factor
as “one direction” as well. Then a nonzero α0 ∈ OK can be found inside.

Fix some v in Rr1−1 × Cr2 or Rr1 × Cr2−1 to be approximated. Embed it in Rr1 × Cr2

by setting its remaining coordinate 69. Every point in Rr1 ×Cr2 is not too far from some
lattice points in ΛK . In other words, there exists a constant C depending only on K
such that |v/α0 − α|i < C for all i for some α ∈ OK . Then |v − α0α|i < C|α0|i for all i.
By choosing our convex body in the beginning so that |α0|i < ϵ/C for all but one i, we
have |v − α0α|i < ϵ for all but one i.

When the absolute value |.| is discrete with valuation ring A, we can also describe the
extensions in terms of the splitting of prime ideals. Let B be the integral closure of A.
Let p denote the (nonzero) prime ideal of A corresponding to |.| so that p consists of all
α ∈ A such that αn → 0 under |.|. Any extension |.|′ to L extending |.| then defines a
prime ideal q of B that contains p. To understand the splitting of prime ideals, we recall
some results about Dedekind domains.

A Dedekind domain is a Noetherian integrally closed integral domain such that
every nonzero prime ideal is maximal. Every PID is Dedekind. In particular, Z and Fp[x]
are Dedekind domains.

Theorem 3.0.5
Suppose A is a Dedekind domain with field of fraction K. Let L/K be a finite
separable extension. Then the integral closure B of A in L is a Dedekind domain.

Proof. We first prove that B is finite over A and so is also Noetherian. This is where
separability is used. By the primitive element theorem, L = K(β) for some β ∈ B. Let
f(x) ∈ K[x] be its minimal polynomial of degree n. Let β1, . . . , βn denote the roots of
f(x). The trace TrL/K of any g(β) ∈ L is defined as

TrL/K(g(β)) =
n∑

i=1
g(βi).

We have the following interesting formula:

TrL/K(βj/f ′(β)) =


0 if j = 0, . . . , n− 2,
1 if j = n− 1,
∈ A if j ≥ n.

Using partial fraction decomposition, we have

1
f(T ) =

n∑
i=1

1
f ′(βi)(T − βi)

.

Expanding both sides as power series in 1/T gives

1
T n

+ higher order terms = 1
T

∞∑
j=0

TrL/K(βj/f ′(β))
T j

.
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Comparing coefficients when give the above formula. The upshot is that (x, y) 7→
TrL/K(xy) is a non-degenerate symmetric bilinear form on L. For any A-module M ⊆ L,
we define its dual

M∨ = {a ∈ L : TrL/K(ab) ∈ A : ∀b ∈M}.

If M is free of full rank, so that an A-basis is also a K-basis of L, its dual is also free of
full rank by taking a dual basis. If M ⊆ B, then since TrL/K(b) ∈ A for every b ∈ B, we
see that B ⊆M∨. By taking M = A[β] = SpanA{1, β, . . . , βn−1}, we have

B ⊆M∨ = 1
f ′(β)A[β].

Hence B is finite over A.
As the integral closure of A, B is integrally closed. It remains to prove that any

nonzero prime ideal q of B is maximal. Let p = q ∩ A. Then p is clearly a proper prime
ideal. We prove that it is nonzero. Take any β ∈ q−{0}. Let f(x) ∈ A[x] be its minimal
polynomial. Then f(0) ∈ q ∩ A− {0}. Now B/q is an integral domain that is algebraic
over a field A/p. Hence B/q is a field.

Remark 1: The separable assumption is needed to ensure that B is finitely generated
over A. (Note that since B is integral over A, finitely generated and finite are the same.)
Without the separability assumption, it is possible that B is not finitely generated over A
(Borevich-Shafarevich [Number Theory] Ex.11 p.205). In general, an (integrally closed)
integral domain A with field of fraction K is Japanese if its integral closure B in any finite
extension L of K is finitely generated over A. Our argument proves that a Dedekind
domain whose fraction field is perfect is Japanese. It is not hard to prove that a complete
DVR is also Japanese.
Remark 2: For any α ∈ L×, we define a pairing ⟨ , ⟩α : L× L→ K by

⟨x, y⟩α = TrL/K(αxy/f ′(β)).

The Gram matrix of the pairing ⟨ , ⟩1 when expressed in the basis {1, β, . . . , βn−1} has 1’s
on the antidiagonal and 0’s above the antidiagonal. In other words, there is an isometry
between the quadratic spaces (L, ⟨ , ⟩1) and the split quadratic space (Kn, xtA0y) where
A0 is the n×n matrix with 1’s on the antidiagonal and 0’s everywhere else. Multiplication
by β defines a K-linear operator on L that is self-adjoint with respect to ⟨ , ⟩1:

⟨βx, y⟩1 = ⟨x, βy⟩1 = ⟨x, y⟩β.

Under the isometry L → Kn, we then have a self-adjoint operator T on Kn with
characteristic polynomial f(x). This is very similar to the construction of the companion
matrix, but with the extra condition that it is self-adjoint. The splitness condition is
very important, as one recalls that for a positive definition quadratic form on Rn, the
characteristic polynomial of a self-adjoint operator splits over R.

It is not hard to check that any non-degenerate symmetric pairing on L for which ·β is
self-adjoint is of the form ⟨ , ⟩α for some α ∈ L×. Clearly two such pairings are equivalent
over K if the α’s differ by a square in L×. Suppose now n is odd. In order for ⟨ , ⟩α
to be equivalent to the split quadratic form of discriminant 1, we need NL/K(α) ∈ K×2.
Hence, we have a bijection between SO(A0)(K)-orbits of self-adjoint operators with
characteristic polynomial f(x) and the subset of (L×/L×2)N=1 for which ⟨ , ⟩α is split.
The group (L×/L×2)N=1 turns out to be isomorphic to H1(K, J [2]) where J [2] is the
2-torsion group scheme of the Jacobian of the hyperelliptic curve y2 = f(x), assuming
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that ∆(f) ̸= 0. One can then obtain a bijection between the 2-Selmer group of J and
“locally soluble” SO(A0)(K)-orbits. Counting these orbits then give results on the average
sizes of the 2-Selmer groups of Jacobians of hyperelliptic curves.

We now collect some important properties of Dedekind domains A.

• For every nonzero prime ideal p, the localization Ap is a DVR.

• If M1 ⊆M2 are A-modules such that M1Ap = M2Ap for every prime ideal p, then
M1 = M2. (This is true for any ring.)

• Every ideal I of A contains a finite product of nonzero prime ideals. This implies
that it is contained in only finitely many prime ideals. (This is true for any
Noetherian rings. Let I be maximal among all ideals that do not contain a product
of prime ideals. Then I can’t be prime. Let x, y ∈ A − I with xy ∈ I. Then
I ⊃ (I + (x))(I + (y)) but both I + (x) and I + (y) contain a product of prime
ideals.)

We define µp(I) for any ideal I and any nonzero prime ideal p as the non-negative integer
such that

IAp = (pAp)µp(I).

Then we have the factorization
I =

∏
p

pµp(I).

We define µp(a) for an element a ∈ A as µp((a)) or equivalently as µp(a) inside the DVR
Ap. Applying this to the ideal pB and the Dedekind domain B, we get a factorization

pB =
∏
q|p

qµq(p).

We define the ramification degrees eq/p and the residue degrees fq/p by

eq/p = µq(p) and fq/p = [B/q : A/p].

Let Âp and B̂q denote the completions of Ap and Bq, with field of fractions Kp and Lq.
From the Chinese Remainder Theorem, we have

B/pB ∼=
∏
q|p
B/qeq/p ∼=

∏
q|p
B̂q/q

eq/pB̂q
∼=
∏
q|p
B̂q/pB̂q.

Taking dimA/p gives

n = dimAp(B ⊗A Ap) = dimA/pB/pB =
∑
q|p
eq/pfq/p.

Applying Nakayama’s lemma to Âp gives

B ⊗A Âp
∼=
∏
q|p
B̂q.

For any Dedekind domain A and nonzero prime ideal p, we define the normalized
absolute value

||a||p = (Np)−µp(a) = #(Ap/(a)) where Np = #(A/p).
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Then similar to the archimedean case, we have

||NL/K(a)||p =
∏
q|p
||a||q.

Using the decomposiion L⊗K Kp
∼=
∏

q|p Lq, we have

NL/K(a) =
∏
q|p
NLq/Kp(a).

One can then check explicitly that

||NLq/Kp(a)||p = ||a||q.

Remark: We can give a more instrinsic proof of the formula ||NLq/Kp(a)||p = ||a||q using
Haar measures mq on Lq and mp on Kp. The normalized absolute value is defined so
that for any measurable set E,

mq(aE) = ||a||qmq(E).

Under the identification Lq
∼= K

[Lq:Kp]
p as Kp-vector spaces and mq = m

[Lq:Kp]
p , we also

have
m

[Lq:Kp]
p (aE) = ||NLq/Kp(a)||p ·m[Lq:Kp]

p (E).
Let MK denote the set of equivalence classes of absolute values of K, also known as

the set of “places”. We have defined the normalized absolute values ||.||v for each place
v ∈MK . If v corresponds to a real embedding σ : K ↪→ R, then

||a||v = |σ(a)|.

If v corresponds to a complex embedding σ : K ↪→ C, then

||a||v = |σ(a)|2.

For the non-archimedean v, we have the associated DVR Av = {a ∈ K : |a|v ≤ 1} with
maximal ideal mv = {a ∈ K : |a|v < 1} and the normalized mv-adic valuation µv, all of
which are independent on the choice of |.|v. We then define

||a||v = (#Av/mv)−µv(a) = #Av/(a).

Example: For K = Q and a = ±pk1
1 · · · pkm

m , we have

||a||∞ = pk1
1 · · · pkm

m , ||a||pi
= p−ki

i , ||a||p = 1 for p ̸= pi.

For K = Fp(t) and some a(t) ∈ Fp[t], we have

||a||∞ = pdeg a, ||a||π(t) = (pdeg π)−µπ(a).

Note that in both cases, we have the product formula:∏
v∈MK

||a||v = 1, for a ∈ K×.

Suppose now L/K is finite separable. For w ∈ML and v ∈MK , we write w | v if ||.||w
extends some absolute value equivalent to ||.||v. The normalizations were chosen so that∏

w|v
||a||w = ||NL/K(a)||v.

Hence, we have the famous product formula for global fields.
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Theorem 3.0.6
Let K be a global field. Then for any a ∈ K×,∏

v∈MK

||a||v = 1.

Remark: It is a theorem of Artin-Whaples that the global fields are exactly those where
the absolute values can be normalized to satisfy the product formula.

§3.1 Dedekind-Kummer and Discriminant
Let A be a Dedekind domain with field of fraction K. Let L/K be a finite separable
extension and let B be the integral closure of A. On writing L = K(β) ∼= K[x]/(f(x))
for some monic irreducible f(x) ∈ K[x], we see that for any prime ideal p of A, the
factorization pB = qe1

1 · · · qer
r can be read off from the factorization of f(x) over Kp

as f(x) = f1(x) · · · fr(x) where each f̄i(x) = gi(x)ei in (A/p)[x] with gi(x) irreducible.
The theorem of Dedekind-Kummer allows us to read off the factorization of pB from
f̄(x) = ge1

1 · · · ger
r directly.

Theorem 3.1.1
(Dedekind-Kummer) Suppose that pB is coprime to the ideal {a ∈ B : aB ⊆ A[β]}.
Suppose f(x) mod p factors as g1(x)e1 · · · gr(x)er where gi ∈ (A/p)[x] are distinct
irreducible polynomials. Then pB = qe1

1 · · · qer
r for some prime ideals q1, . . . , qr of B

with residue degree fqi/p = deg(gi). Moreover, lifting each gi(x) arbitrarily to some
hi(x) ∈ A[x], we have qi = (p, hi(β)).

Proof. The assumption that pB is coprime to {a ∈ B : aB ⊆ A[β]} implies that

B/pB = A[β]/pA[β] ∼= (A/p)[x]/(g1(x)e1 · · · gr(x)er) =: R.

The key idea now is that the factorization of p in OK can be read off from the ring-
theoretic properties of R. Namely, r is the number of maximal ideals of R. For any
maximal ideal m of R, the residue degree fi is [R/m : A/p]; and the ramification degree
ei is the smallest positive integer d such that md = 0 in the localization Rm. The explicit
description of qi follows from the explicit description of the maximal ideals of R.

Remark: When K = Q, the coprimeness condition is equivalent to p ∤ [B : Z[β]].
Example 1: Consider the example Q(

√
5)/Q. The ring of integers B = Z[1+

√
5

2 ] with
the ring Z[

√
5] having index 2. We can then use the factorization of x2 − 5 mod p to

deduce the splitting of pB for p ̸= 2. Using quadratic reciprocity, we know that for
p ≡ 1, 4 (mod 5), the ideal (p) = q1q2 splits; for p ≡ 2, 3 (mod 5), the ideal (p) stays
prime; for p = 5, the ideal pB ramifies as (

√
5)2. For p = 2, we need to use the minimal

polynomial of (1 +
√

5)/2, which is x2 − x− 1. We see that it is irreducible mod 2 and
so (2) stays prime.
Example 2: Consider the Dedekind field K = Q[x]/(f(x)) where f(x) = x3−x2−2x−8.
It is easy to check that f(x) mod 3 is irreducible and so f(x) ∈ Q[x] is irreducible. Mod
2, f̄(x) = x2(x− 1). We see that the simple root 1 lifts to a root in Q2. From f(0) = −8
and f ′(0) = −2, we see that 0 lifts to a root in Q2 that is congruent to 0 mod 4. Hence
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f(x) splits completely in Q2. (Note that f(−2) = −16 and f ′(−2) = 14, so −2 lifts
to a root in Q2 that is congruent to −2 mod 8.) This means that the ideal (2) splits
completely as q1q2q3 in B. However, there does not exist a monic cubic polynomial g(x)
whose reduction mod 2 is a factor of 3 distinct linear polynomials in F2[x]. Hence for
any β ∈ B, we have 2 | [B : Z[β]]. In other words, B is not monogenic with a local
obstruction at 2. We also say the field K is not monogenic as its ring of integer is not
monogenic.

It is conjectured that for n ≥ 3, 100% of number fields of degree n are not monogenic,
when ordered by the absolute value of the discriminant. When counting monogenic cubic
fields, we are essentially counting monic polynomials x3 + Ax+B ∈ Z[x] with absolute
discriminant | − 4A3 − 27B2| < X. We expect the answer to be on the order of X5/6,
but proving it is equivalent to counting elliptic curves ordered by discriminant, which is
unknown. By counting monic polynomials with squarefree discriminant, we produced
X1/2+1/n monogenic number fields of degree n and we expect this to be the correct order
of magnitude for them. By counting binary n-ic forms with squarefree discriminant, we
produced X1/2+1/(n−1) number fields of degree n, which has a higher order of magnitude
that 1/2 + 1/n.

We know give the proper definition of the discriminant of a finite separable extension
L/K of global fields. We define first the ideal norm.

Let A be a Dedekind domain with field of fraction K. Let L be a finite dimensional
K-vector space and let M and N be two sub-A-lattices. In other words, they are sub-A-
modules locally free of rank dimK L. We first define their ideal index [M : N ]A. If they
are free over A, then there is some K-linear isomorphism T : L → L sending M to N
and we define [M : N ]A = (detT ). In general, since the localizations Ap are all PID, we
define [M : N ]A to be the fractional ideal of A such that

[Mp : Np]Ap = [M : N ]AAp.

Now if L/K is a finite separable extension with ring of integer B, we define the ideal
norm

NB/A(I) = [B : I]A.
It then follows from the definition that for any α ∈ L×,

NB/A(αB) = NL/K(α)A.

It is also easy to see that the ideal norm is multiplicative by checking it locally.

Lemma 3.1.2
If N ⊆M and M/N ∼= A/I1× · · · ×A/Im as A-modules, then [M : N ]A = I1 · · · Im.

Proof. We work locally over Ap. Fix bases for Mp and Np and let T ∈Mn×n(Ap) sending
Mp to Np. Since Ap is a PID, we have (from the Smith normal form) T = UDV where
U, V ∈ GLn(Ap) and D is diagonal with entries πd1 , . . . , πdn where π is some fixed
uniformizer of Ap. Then we have

Mp/Np
∼= Ap/p

d1 × · · · × Ap/p
dn

∼= Ap/p
µp(I1) × · · · × Ap/p

µp(Im).

Hence we see that d1 + · · · + dn = µp(I1) + · · · + µp(Im). In other words, (detD) =
(I1 · · · Im)Ap.
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Corollary 3.1.3
We have NB/A(q) = [B : q]A = pfq/p . As a consequence NB/A(pB) = p[L:K]. Recall
that the same is true for NLq/Kp(q).

Proof. Follows immediately from B/q ∼= (A/p)fq/p as A/p-vector spaces.

Recall that we have a non-degenerate symmetric trace pairing on L. Suppose L = K(β)
for some β ∈ B. Let f(x) ∈ A[x] be the minimal polynomial of β and let C = A[β].
Then its dual

C∨ = {a ∈ L : TrL/K(ab) ∈ A, ∀b ∈ C} = 1
f ′(β)C.

Hence we have
[C∨ : C]A = (NL/K)(f ′(β)).

We saw last time that there are examples where B ̸= C. We define the different DB/A

as the (fractional) ideal of B such that

D−1
B/A = {a ∈ L : TrL/K(ab) ∈ A, ∀b ∈ B} = B∨.

The (relative) discriminant of B over A is defined as the ideal norm of DB/A:

Disc(L/K) = NB/A(DB/A) = [B∨ : B]A.

If B = C = A[β] is monogenic, then we have

DB/A = (f ′(β)) and Disc(L/K) = (NL/K(f ′(β)).

Theorem 3.1.4
We have

Disc(L/K) =
∏
q

Disc(Lq/Kp).

We need to check that taking dual behaves well with respect to localization and
completion. Localization is straightfoward. Let S ⊆ A be multiplicatively closed. Then
for any s ∈ S and any a ∈ L,

TrL/K(sa) = sTrL/K(a).

Hence for any sub-A-module M of L, we have

(S−1M)∨ = S−1M∨.

Note that if T : Mp → Np, then its adjoint T ∗ : N∨
p →M∨

p where the adjoint is defined
with respect to the trace pairing:

⟨x, Ty⟩ = TrL/K(x(Ty)) = TrL/K((T ∗x)y) = ⟨T ∗x, y⟩.

In terms of matrices, we have T ∗ = A−1
0 T tA0, where A0 is a Gram matrix for the pairing,

so it has the same determinant as T . Hence, we see that

[M : N ]A = [N∨ : M∨]A.



60 Sachin Kumar

In particular, when applied to M = B and N = C = A[β], we have

[C∨ : C]A = [B∨ : B]A[B : C]2A.

Hence if NL/K(f ′(β)) is squarefree, we see that B = A[β].
Completion also works as expected. Since Ap is a PID, we can take an Ap-basis
{α1, . . . , αn} for Bp. Let {w1, . . . , wn} be its dual basis in B∨

p = B∨ ⊗ Ap. Then
{α1, . . . , αn} is also an Âp-basis for B ⊗ Âp. Under the decomposition

B ⊗ Âp
∼=
∏
q|p
B̂q ↪→

∏
q|p
Lq
∼= L⊗K Kp,

the trace TrL/K decomposes as ⊕TrLq/Kp . Hence, we have

B∨
(∏

q|p
B̂q

)
= B∨ ⊗ Âp = SpanÂp

{w1, . . . , wn} =
(∏

q|p
B̂q

)∨
=
∏
q|p
B̂∨

q .

In other words,
DB/A =

∏
qaq =⇒ qaqB̂q = DB̂q/Âp

.

Taking norms and applying Corollary ?? completes the proof of Theorem ??. 2

Corollary 3.1.5
Let K be a field with an absolute value |.|v and completion Kv. Let Ksep

v denote a
separable closure of Kv. Let L/K be a finite separable extension. Then the distinct
extensions |.|w of |.|v to L arise from embeddings σ : L ↪→ Ksep

v by pulling back the
unique extension of |.|v to Ksep

v via σ. Two embeddings give the same valuations on
L if and only if they differ by some element in Gal(Ksep

v /Kv).

Proof. An embedding L ↪→ Ksep
v is given by sending β to a root of f(x) = g1(x) · · · gr(x).

Galois permutes the roots of each gi.

Corollary 3.1.6
Let L/K be a finite separable extension of global fields. Then the unramified primes
are exactly the ones not dividing the discriminant. In particular, all but finitely
many primes are unramified; and L/K is everywhere unramified if and only if
Disc(L/K) = (1).

When K = Q, we can take a Z-basis {α1, . . . , αn} for B. The determinant of the
matrix sending its dual basis to {α1, . . . , αn} is then det(TrL/Q(αiαj)). Hence, we recover
the familiar

Disc(L/Q) = (det(TrL/Q(αiαj))) = (det(σi(αj)))2

where σ1, . . . , σn are all the embeddings of L into C. You might have seen the following
result from 441:
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Theorem 3.1.7
Let K be a number field of degree n. Then every ideal class has a representative
I ⊂ OK with

NI ≤ n!
nn

( 4
π

)r2 √
|Disc(K/Q)|.

In particular,
|Disc(K/Q)| ≥ n2n

(n!)2

(
π

4

)2r2

≥ n2n

(n!)2

(
π

4

)n

> 1

unless n = 1. In other words, every nontrivial extension of Q is ramified somewhere.

he different behaves well in towers of extensions.

Proposition 3.1.8
Let M/L be a finite separable extension and let C be the integral closure of A in M .
Then

DC/A = DC/BDB/A, Disc(M/K) = Disc(L/K)[M :L]NB/A(Disc(M/L)).

Proof. Let I be any fractional ideal of C (in M). Then

I ⊂ D−1
C/B ⇐⇒ TrM/L(IC) ⊂ B

⇐⇒ D−1
B/A TrM/L(I) ⊂ D−1

B/A

⇐⇒ TrL/K(D−1
B/AI) ⊂ A

⇐⇒ D−1
B/AI ⊂ D

−1
C/A

⇐⇒ I ⊂ DB/AD−1
C/A.

The statement about the discriminants follow from NC/A = NB/A ◦NC/B, which follows
from the same statement for elements, or can be checked on prime ideals.

Here is an interesting application of this formula. Let K = Q and let f(x) ∈ Z[x] be an
irreducible polynomial with squarefree discriminant. Let M = Q[x]/(f(x)). Since ∆(f)
is squarefree, we have Disc(M/Q) = (∆(f)) is squarefree. Hence if L is an intermediate
field with [M : L] > 1, then Disc(L/Q) = (1) and so L = Q. Alternatively, we will see
soon that the splitting field of an irreducible polynomial f(x) ∈ Q[x] with squarefree
discriminant is an Sn-extension. Since Sn has no proper subgroup that strictly contains
Sn−1, we also see that there are no intermediate fields in M/Q. Moreover, one can prove
that the extension F/Q(

√
∆(f)) is an everywhere unramified An-extension.

Exercise: Prove that a transitive subgroup of Sn generated by transpositions is Sn.

§3.2 Decomposition groups
Let L be a finite Galois extension of a number field K. We find some natural subgroups
of the Galois group G = Gal(L/K). One way to do this is to find something that G acts
on and then take the stabilizer subgroups. Fix some v ∈MK and we consider the action
of G on the set {w ∈ML : w | v} via

|α|σw = |σ(α)|w.
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The decomposition group of w is defined as
Dw = {σ ∈ G : σw = w}.

Any σ ∈ G defines an isometry from (L, |.|σw) to (L, |.|w) fixing K and thus extends
to a continuous isomorphism from Lσw to Lw fixing Kv. Since L/K is Galois, we have
L ∼= K[x]/(f(x)) where f(x) is the minimal polynomial of some primitive element. Then
Lw
∼= Kv[x]/(g(x)) for some irreducible factor g(x) of f(x) in Kv[x]. Since f(x) splits in

L, we see that g(x) splits in Lw. Hence Lw/Kv is Galois, as the splitting field of g(x).
The natural map Dw −→ Gal(Lw/Kv) is injective as L is a subfield of Lw.

Proposition 3.2.1
The map Dw −→ Gal(Lw/Kv) defined above is an isomorphism and G acts transi-
tively on the set {w ∈ML : w | v}.

Proof. This follows from a counting argument. Fix any w0 | v and let S = {σw0 : σ ∈ G}.
Then #S = [G : Dw]. For any τ ∈ G, we have τDwτ

−1 = Dτw and so #Dw = #Dw0 for
any w ∈ S. Thus, we have

#G = [G : Dw0 ]#Dw0 =
∑
w∈S

#Dw ≤
∑
w∈S

[Lw : Kv] ≤
∑
w|v

[Lw : Kv] = [L : K] = #G.

Hence S = {w ∈ML : w | v} and #Dw = [Lw : Kv] for all w | v.

Corollary 3.2.2
In a finite Galois extension of global fields L/K, for any fixed v ∈MK , the ramification
behavior of each w | v are all the same. That is

eLw/Kv · fLw/Kv ·#{w ∈ML : w | v} = [L : K].

Suppose now v corresponds to the prime ideal p and w | v corresponds to a prime ideal
q | p. Let kp and ℓq denote the corresponding residue fields. Then we have the inertia
subgroup Iq and the exact sequence

1 −→ Iq −→ Dq −→ Gal(ℓq/kp) −→ 1,
where #Iq = eq/p and Gal(ℓq/kp) is cyclic of order fq/p. In terms of the ideals, we have

Dq = {σ ∈ G : σ(q) = q},
Iq = {σ ∈ Dq : σ(b) ≡ b (mod q), ∀b ∈ B}.

The main structure theorem for the fixed fields of Iq and Dq are as follows.

Theorem 3.2.3
Consider the fixed fields

K ⊆ LDq ⊆ LIq ⊆ L.

Let E be an intermediate field in L/K and let qE = q ∩ E. Then:

(a) E ⊆ LIq if and only if eqE/p = 1;

(b) E ⊆ LDq if and only if eqE/p = fqE/p = 1.
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Theorem 3.2.4
Let Dp be the subgroup of G generated by all Dq over q | p and similarly for Ip.
Consider the fixed fields

K ⊆ LDp ⊆ LIp ⊆ L.

Let E be an intermediate field in L/K. Then:

(a) The decomposition field LDp and the inertia field LIp are Galois over K;

(b) E ⊆ LIp if and only if p is unramified in E, i.e. eq/p = 1 for every prime q of
E above p;

(c) E ⊆ LDp if and only if p splits completely in E, i.e. eq/p = fq/p = 1 for every
prime q of E above p.

Proof. The normality of Ip and Dp follow from the definitions:

τDqτ
−1 = Dτq and τIqτ

−1 = Iτq.

It is also easy to see that Theorem ?? follows immediately from Theorem ??.
We write Dq(L/E) and Iq(L/E) for the decomposition and inertia group of q for the

intermediate extension L/E. Then

Dq(L/E) = Dq ∩Gal(L/E) and Iq(L/E) = Iq ∩Gal(L/E).

Let F = LIq . Then Iq(L/F ) = Gal(L/F ) = Iq. Now

Iq(L/E) = Gal(L/E) ∩Gal(L/F ) = Gal(L/EF ) = Iq(L/EF ).

Hence we have eq/qE
= eq/qEF

. Now

E ⊆ F ⇐⇒ Gal(L/EF ) = Gal(L/F )⇐⇒ Iq(L/EF ) = Iq(L/F )⇐⇒ eq/qEF
= eq/qF

⇐⇒ eq/qE
= eq/qF

which is equivalent to eqE/p = eqF /p = 1. The second follows with the same argument
with all the Iq replaced by Dq and eq/∗ replaced by eq/∗fq/∗.

We consider some consequences of the main structure theorem.

Corollary 3.2.5
Let L/K be a finite Galois extension of global fields. Let H be the subgroup of
Gal(L/K) generated by all the inertia subgrousp Ip. Then LH/K is everywhere
unramified. In particular, if K = Q, then the Galois group Gal(L/Q) is generated
by inertia.

Using the decomposition and inertia fields LDp and LIp , we see that:

Corollary 3.2.6
Let L1/K and L2/K be finite separable extensions of global fields. Let p be a prime
of K.

• p is unramified in L1 and L2 if and only if it is unramified in L1L2

• p splits completely in L1 and L2 if and only if it splits completely in L1L2.
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Corollary 3.2.7
Let E/K be a finite separable extension of global fields with Galois closure L/K.
Let p be a prime of K.

• p is unramified in E if and only if it is unramified in L.

• p splits completely in E if and only if it splits completely in L.

Example: Suppose f(x) ∈ Q[x] is irreducible of degree n with squarefree discriminant.
For example f(x) = x5 − x− 1 with ∆(f) = 19 · 151. Let L denote the splitting field of
f(x). Let p be a prime dividing ∆(f). Then we can factor f(x) as g1(x) · · · gr−1(x)h(x)
into irreducibles in Qp[x], where each ḡi(x) ∈ Fp[x] is irreducible and h̄(x) = (x − a)2

for some a ∈ Fp. For any prime q | p, we see that Lq
∼= Qp(α1, . . . , αn−2, β, γ) where

α1, . . . , αn−2 are the roots of g1(x) · · · gr−1(x) in Q̄p and β and γ are the roots of h(x).
Since Qp(α1, . . . , αn−2)/Qp is unramified, we see that any element of the inertia subgroup
Iq acts trivially on α1, . . . , αn−2 and so can only swap β and γ. In other words, Iq
is generated by a transposition. Since any transitive subgroup of Sn generated by
transpositions is Sn, we see that Gal(L/Q) ∼= Sn.

We can also compute the discriminant of L/Q. Any prime p ∤ ∆(f) is unramified in
Q[x]/(f(x)) and so also is unramified in its Galois closure and so does not contribute to
the discriminant. Suppose p | ∆(f). Let q1, . . . , qr be the primes above it in L. Then we
know that they all have ramification degree e = 2, and some common residue degree fp
with 2rfp = n!. Recalling that the discriminant is 0 or 1 mod 4, we see that if ∆(f) is
squarefree, then 2 ∤ ∆(f). Hence we may assume p ≠ 2 and so the ramification is tame.
Hence

Discp(L/Q) =
r∏

i=1
pf(e−1) = prf = pn!/2.

Multiplying over all p | ∆(f) gives

(Disc(L/Q)) = (∆(f)n!/2).

Consider now the quadratic subextension F = Q(
√

∆(f)). Since ∆(f) ≡ 1 (mod 4), we
see that (Disc(F/Q)) = (∆(f)). Using the formula

Disc(L/Q) = Disc(F/Q)[L:F ]NF/Q(Disc(L/F )),

we find that Disc(L/F ) = (1). In other words, L/F is an everywhere unramified
An-extension.
Example: We consider a more explicit example. Let f(x) = x3 +x+1 with ∆(f) = −31.

Q

F

L

E

2
3

E = Q[x]/(x3 + x+ 1) OE = Z[β]

F = Q(
√
−31) OF = Z[1 +

√
−31

2 ]

There are four different cases for the splitting of p in E: p = 31 the only ramified prime;
p splits completely; p splits as p1p2 where fp1/p = 1 and fp2/p = 2; p stays inert. We
describe the splitting of p in E,F, L in all these cases.
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• The ramified prime p = 31. We have x3 + x+ 1 = (x− 3)(x− 14)2 in F31[x]. So we
have

31OE = (31, β − 3)(31, β − 14)2 and 31OF = (
√
−31)2.

In L, we see that 2 | e and r ≥ 2. Hence we must have e = 2, f = 1 and r = 3. So
(31, β − 3)OL = m2

1 and (31, β − 14)OL = m′
1m

′′
1 and

√
−31OL = m1m

′
1m

′′
1.

• Suppose p splits completely in E. Then it splits completely in L and also in F . We
have

pOE = p1p
′
1p

′′
1 and pOF = q1q

′
1

p1OL = m
(1)
1 m

(2)
1 and p2OL = m

(3)
1 m

(4)
1 and p3OL = m

(5)
1 m

(6)
1

q1OL = m
(1)
1 m

(3)
1 m

(5)
1 and q2OL = m

(2)
1 m

(4)
1 m

(6)
1 .

We note that there exists an element of order 2 in Gal(L/Q) sending m
(1)
1 to m

(2)
1 .

Hence they can’t both lie over the same prime ideal in OF , which is fixed by the
C3 subgroup of S3. Since the prime splits in F , we see that −31 is a square mod p.
In fact, Kronecker proved that these are precisely the primes such that p ̸= 31 and

∃u, v ∈ Z, p = u2 + uv + 8v2 = 1
4((2u+ v)2 + 31v2).

In other words, in this case, there exists an element α ∈ OF with norm p. So the
ideals q1 = (α) and q′

1 = (ᾱ) are principal.

• Suppose p splits as p1p2 in E. Then we have 2 | f and r ≥ 2. Hence, we must have
e = 1, f = 2, r = 3. So

pOE = p1p2 and p1OL = m2 and p2OL = m′
2m

′′
2

pOF = q2 and q2OL = m2m
′
2m

′′
2.

This is the case where p stays inert in Q(
√
−31). In other words, −31 is not a

square mod p.

• Suppose p stays inert in E. Then it can’t stay inert in L, because C6 is not a
subgroup of S3. So

pOE = p3 and p3OL = m3m
′
3

pOF = q1q
′
1 and q1OL = m3 and q2OL = m′

3.

These are all the primes such that
∃u, v ∈ Z, p = 2u2 + uv + 4v2.

For example when p = 2, which is too small for there to be element of OF of norm
2. So the two prime ideals q1 and q′

1 are non-principal. They are distinct and are
inverses of each other in the class group. So they generate a subgroup of order
3. In fact, the class group of Q(

√
−31) is isomorphic to C3 with representatives

{(1), q1, q
′
1}. We note that these are exactly the prime ideals of OF that don’t split

completely in L.
We observe also that the extension L/F is everywhere unramified with Galois group also
C3. It is a consequence of global class field theory that any number field K admist a
Hilbert class field H(K), which is the maximal abelian unramified extension of K. There
is a canonical isomorphism

Cl(K)→ Gal(H(K)/K).
As explored above, this map should encode information about whether the prime ideal
splits completely in H(K)...
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§3.3 Frobenius and Chebotarev density theorem
Suppose now the prime ideal p is unramified. Let q | p be a prime ideal in OL. Then the
inertia subgroup Iq is trivial and

Dq
∼= Gal(ℓq/kp) ∼= Z/[ℓq : kp]Z.

We then have the Frobenius element (q, L/K) as the element in Dq that maps to the
map x 7→ xNp in Gal(ℓq/kp). Its order is the residue degree [ℓq : kp] and Dq = ⟨(q, L/K)⟩.
For any τ ∈ G, we have

(τq, L/K) = τ(q, L/K)τ−1.

Indeed, for any α ∈ OL,

(q, L/K)τ−1(α) ≡ τ−1(α)Np (mod q)

and so
τ(q, L/K)τ−1(α) ≡ αNp (mod τq).

We write (p, L/K) for the conjugacy class of G containing any (q, L/K). When G is
abelian, (p, L/K) is also written for the element inside this conjugacy class of size 1.

Suppose now L/K is the splitting field of some f(x) ∈ A[x]. Since p is unramified, we
can factor

f(x) mod p = g1(x) · · · gr(x) ∈ kp[x]

into irreducibles. Since the map x 7→ xNp acts cyclicly on the roots of any irreducible
polynomial in kp[x], we see that

(q, L/K) = (deg(g1)-cycle) · · · (deg(gr)-cycle) ∈ Sroots of f(x).

Example: Consider the splitting field L of x3 +x+1 over Q, with E = Q[x]/(x3 +x+1).
Write S3 = {1, b, b2, a, ab, ab2}.

• If p splits completely in OE, then

(p, L/Q) = (1)(1)(1) = {1}.

• If pOE = p1p2, then
(p, L/Q) = (1)(2) = {a, ab, ab2}.

• If pOE = p3, then
(p, L/Q) = (3) = {b, b2}.

Example: Consider f(x) = x5−x−1. Then mod 2, we have f(x) = (x2+x+1)(x3+x2+1)
and mod 3 it is irreducible. So the Galois group of f contains a 5-cycle and a (2, 3)-cycle.
It then must contain a transposition and so is the entire S5. (Recall that if p is a
prime, then Sp is generated by a p-cycle and any transposition.) Note also that f(x) is
irreducible mod 5 since it is of the form xp − x+ a.

We now list some nice properties of (q, L/K).

• The prime p splits completely in L if and only if fq/p = 1 if and only if (q, L/K) = 1
if and only if (p, L/K) = 1.
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• If E is an intermediate field that is Galois over K, then

(qE, E/K) = (q, L/K)|E and (q, L/E) = (q, L/K)fqE/p .

Hence p splits completely in E if and only if (p, L/K)|E = 1 if and only if (p, L/K) ∈
Gal(L/E).

• If E is an intermediate field that is not necessarily Galois over K, then we saw
before that fqE/p = 1 if and only if E ⊆ LDq . Since Dq is generated by (q, L/K),
we have

fqE/p = 1 ⇐⇒ (q, L/K) ∈ Gal(L/E).

Chebotarev’s density theorem states that every possible splitting behavior hap-
pen:

Theorem 3.3.1
Let K be a number field and let L/K be a finite Galois extension with Galois group
G. Then for any conjugacy class C of G,

lim
X→∞

#{p : (p, L/K) = C,Np < X}
#{p : Np < X}

= #C
#G.

Example: Applying to the example of x3 + x + 1, we see that 1/6 of primes split
completely in OE; 1/2 of the primes splits into p1p2 (we already know this as primes
where −31 is a quadratic residue); 1/3 of the primes stay inert. Note that the average
number of roots mod p as p varies is then

1
6 · 3 + 1

2 · 1 + 1
3 · 0 = 1.

Kronecker proved in 1880 that for an irreducible polynomial in Z[x], the average number
of roots of f(x) mod p as p varies is 1. In light of the Chebotarev density theorem,
this is a consequence of Burnside’s fixed point formula: for a group G = Gal(f) acting
transitively on the set of roots of f(x), we have∑

σ∈G

#{α : σ(α) = α} = |G|.

If we take the polynomial f(x) = x3−3x+1, then things are different. Its discriminant
is 81 and so its Galois group is Z/3Z. It turns out that for p ≠ 3, f(x) splits completely if
p ≡ ±1 (mod 9) and has no roots otherwise by relating f(x+x−1) with Φ9(x) = x6+x3+1.
Kronecker-Weber says that every abelian extension is contained in some cyclotomic
extension, and in light of this splitting result, we expect that K = Q[x]/(f(x)) ⊆ Q(ζ9).
In fact, we have the factorization

x3 − 3x+ 1 = (x− (ζ9 + ζ−1
9 ))(x− (ζ2

9 + ζ−2
9 ))(x− (ζ4

9 + ζ−4
9 )).

The Frobenius element (p,Q(ζ9)/Q) for p ̸= 3 is given by ζ9 7→ ζp
9 . It is then clear that

(p,Q(ζ9)/Q) acts trivially on the roots ζ9 + ζ−1
9 , ζ2

9 + ζ−2
9 , ζ4

9 + ζ−4
9 if and only if p ≡ ±1

(mod 9).
We note in the above example that for a density 1/6 + 1/2 primes p, there exists a

degree 1 prime p | p in K (that is, a prime p | p with fp/p = 1). We can give a general
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formula for this density. Given a finite extension L/K of number fields, let P1(L/K)
denote the set of primes p of K that is unramified in L and is divisible by some prime q
in L with fq/p = 1. Let Spl(L/K) denote the set of unramified primes of K that splits
completely in L. When L/K is Galois, P1(L/K) = Spl(L/K). When L = K[x]/(f(x))
for some irreducible f(x) ∈ A[x] with roots α1, . . . , αn in the Galois closure M/K, we
see that

p ∈ P1(L/K) ⇐⇒ (p,M/K)(αi) = αi for some i = 1, . . . , n.
Let H be the (proper) subgroup of G = Gal(M/K) consisting of automorphisms fixing
α1. Then

p ∈ P1(L/K) ⇐⇒ (p,M/K) ⊆
⋃

τ∈G

τHτ−1.

The above union is a union of at most [G : H] conjugates of H all containing 1, and so is
a proper subset of G. This proves that the density of P1(L/K) is strictly between 0 and
1.
Example: Applying this result to the example ofH = {1, a} andG = S3 = {1, b, b2, a, ab, ab2},
we find the union of the conjugates of H is {1, a, ab, ab2} which is 2/3 = 1/6 + 1/2 of the
size of G.

Corollary 3.3.2
Suppose f ∈ OK [x] is an irreducible polynomial. Then for a set, of density strictly
between 0 and 1, of primes p, there exist α ∈ OK such that f(α) ≡ 0 (mod p).

Proof. Let L = K[x]/(f(x)). By Theorem ??, apart from finitely many primes that
divide the discriminant of f(x), we know that p ∈ P1(L/K) if and only if f(x) has a
linear factor mod p.

Theorem 3.3.3
(Bauer) Suppose E/K and L/K are finite extensions of number fields and that
L/K is Galois. Suppose that there exists a set S of primes of density 0 such that
P1(E/K)\S ⊆ Spl(L/K)\S. Then L ⊆ E.

Proof. Let M be the Galois closure of LE over K. It suffices to show that Gal(M/E) ⊆
Gal(M/L). Take any σ ∈ Gal(M/E). By the Chebotarev density theorem, there exists
an unramified prime p /∈ S and a prime q | p in M such that (q,M/K) = σ. From
(q,M/K) ∈ Gal(M/E), we see that p ∈ P1(E/K)\S. By assumption, we see that p
splits completely in L. Hence we also have σ = (q, E/K) ∈ Gal(M/L).

In the case that both M/K and L/K are Galois, we obtain the following result, which
also has a simpler proof via the Chebotarev density theorem.

Theorem 3.3.4
Suppose L/K and M/K are finite Galois extensions of number fields. Then

L = M ⇐⇒ Spl(L/K) = Spl(M/K).

In other words, Galois extensions are “determined” by the set of primes that split
completely.
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Proof. Only the backwards direction is nontrivial. Suppose Spl(L/K) = Spl(M/K).
Consider the Galois extension LM/K. For any p ∈ Spl(L/K) = Spl(M/K), we have

(p, LM/K)|L = (p, L/K) = 1, (p, LM/K)|M = (p,M/K) = 1.

Hence p splits completely in LM and so Spl(LM/K) = Spl(L/K). This implies that
[LM : K] = [L : K] and so LM = L and similarly LM = M .

It is a result of global class field theory that for abelian extensions L/K, the splitting
behavior of primes is given by congruence conditions. We can be very explicit in the case
of Q.

§3.4 Cyclotomic extensions of Q and applications
We will now run our theory through Q(ζm)/Q and prove some interesting applications
along the way. The minimal polynomial of ζm over Q is the m-th cyclotomic polynomial

Φm(x) =
∏

1≤k≤m
gcd(k,m)=1

(x− ζk
m).

It is irreducible of degree [Q(ζm) : Q] = ϕ(m) and

Gal(Q(ζm)/Q) ∼= (Z/mZ)× ∼=
∏
p|m

(Z/pnpZ)×, where m =
∏
p|m

pnp .

For any positive integer t,

(Z/ptZ)× ∼= Cpt−1(p−1), if p is odd

(Z/2tZ)× ∼=


1 if t = 1
C2 if t = 2
C2 × C2t−2 if t ≥ 3.

The local extension Qp(ζm)/Qp is unramified if p ∤ m. When p | m, we write m = pnps
where p ∤ s and we have

Qp(ζm) = Fp(ζpnp ) where Fp = Qp(ζs).

The decomposition group Dp = Dq and inertia group Ip = Iq for any prime q | p because
the extension is abelian, and it factors as

Dp
∼= Ip ×Gal(Fp/Qp) ∼= (Z/pnpZ)× × Cos(p)

where os(p) denotes the order of p mod s (see Theorem ??). We note that for any prime
p′ ̸= p, the inertia group Ip′ acts trivially on ζpnp since Qp′(ζpnp )/Qp′ is unramified. Hence
the distinct inertia groups intersect trivially and we have

Gal(Q(ζm)/Q) ∼=
∏
p|m

Ip.
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Proposition 3.4.1
Suppose L/Q(ζm) is a finite extension such that L/Q is abelian. Suppose for any
prime p | m and any prime q | p in L, we have Lq

∼= Ep(ζm) for some unramfied
extension Ep/Qp; and that any prime p ∤ m is unramified in L. Then L = Q(ζm).

Proof. The inertia groups Ip for L are isomorphic to Gal(Fp(ζpnp )/Fp) ∼= (Z/pnpZ)× for
p | m where Fp = Ep(ζs) is unramified over Qp; and trivial for p ∤ m. Since Gal(L/Q) is
generated by all the Ip, we have

[L : Q] = # Gal(L/Q) ≤
∏
p|m

#(Z/pnpZ)× = [Q(ζm) : Q].

Hence L = Q(ζm) since Q(ζm) ⊆ L.

We are now ready to prove the global Kronecker-Weber theorem.

Theorem 3.4.2
Suppose K/Q is a finite abelian extension. Then K ⊆ Q(ζm) for some positive
integer m.

Proof. For any prime p that ramifies in K, the local extension Kp/Qp is abelian for any
prime p | p since its Galois group Dp is a subgroup of the abelian group Gal(K/Q). By
local Kronecker-Weber (Theorem ??), there exists mp ∈ N such that Kp ⊆ Qp(ζmp). Let
m be the lcm of all these mp, so that Kp ⊆ Qp(ζm) for every prime p that ramifies in K.
We prove that K ⊆ Q(ζm).

Let L = K ·Q(ζm) = K(ζm) be the compositum. It is enough to prove that L = Q(ζm).
As a compositum of two abelian extensions of Q, we see that L/Q is abelian. Let p be
a prime dividing m and let q | p be a prime of L and let p = q ∩ K. If p is ramified
in K, we have Lq = Kp(ζm) = Qp(ζm). If p is unramified in K, then Lq = Kp(ζm)
with Kp/Qp unramified. For any prime p | m, let q be a prime of L above p. Then
Lq = Kp(ζm) = Qp(ζm). For any prime p ∤ m, it is unramified in K and Q(ζm) and so
also unramified in L. We are now done by Proposition ??.

Remark: It is also easy to see that the global Kronecker-Weber implies the local
Kronecker-Weber. Indeed, given any finite abelian K ′/Qp, we have K ′ = Qp[x]/(f(x))
for some monic irreducible f(x) ∈ Zp[x]. By Krasner’s Lemma, there exists g(x) ∈ Z[x]
close enough to f(x) such that g is irreducible in Zp[x] and Qp[x]/(f(x)) = Qp[x]/(g(x)).
Let K = Q[x]/(g(x)). Then K ⊗Q Qp = K ′. Apply global Kronecker-Weber to fit K
inside some Q(ζn). Then K ′ ⊆ Qp(ζn).

Next, we compute the discriminant Disc(Q(ζm)/Q). It is enough to consider primes
p | m. Recall that Qp(ζm) = Fp(ζpnp ) where Fp/Qp is unramified of degree f = os(p)
where s = m/pnp . We have

Discp(Qp(ζm)/Qp) = Discp(Fp(ζpnp )/Fp)f = pϕ(pnp )(np− 1
p−1 )f .

The prime p splits into r = ϕ(m)/(ϕ(pnp)f) primes p in Q(ζm). Combining them gives

Discp(Q(ζm)/Q) = pϕ(m)(µp(m)− 1
p−1 )

where we have written µp(m) = np. Multiplying over all p | m gives

Disc(Q(ζm)/Q) =
(∏

p|m
pϕ(m)(µp(m)− 1

p−1 )
)
.
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Proposition 3.4.3
The ring of integers of Q(ζm) is Z[ζm]. As a result, for m ≥ 3,

∆(Φm(x)) = (−1)ϕ(m)/2 ∏
p|m

pϕ(m)(µp(m)− 1
p−1 ).

Proof. The sign of ∆(Φm(x)) can be obtained from how complex conjugation acts on∏(ζ i
m − ζj

m). More precisely, complex conjugation sends ζ i
m to ζm−i

m and so negates every
term in the product. There are ϕ(m)(ϕ(m)− 1)/2 terms, but ϕ(m)− 1 is always odd.

The conceptual reason for why Z[ζm] is the ring of integers is that locally, Zp[ζm] is
the valuation ring of Qp(ζm) for every prime. More rigorously, it suffices to prove that
for any nonzero prime ideal p of Z[ζm], p is principal in the localization Z[ζm](p), for this
would imply that Z[ζm](p) is a DVR.

Let p be the rational prime that p lies over. Then p = (p, g(ζm)) for some g(x) ∈ Z[x]
such that ḡ ∈ Fp[x] is an irreducible factor of Φm(x). Write m = pnps with p ∤ s. Here
we allow np = 0. The idea now is that in the unramified case, p should generate p; while
in the ramified case, ζpnp − 1 should generate p. Note that

ḡ | Φm(x) | xm − 1 = (xs − 1)pnp =⇒ ḡ | xs − 1.

Let h(x) ∈ Z[x] such that ḡh̄ = xs − 1. Then there exists j(x) ∈ Z[x] such that

xs − 1 = g(x)h(x) + pj(x).

Setting x = ζm and noting that m/s = pnp , we see that

ζpnp − 1= g(ζm)h(ζm) + pj(ζm) ∈ p.

If np ≥ 1, then recalling that Φpnp (x+ 1) is Eisenstein, we know that ζpnp −1 | p in Z[ζpnp ].
Hence it suffices to prove that ζpnp − 1 | g(ζm) in Z[ζm](p). If np = 0, then it suffices to
prove that p | g(ζm) in Z[ζm](p). It now suffices to prove that h(ζm) ∈ Z[ζm]×(p).

Since ḡh̄ = xs − 1 and xs − 1 has no repeated factors mod p, we see that ḡ and h̄ are
coprime in Fp[x]. Hence there exist a, b, c ∈ Z[x] such that

a(x)g(x) + b(x)h(x) = 1 + pc(x).

Setting x = ζm gives b(ζm)h(ζm) ∈ 1 + p and so h(ζm) ∈ Z[ζm]×(p).

We now consider the Frobenius element (p,Q(ζm)/Q) with p ∤ m. Recall the isomor-
phism (Z/mZ)× → Gal(Q(ζm)/Q) sends a mod m to the automorphism σa that sends
ζm to ζa

m. So we have
(p,Q(ζm/Q)) = σp.

Chebotarev density theorem says that for any gcd(a,m) = 1, the density of primes p such
that (p,Q(ζm)/Q) = σa is 1/ϕ(m). The condition (p,Q(ζm)/Q) = σa is equivalent to
p ≡ a (mod m) and we recover Dirichlet’s theorem on primes in arithmetic progressions.

If K is an intermediate extension in Q(ζm)/Q, which by Kronecker-Weber includes all
finite abelian extensions of Q, then

p splits completely in K ⇐⇒ σp ∈ Gal(Q(ζm)/K)
⇐⇒ p ≡ a (mod m) for some σa ∈ Gal(Q(ζm)/K).
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In other words, these primes p are defined by congruence conditions. More generally, the
splitting behavior of p in K is determined by the cycle structure of (p,K/Q), which is
the image of σp in the quotient Gal(K/Q) of Gal(Q(ζm)/Q). Hence it is determined by
congruence conditions mod m.

The converse is also true. Suppose K/Q is a finite Galois extension such that there
are a1, . . . , ar,m ∈ N such that for all but a density 0 of primes p, the prime p splits
completely in K if and only if p ≡ a1, . . . , ar (mod m). Then K ⊆ Q(ζm) and so K/Q
is abelian. To prove this, we show that if p splits completely in Q(ζm), then it splits
completely in K. Let M be the Galois closure of K.Q(ζm) over Q. There is a positive
density of primes q of Q that splits completely in M . These primes are 1 mod m since
they split completely in Q(ζm) and also split completely in K. So one of the ai = 1 mod
m.

Suppose p is odd and also m = q is an odd prime. Let K = Q(√q∗) be the discriminant
subfield of Q(ζq) where q∗ = (−1)(q−1)/2q differs from Disc(Q(ζq)/Q) by a square. Then
Gal(Q(ζq)/K) is the index 2 subgroup of Cq−1 consisting of squares. Hence

p splits completely in K ⇐⇒ σp ∈ {σ2
a : a ∈ (Z/qZ)×}.

On the one hand, p splits completely in the quadratic field K if and only if q∗ is a square
mod p. On the other hand, σp = σ2

a for some a if and only if p is a square mod q. We
now have the law of quadratic reciprocity:

lg pq = lg q∗p = (−1)(p−1)(q−1)/4 lg qp.

We now consider another interesting application. We have seen that if f(x) ∈ Z[x]
is irreducible, then for a positive proporition of primes p, there exists b ∈ Z such that
p | f(b). Applying this to the polynomial x2 − a for example, we see that if a is a square
mod p for all but finitely many primes p, then a is a perfect square. What about other
values of n? For example, what about x4 − 4 and x6 − 9? Note that

x8 − 16 = (x2 − 2)(x2 + 2)((x− 1)2 + 1)((x+ 1)2 + 1).

For any prime p, out of −1, 2 and −2, at least one of them is a square mod p. So 16 is
an 8-th power mod p for every prime p but it is not a perfect 8-th power. We prove that
this is essentially the only exception.

Theorem 3.4.4
Let a be a positive integer such that xn− a has a root mod p for all sufficiently large
prime p. Then either a = bn for some integer b or 8 | n and a = 2n/2bn for some
integer b.

The key lemma is:

Lemma 3.4.5
Let a be a positive integer such that xn− a has a root mod p for all sufficiently large
prime p. Then Q( n

√
a) ⊆ Q(ζn). In particular, Q( n

√
a) is Galois.

Note since Q(ζn) is abelian, it doesn’t matter which n-th root of a we take. We will
henceforth take the positive real n-th root as n

√
a since a ∈ N.
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Proof. Let K = Q( n
√
a, ζn) be the splitting field of xn − a. Then for all sufficiently large

prime p, the assumption that a is an n-th power mod p implies that

if ζn ∈ Fp, then xn − a splits completely in Fp[x].

The hypothesis ζn ∈ Fp is equivalent to n | p − 1 which is equivalent to p splitting
completely in Q(ζn). The conclusion is equivalent to p splitting completely in K.
Therefore, we have K ⊆ Q(ζn).

Applying this to x4 − 4, we find that 4
√

4 =
√

2 does not lie in Q(ζ4) = Q(i). Applying
this to x6 − 9, we find that Q( 3

√
3) is not a subfield of Q(ζ6). Note also that Q( 3

√
3) is

real and so can’t contain ζ3 and is not Galois over Q. Applying this to x8 − 16, we find
that Q(

√
2) does lie in Q(ζ8). These three examples are essentially the full proof!

Lemma 3.4.6
For t ≥ 3, every Q(ζ2t) contains a unique real quadratic subfield, namely Q(

√
2).

Moreover, Q(ζ4) does not contain a real quadratic subfield

Proof. Suppose t ≥ 3. Note that Gal(Q(ζ2t)/Q) ∼= C2 × C2t−2 where the first C2 factor
is generated by complex conjugation σ−1 and the C2t−2 is generated by σ5. Hence, there
is a unique subgroup of index 2 containing σ−1.

Proof of Theorem ??: Let d be the largest divisor of n such that a = cd for some
positive integer c. In other words, d = gcd(gcdp µp(a), n). Then the real number cd/n

is an n-th root of a. So it is an algebraic integer and we have Q(cd/n) ⊆ Q(ζn). The
minimal polynomial f(x) of cd/n is a divisor of xn/d − c. Since all the roots of xn/d − c
have absolute value cd/n, we see that |f(0)| = cdeg(f)d/n. Hence a = |f(0)|n/ deg(f). This
implies that n | deg(f)µp(a) for every prime p. Hence (n/ gcd(n, deg(f))) | d. Since
deg(f) ≤ n/d, this is only possible if deg(f) = n/d and so xn/d − c is irreducible. Since
Q(ζn)/Q is abelian, we see that Q(cd/n)/Q is Galois and so contains ζn/d as the splitting
field of the irreducible polynomial xn/d − c. Since Q(cd/n) ⊆ R, we see that n/d = 1 or 2.
If n/d = 1, then we are done.

Suppose now n/d = 2. Then a = cn/2 and c ∈ N is not a square. We already know
that a is a square (from for example Chebotarev applied to x2 − a). So 2 | d. Write
d = 2m so that n = 4m and a = c2m = (cm/2)4. Applying Lemma ?? to the real number
cm/2 gives Q(cm/2) ⊆ Q(ζ4) = Q(i). Hence cm/2 ∈ Z. Since c is not a square, we have
2 | m and so 8 | n. Now write n = 2kℓ for some k ≥ 3 and odd integer ℓ. We have

a = c2k−1ℓ = (cℓ/2)2k

.

Applying Lemma ?? again to the irrational real number cℓ/2 gives Q(cℓ/2) ⊆ Q(ζ2k).
Hence, we have Q(

√
c) = Q(

√
2). So c = 2b2 for some positive integer b and a = 2n/2bn.



4 (Local) Class Field Theory via
Lubin-Tate Theory

§4.1 Main theorems of (Local) Class Field Theory
For the remainder of the semester, we will focus on Local class field theory. In this
section, we will discuss the norm groups and give the statement of the main theorems.

Throughout, K is a non-archimedean local field with absolute value |.|, valuation ring
A, group of units UK and residue field k = Fq with characteristic p. We start with the
unramified case.

Proposition 4.1.1
Let L/K be a finite unramified extension of K of degree n. Then the norm map
NL/K : UL → UK is surjective.

Proof. Let ℓ denote the residue field of L. We have a filtration on UK and UL via
Un

K = 1 + πn
KA and Un

K = 1 + πn
LOL where πK and πL are uniformizers of K and L. The

norm map descends to the quotients Un
L/U

n+1
L → Un

K/U
n+1
K as follows:

• If n = 0, then NL/K is the norm map Nℓ/k : ℓ× → k× for finite fields;

• If n ≥ 1, then NL/K is the trace map Trℓ/k : ℓ→ k for finite fields;

via the identification Gal(L/K) ∼= Gal(ℓ/k). These maps on the residue fields are all
surjective. Hence we are done by completeness.

Corollary 4.1.2
Let L/K be a finite unramified extension of K of degree n. Then

NL/K(L×) = UK × πnZ
K .

Let FrobL/K ∈ Gal(L/K) denote the Frobenius map that reduces to x 7→ xq on the
residue field. Then there is a group isomorphism

K×/NL/K(L×) ∼= Z/nZ ∼= Gal(L/K)

sending a uniformizer of K to FrobL/K .

Proof. This follows because NL/K(UL) = UK and µ(NL/K(πL)) = n.

Note that in general, we have µ(NL/K(πL)) = fL/K . So the norm group NL/K(L×)
contains a uniformizer of K if and only if L/K is totally ramified.

Let Kab denote the maximal abelian extension of K (in some algebraic closure). The
main theorem of local class field theory is:

74
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Theorem 4.1.3
There exists a unique homomorphism

ϕK : K× → Gal(Kab/K)

such that:

1. for any uniformizer π of K and any finite unramified extension L/K, ϕK(π)|L =
FrobL/K ;

2. for any finite abelian extension L/K, ϕK induces an isomorphism

ϕL/K : K×/NL/K(L×)→ Gal(L/K).

In particular,
#K×/NL/K(L×) = [L : K].

The maps ϕK , ϕL/K are called the local reciprocity maps or local Artin maps. Some
other common notations are

ϕL/K(a) = recL/K(a) = (a, L/K) = lgL/Ka.

We will write N(L×) for NL/K(L×). These are the norm groups in K× (where L/K
is a finite abelian extension). Abelian extensions of K are determined by their norm
groups.

Corollary 4.1.4
The map L 7→ N(L×) defines an inclusion-reversing bijection between finite abelian
extensions of K and norm groups in K× with

N((L1L2)×) = N(L×
1 ) ∩N(L×

2 ), N((L1 ∩ L2)×) = N(L×
1 ) ·N(L×

2 ).

Moreover, every subgroup of K× containing a norm group is a norm group.

Proof. Transitivity of norms implies that the map L 7→ N(L×) is inclusion-reversing
(note this does not need Theorem ??). Now Theorem ?? implies that a ∈ N(L×) if and
only if ϕK(a)|L = 1. This proves the result on N((L1L2)×). Now if N(L×

2 ) ⊃ N(L×
1 ),

then N((L1L2)×) = N(L×
1 ) ∩ N(L×

2 ) = N(L×
1 ) and so [L1L2 : K] = [L1 : K], which

implies that L2 ⊂ L1. Therefore, the map L 7→ N(L×) is bijective.
Suppose N is a subgroup of K× containing N(L×). Then ϕL/K(N) is a subgroup

of Gal(L/K), with fixed field E. Then a ∈ N if and only if ϕL/K(a)|E = 1. Hence
N = N(E×). Finally, L1 ∩ L2 is contained in L1 and L2 and so N((L1 ∩ L2)×) ⊇
N(L×

1 ) ·N(L×
2 ). Conversely, N(L×

1 ) ·N(L×
2 ) = N(E×) for some E contained in L1 and

L2. So E is contained in L1 ∩ L2 and N(E×) ⊇ N((L1 ∩ L2)×). Therefore, we have
equality.

Proposition 4.1.5
Let L be a finite abelian extension of K. Then N(L×) is an open subgroup of K×.
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Proof. Note that a closed subgroup of finite index is open, since its complement is a
finite union of cosets, each of which is closed. Note also that the norm map is continuous
because it is given by polynomials after choosing a K-basis for L. This is not enough
to conclude that N(L×) is closed, but it does imply that NL/K(UL) is closed since UL is
compact. Since NL/K(UL) = UK ∩N(L×), we see that

UK/NL/K(UL) ↪→ K×/N(L×)

which is finite. Hence NL/K(UL) is open in UK , which is then open in K×. Finally any
subgroup containing an open neighborhood of 1 is automatically open (any a ∈ N(L×)
is contained in the open set aNL/K(UL) ⊂ N(L×)).

Remark: When K is characteristic 0, all finite index subgroups are open. They all
contain K×m for some positive integer m and we saw before that every element sufficiently
close to 1 has an m-th root. When K has characteristic p, this is not true. For example
consider K = Fp((t)). The first unit group UK,1 = 1 + tFp[[t]] is a Zp-module and one
observes that 1 + tm for p ∤ m are all Zp-independent. In fact,

UK,1 ∼=
∏
N
Zp.

Consider the quotient ∏N Fp, which has a dense subset ⊕N Fp. The maximal ideal I of∏
N Fp containing ⊕N Fp has index p, since its residue field is Fp as every element satisfies

xp = x. Note that I is not closed. Let U be the pre-image of I in UK,1. Then U × tZ is a
subgroup of K of finite index that is not closed.

The second main theorem in LCFT is the local existence theorem:

Theorem 4.1.6
The norm groups in K× are exactly the open subgroups of K× of finite index.

Remark: We remark that these results hold trivially when K = R and even more trivially
when K = C. The group R× has exactly two subgroups of finite index; R+ = NC/R(C×)
and R× = NR/R(R×).

Even though each ϕL/K is an isomorphism, the map ϕK is not an isomorphism. We
will get an isomorphism if we complete K× with respect to the norm topology, where the
norm groups (open subgroups of finite index) form a fundamental system of neighborhood
of 1. Let K̂× denote this completion. We then have an isomorphism

ϕ : K̂× ∼= Gal(Kab/K).

From the fundamental system of open subgroups of finite index:

K× ∼= UK × πZ ∼= UK × Z ⊃ (1 + pn)×mZ,

we see that
K̂× ∼= UK × Ẑ.

Now UK and Ẑ are closed subgroups and so are their images under ϕ. By infinite Galois
theory, they correspond to subfields of Kab. Recall that the norm groups from unramified
extensions are of the form UK × eZ. The subfield of Kab fixed by ϕ(UK) is the maximal
unramified extension Kun. For each positive integer n, let Kπ,n denote the finite extension
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of K with norm group (1 + pn)×Z. The union Kπ = ⋃
n Kπ,n is the subfield of Kab fixed

by ϕ(π). We have
Kab = KunKπ.

Observe that ϕ(π) is the element acting trivially on Kπ and acting via the Frobenius on
Kun. The same is true for any other possible reciprocity map ϕ′. In other words, any
two possible reciprocity maps have the same image on every uniformizer. This proves
uniqueness, assuming existence and Theorem ??. We note also that Theorem ?? follows
from Corollary ?? and the following result.

Proposition 4.1.7
For any positive integers n,m. There is a finite abelian extension L/K whose norm
group is (1 + pn)× πmZ.

When K = Qp and π = p, the field Kπ,n is Qp(ζpn), assuming LCFT and recalling that
we proved that the norm group of Qp(ζpn) contains 1 + pnZp in HW2. Note that Qp(ζp)
is generated by the roots of

f(T ) = (1 + T )p − 1 = pT + · · ·+ T p

and we can view Qp(ζpn) as generated by the roots of

f (n)(T ) := f(f(· · · f(T ) · · · )) = pnT + · · ·+ T pn = (1 + T )pn − 1.

Now
Kπ = Qp(ζp∞) = lim−→

n

Qp(ζpn).

The isomorphism
Z×

p → Gal(Qp(ζp∞)/Qp)

comes from the compatible system of isomorphisms

(Zp/p
nZp)× ∼= (Z/pnZ)× ∼= Gal(Qp(ζpn)/Qp).

When attempting to generalize this to an arbitrary K and π, the key difficulty is the
isomorphisms

Zp/p
nZp
∼= Z/pnZ ∼= ⟨ζpn⟩ ∼= {α ∈ Q̄p : f (n)(α) = 0}

where the last map is given by u 7→ u−1. The induced group structure on the set of roots
of f (n) can be extended to the set Λ = {α ∈ Q̄p : |α| < 1} via x+f y = (1+x)(1+y)−1 =
x+ y + xy. The action of Zp on the set of roots of f (n) can also be extended to Λ via

[a](x) = (1 + x)a − 1 =
∞∑

m=1

a(a− 1) · · · (a−m+ 1)
m! xm.

We note that [p](T ) = f(T ).
To generalize this to an arbitrary K and π, it seems natural to take f(T ) = πT + T q.

Here π is needed to make f/T Eisenstein; and q is needed to have the correct degree.
Then we need a group law on Λ = {α ∈ K̄ : |α| < 1} and an A-module structure so that
[π](T ) = f(T ). To do this, we need the theory of formal group laws.
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§4.2 Lubin-Tate formal groups
Let A be a commutative ring. We can add and multiply power series with coefficients in A
inside the ring A[[T ]]. We can also compose two power series f and g if g ∈ TA[[T ]]. We
write f◦g(T ) = f(g(T )). Similarly, if f ∈ A[[T1, . . . , Tm]] and g1, . . . , gm ∈ A[[S1, . . . , Sn]],
then we can compose them to get f(g1, . . . , gm) if the constant terms in g1, . . . , gm are
all 0.

A (one parameter commutative) formal group law is a power series F ∈ A[[X, Y ]]
such that:

(a) F (Y,X) = F (X, Y );

(b) F (X, 0) = X;

(c) F (X,F (Y, Z)) = F (F (X, Y ), Z).

Note that (a) and (b) imply that F is of the form

F (X, Y ) = X + Y +
∑

i,j≥1
aijX

iY j.

It is then easy to prove that there exist iF (X) = −X+∑∞
i=2 aiX

i such that F (X, iF (X)) =
0.

Given two formal group laws F,G ∈ A[[X, Y ]], a homomorphism f : F → G is a
power series f ∈ TA[[T ]] such that

f(F (X, Y )) = G(f(X), f(Y )).

Lemma 4.2.1
Let f ∈ TA[[T ]]. Then there exists g ∈ TA[[T ]] with f ◦ g = T if and only if
f ∈ T (A[[T ]])×. In this case, g is unique and g ◦ f = T . We write g = f (−1).

Proof. The first statement and the uniqueness of g follow by writing out the coefficients.
To prove g ◦ f = T , we note the associativity of composition:

f ◦ (g ◦ h) = (f ◦ g) ◦ h

which follows because f ◦ g is linear in f and T n ◦ g = gn. Suppose now f ◦ g = T . Then
g ∈ T (A[[T ]])× as well and there exists h ∈ TA[[T ]] such that g ◦ h = T . Associativity
then gives f = h.

When f (−1) exists for a homomorphism f : F → G, we see that f (−1) is a homomorphism
G→ F and we say f is an isomorphism.

The following result will be proved in HW5. We won’t use it here, but it is quite useful
when studying elliptic curves over local fields.

Theorem 4.2.2
When A has characteristic 0, all formal group laws are isomorphic to the formal
additive group Ĝa with F (X, Y ) = X + Y over A⊗Z Q.
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When A is complete with respect to a non-archmedean absolute value |.|, let m = {a ∈
A : |a| < 1}. Then a formal group law F defines an abelian group structure on m via

x+F y = F (x, y), −Fx = iF (x).

and a homomorphism h : F → G defines a group homomorphism

x 7→ h(x) : (m,+F )→ (m,+G).

The usual group structure on m is given by Ĝa. The pullback of the multiplicative group
structure on 1 + m via the map x 7→ 1 + x is the group structure on m given by the
multiplicative formal group Ĝm with F (X, Y ) = X + Y +XY = (1 +X)(1 + Y )− 1,
which admits the polynomial f(T ) = (1 + T )p − 1 as an endomorphism as

F (f(T ), f(S)) = (1 + T )p(1 + S)p − 1 = f(F (T ), F (S)).

The ring A[[T ]] itself is complete with respect to the T -adic absolute value. Hence
given f, g ∈ TA[[T ]] and a formal group law G, we can define

f +G g = G(f(T ), g(T )), −Gf = iG(f).

Proposition 4.2.3
For any formal group laws F andG, the set Hom(F,G) of homomorphisms becomes an
abelian group with +G.When F = G, the endomorphism group End(F ) = Hom(F, F )
with +F is a (non-commutative) ring with f ◦ g.

Proof “by elimination”: What else could it be? 2

We return to the situation of non-archimedean local field K, valuation ring A, and
residue field Fq. Fix a uniformizer π. Let Fπ ⊂ A[[T ]] consist of all f such that

f(T ) ≡ πT (mod T 2) and f(T ) ≡ T q (mod π).

For example πT + T q ∈ Fπ in general, and (1 + T )p − 1 ∈ Fp in Qp.

Theorem 4.2.4
There is a unique formal group law Ff admitting f as an endomorphism.

This is the Lubin-Tate formal group of f . To prove its existence, note that we are looking
for a power series F = X+Y +higher order term such that F (f(X), f(Y )) = f(F (X, Y )).

But wait! Using the time stone, we foresee a future where we need to work with
unramified extensions of K. So let’s do it right! Let E/K be a complete unramified
extension of K with valuation ring AE. One can take E to be a finite unramified extension
of K or the completion of Kun. Let σ denote the Frobenius of K extended to E. In
other words, σ (topologically if E = Kun) generates Gal(E/K). For any uniformizer ω
of E, define Fω ⊆ AE[[T ]] to consist of all f such that

f(T ) ≡ ωT (mod T 2) and f(T ) ≡ T q (mod ω).

We note that we are still using the size of the residue field of K for q, and not that of
E. We aim to find a formal group law Ff ∈ AE[[X, Y ]] such that f ∈ Hom(Ff , F

σ
f ). We
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claim that it is enough to prove that for any m ∈ N, the existence and uniqueness of
some F ∈ AE[[X1, . . . , Xm]] such that

F (X1, . . . , Xm) = X1+· · ·+Xm+· · · and F σ(f(X1), . . . , f(Xm)) = f(F (X1, . . . , Xm)).
(4.1)

The existence of (??) for m = 2 gives Ff .

• Set G2(X, Y ) = Ff (Y,X) = X + Y + · · · . Then

Gσ
2 (f(X), f(Y )) = F σ

f (f(Y ), f(X)) = f(Ff (Y,X)) = f(G2(X, Y )).

Hence, the uniqueness of (??) when m = 2 implies that Ff (X, Y ) = Ff (Y,X).

• Set G1(X) = Ff (X, 0) = X + · · · . Then

Gσ
1 (f(X)) = F σ

f (f(X), f(0)) = f(Ff (X, 0)) = f(G1(X)).

Since the same is true for X, we have Ff (X, 0) = X using (??) with m = 1.

• Set G3(X, Y, Z) = Ff (X,Ff (Y, Z)). Then

Gσ
3 (f(X), f(Y ), f(Z)) = F σ

f (f(X), F σ
f (f(Y ), f(Z))) = f(Ff (X,Ff (Y, Z)) = f(G(X, Y, Z)).

The same is true for H3(X, Y, Z) = Ff (Ff (X, Y ), Z). Hence (??) with m = 3 gives
Ff (X,Ff (Y, Z)) = Ff (Ff (X, Y ), Z).

We now state and prove a more general version of (??). It is not important that we
have the same f on both sides, or that the linear coefficients of F are all 1. We consider
any f ∈ Fπ and any g ∈ Fω. Suppose F (X1, . . . , Xm) = a1X1 + · · ·+ amXm + · · · . Then
the linear coefficients of F σ ◦ f are aσ

i · π while the linear coefficients of g ◦ F are ω · ai.
Hence we need each ai to belong to

AE
π,ω = {a ∈ AE : aσ/a = ω/π}.

Note that when π = ω, this is just A.

Proposition 4.2.5
Let E/K be a complete unramified extension with uniformizers π, ω. Let f ∈ Fπ

and g ∈ Fω and let a1, . . . , am ∈ AE
π,ω. Then there exists a unique F (X1, . . . , Xm) ∈

AE[[X1, . . . , Xm]] such that

(a) F ≡ a1X1 + · · ·+ amXm (mod (X1, . . . , Xm)2)

(b) g(F (X1, . . . , Xm)) = F σ(f(X1), . . . , f(Xm))

Proof. Just do the only thing possible and it works. We write g ◦F and F σ ◦f to simplify
notation. Let I = (X1, . . . , Xm). We prove by the induction the existence and uniqueness
of Fr satisfying (a) and (b) mod Ir+1. When r = 1, F1 = a1X1 + · · ·+ amXm is clearly
the unique choice since aσ

i π = ωai for all i. Suppose we are now given Fr. We prove the
uniqueness and existence of a homogeneous polynomial h(X1, . . . , Xm) ∈ AE[X1, . . . , Xm]
of degree r + 1 such that g ◦ (Fr + h) = (Fr + h)σ ◦ f mod Ir+2. We have

g ◦ (Fr + h) ≡ g ◦ Fr + ωh (mod Ir+2)
(Fr + h)σ ◦ f ≡ F σ

r ◦ f + πr+1hσ (mod Ir+2)



4 (Local) Class Field Theory via Lubin-Tate Theory 81

since f, g ≡ πT, ωT (mod T 2). Since f, g ≡ T q (mod π), we have

g ◦ Fr − F σ
r ◦ f ≡ Fr(X1, . . . , Xm)q − F σ

r (Xq
1 , . . . , X

q
m) = 0 in (AE/(π))[X1, . . . , Xm].

Fix any monomial of degree r + 1. Its coefficient in g ◦ Fr − F σ
r ◦ f is of the form πβ for

some β ∈ AE. Hence its coefficient α in h should satisfy

πr+1ασ − ωα = −πβ.

Let v = πβ/ω ∈ AE and z = πr+1/ω ∈ (π). Then

α = v + zασ = v + zvσ + zzσασ2 = · · · = v + zvσ + zzσvσ2 + zzσzσ2
vσ3 + · · ·

has a unique limit in AE since each zσn ∈ (π).

As a consequence, we have our desired formal group law Ff .

Theorem 4.2.6
Let E/K be a complete unramified extension with uniformizer π. For any f ∈ Fπ,
there exists a unique formal group law Ff ∈ AE[[X, Y ]] such that f ∈ Hom(Ff , F

σ
f ).

Corollary 4.2.7
For any f ∈ Fπ, g ∈ Fω and a ∈ AE

π,ω, there is a unique [a]f,g ∈ AE[[T ]] such that

[a]f,g(T ) ≡ aT (mod T 2), g ◦ [a]f,g = [a]σf,g ◦ f.

Moreover, [a]f,g ∈ Hom(Ff , Fg) and [1]f,f (T ) = T . For any b ∈ AE
π,ω, we have

[a+ b]f,g = [a]f,g +Fg [b]f,g

For any b ∈ AE
ω,ω′ and any h ∈ Fω′ we have

[ab]f,h = [b]g,h ◦ [a]f,g.

In particular, Ff
∼= Fg over AE if AE

π,ω∩A×
E is nonempty. When π = ω, this is always

true. In general, this is true over B.

Proof. We need to prove
[a]f,g ◦ Ff = Fg ◦ [a]f,g.

Both have linear terms aX + aY and

g ◦ [a]f,g ◦ Ff = [a]σf,g ◦ f ◦ Ff = ([a]f,g ◦ Ff )σ ◦ f,

g ◦ Fg ◦ [a]f,g = F σ
g ◦ g ◦ [a]f,g = (Fg ◦ [a]f,g)σ ◦ f.

Therefore, they are equal by Proposition ??. The rest follows similarly.

Corollary 4.2.8
For any f ∈ Fπ, g ∈ Fω and a ∈ AE

π,ω we have

Ffσ = F σ
f and [a]σf,g = [aσ]fσ ,gσ .
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Corollary 4.2.9
For any f ∈ Fπ, there is an injective ring homomorphism A ↪→ End(Ff ) sending a
to [a]f := [a]f,f .

Example: Suppose f ∈ Fπ. Then fσ ∈ Fπσ and by definition π ∈ AE
π,πσ and we have

[π]f,fσ : Ff → Ffσ = Fσ
f and [π]f,fσ ≡ πT (mod T 2).

Then we see that [π]f,fσ = f . This suggests that instead of considering f ◦ f , we should
consider

fσ ◦ f = [πσ]fσ ,fσ2 ◦ [π]f,fσ = [ππσ]f,fσ2 .

In general, we define for any positive integer n,

fn = fσn−1 ◦ · · · ◦ fσ ◦ f = [ππσ · · · πσn−1 ]f,fσn .

Recall that when f(T ) = (1 + T )p − 1 and we are working over Qp, this fn(T ) is simply
(1 + T )pn − 1.

§4.3 The Lubin-Tate extension KLT

Let Es denote a separable closure of E and let Λ = {α ∈ Es : |α| < 1}. Suppose π is a
uniformizer of E and f ∈ Fπ. Note that Λ is not complete, but any two α, β ∈ Λ belong
to some finite extension L/K, so the formal group law Ff defines a group law +f on Λ
and the injection A ↪→ End(Ff ) gives Λ an A-module structure. Define

Λ(f)
n = Λ[fn] = {α ∈ Λ: fn(α) = 0}, Eπ,n = E(Λ(f)

n ).

Proposition 4.3.1
The set Λ(f)

n is finite and is an A-submodule of (Λ,+f ). If π0 is a uniformizer of K,
then

Λ(f)
n = Λ[πn

0 ] = {α ∈ Λ: [πn
0 ](α) = 0}.

The field E(Λ(f)
n ) is a finite extension of E, independent of the choice of f ∈ Fπ.

Proof. Since fn(T ) ≡ T qn (mod π), we know that fn has at most qn roots in Λ by
Weierstrass preparation (over the completion of Ē): any power series is a product of a
unit and a polynomial; and a unit does not have any root in Λ.

Since fn ∈ Hom(Ff , Ffσn ), we have

fn(α +f β) = fn(α) +fσn fn(β) = 0

and so Λ(f)
n is a subgroup of Λ. For any uniformizer ω of E, and any g ∈ Fω and a ∈ AE

π,ω,
we have

gn ◦ [a]f,g = [aωωσ · · ·ωσn−1 ]f,gσn = [a′]fσn ,gσn ◦ [ππσ · · · πσn−1 ]f,fσn = [a′]fσn ,gσn ◦ fn

where
a′ = auuσ · · ·uσn−1 ∈ AE

πσn ,ωσn , and u = ω

π
.



4 (Local) Class Field Theory via Lubin-Tate Theory 83

So [a]f,g sends the roots of fn to the roots of gn. Restricting to ω = π and g = f and
a ∈ A, we see that [a]f,f preserves Λ(f)

n . Hence, Λ(f)
n is a sub-A-module of Λ.

Since πn
0 and ππσ · · · πσn−1 have the same valuation, we can write πn

0 = ππσ · · · πσn−1
vn

for some unit vn ∈ A×
E. Then [πn

0 ]f,f = [vn]fσn ,f ◦ [ππσ · · · πσn−1 ]f,fσn . Since [vn]fσn ,f ∈
TAE[[T ]]× is invertible, we see that Λ = Λ[πn

0 ].
Now suppose ω = π and g ∈ Fπ. Using a = 1, we get a bijection

[1]f,g : Λ(f)
n → Λ(g)

n

defined by a power series in AE[[T ]]. To prove that they generate the same extension
over E, we need the following lemma.

Lemma 4.3.2
Let L/E be finite Galois and let τ ∈ Gal(L/E). Let h(T1, . . . , Tm) ∈ AE[[T1, . . . , Tm]].
Then for any α1, . . . , αm ∈ L with absolute value less than 1, we have

h(τ(α1), . . . , τ(αm)) = τ(h(α1, . . . , αm)).

Proof. For any t ≥ 1, let ht(T1, . . . , Tm) be the polynomial formed from h(T ) by keeping
only the terms with degree at most t. Write α = (α1, . . . , αm) Hence

h(τ(α)) = lim
t→∞

ht(τ(α)) = lim
t→∞

τ(ht(α)) = τ(h(α)),

where the second equality follows from the conitnuity of τ , as it is metric-preserving.

We can now complete the proof of Proposition ??. Let L = E(Λ(f)
n ,Λ(g)

n ). Then for
any τ ∈ Gal(L/E) and any α ∈ Λn, we have

[1]f,g(τ(α)) = τ([1]f,g(α)).

Hence we see that τ acts trivially on Λ(f)
n if and only if it acts trivially on [1]f,g(Λ(f)

n ) = Λ(g)
n .

Therefore, E(Λ(f)
n ) = E(Λ(g)

n ).

Theorem 4.3.3
Let π be a uniformizer of E and let π0 be a uniformizer of K. The extension Eπ,n/E
is Galois and totally ramified of degree (q − 1)qn−1. Its norm group contains πσn−1 .
Moreover, there is a compatible system of isomorphisms

(A/(πn
0 ))× ∼= Gal(Eπ,n/E).

On passing to the inverse limit, we have an isomorphism

UK = A× ∼= Gal(Eπ/E).

Proof. By Proposition ??, we may fix f = πT + T q. We prove first that Eπ,n/E is the
splitting field of fn and so is Galois. (Separability is left as an exercise.) It suffices to
prove that any nonzero root of fn in Ē has absolute value less than 1. Let µ denote
the normalized valuation on E so that µ(π) = 1. We prove by induction on n that if
α ∈ Es is either 0 or satisfies 0 < µ(α) ≤ 1, then any root γ of fn − α also is either 0
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or satisfies 0 < µ(γ) ≤ 1. Define f0(T ) = T so that the base case n = 0 is automatic.
Suppose n ≥ 1. If γ is a root of fn(T )− α, then fn−1(γ) is a root β of

fσn−1(T )− α = T q + πσn−1
T − α.

If α = 0, then either β = 0 or β is a root of the Eisenstein polynomial T q−1 + πσn−1

which has valuation 1/(q − 1) ∈ (0, 1]. If α ̸= 0, then from the Newton polygon, we see
that µ(β) = µ(α)/q ∈ (0, 1]. We are then done by induction applied to fn−1(γ) = β.

Let π1, . . . , πn ∈ Λ such that

πn
f7−→ πn−1

fσ

7−→ πn−2 7→ · · · 7→ π1
fσn−1

/T7−−−−−→ 0.

Then

• fn(πn) = 0 and so πn ∈ Λn.

• E(π1)/E is totally ramified of degree q−1, as fσn−1
/T = T q−1 +πσn−1 is Eisenstein.

• E(πk)/E(πk−1) is totally ramified of degree q with πk being a uniformizer for E(πk)
for k ≥ 2, as fσn−k − πk−1 = T q + πσn−k

T − πk−1 is Eisenstein.

Note that E(πn) is a subfield of Eπ,n of degree (q − 1)qn−1. (Be a bit careful with the
notation here, the πi here also depend on n. For example, we may have πn−1 /∈ Λn−1.)

The A-module Λn = Λ[πn
0 ] is torsion and π0-primary. So it decomposes as a prod-

uct of cyclic A-modules of the form A/(πd
0). Similar to last time, we write πn−1

0 =
ππσ · · · πσn−2

vn−1 for some unit vn−1 ∈ A×
E. Then we have

[πn−1
0 ](πn) = [vn−1]fσn−1 ,f (π1) ̸= 0.

Hence πn generates a cyclic A-submodule of Λn isomorphic to A/(πn
0 ). Then from

qn = #A/(πn
0 ) ≤ #Λn ≤ deg(fn) ≤ qn,

we conclude that Λn
∼= A/(πn

0 ) and is generated by πn. (Note this also proves that the
roots of fn are all distinct and belong to Es.)

By Lemma ??, we know that any τ ∈ Gal(Eπ,n/E) commutes with any power series
in AE[[T1, . . . , Tm]]. Commuting with fn implies that τ : Λn → Λn. Commuting with
Ff(X, Y ) implies that it respects the abelian group structure +Ff

. Commuting with
any [a]f,f for a ∈ A implies that it is an A-module homomorphism on Λn. Since Eπ,n is
generated by Λn, we have an injection

Gal(Eπ,n/E) ↪→ EndA(Λn) ∼= (A/(πn
0 ))×.

Comparing sizes then gives the isomorphism and Eπ,n = E(πn) and Gal(Eπ,n/E) ∼=
(A/(πn

0 ))×. The isomorphisms are compatible with the restriction map from Gal(Eπ,n+1/E)
to Gal(Eπ,n/E) since they are all induced by [a]f,f on Λ. Hence on taking inverse limits,
we have

Gal(Eπ/E) ∼= A×.

For any a ∈ A×, we will write [a]f for the element of Gal(Eπ/E) that acts via the power
series [a]f,f on any Λn. It does not act on the entire Eπ as the power series [a]f,f .

Finally to prove the norm statement, we saw before that the minimal polynomial of
πk over E(πk−1) is fσn−k(T )− πk−1 when k ≥ 2; and the minimal polynomial of π1 over
E is T q−1 + πσn−1 . Hence

NE(πk)/E(πk−1)(πk) = (−1)q−1πk−1,
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and taking norm down to E gives

NE(πn)/E(πn) = NE(π1)/E((−1)q−1π1) = (−1)(q−1)2(−1)q−1πσn−1 = πσn−1
.

The proof is now complete.

Remark 1: When E = K, the map σ is trivial. Hence we have

NKπ,n/K(πn) = π.

Remark 2: When n = 1, Eπ,1 is the splitting field of f/T = T q−1 + π. Since E
contains ζq−1, we see that Eπ,1 = E((−π)1/(q−1)) is a Kummer extension. Hence for two
uniformizers π, ω of E, the two fields Eπ,1 and Eω,1 are equal if and only if ω/π is a
(q− 1)-th power in A×

E. We note that every element in U1
E = 1 + (π) is a (q− 1)-th power

by Hensel. In other words, if ω/π ∈ U1
E, then Eπ,1 = Eω,1. We will see later that in the

case E = K, if ω/π ∈ Un
K = 1 + (πn), then Kπ,n = Kω,n. Hence both π and ω belong to

the norm group. As a consequence, we see that Un
K ⊆ N(K×

π,n).
To compare Kπ and Kω, we need to pass to the completion of Kun. Let B denote

its valuation ring and let σ denote the Frobenius map FrobK extended from Kun by
continuity. We have the following result whose proof we defer to the next section.

Theorem 4.3.4
Suppose f ∈ Fπ and g ∈ Fω with ω = uπ for some unit u ∈ UK . Then Ff and Fg

are A-isomorphic over B. More precisely, there exists ϵ ∈ B× such that σ(ϵ)/ϵ = u
and a power series θ(T ) ∈ B[[T ]] such that

θ(T ) ≡ ϵT (mod T 2), σθ = θ ◦ [u]f

θ ◦ Ff = Fg ◦ θ, θ ◦ [a]f = [a]g ◦ θ for any a ∈ A.

We now consider the dependence on π. Note that if AE
π,ω ̸= ∅, then by scaling by π0,

we may find a ∈ AE
π,ω ∩ A×

E. Then [a]f,g ∈ AE[[T ]] is an invertible power series sending
Λn to Λ′

n. By Lemma ??, we see that the extensions Eπ,n = Eω,n and so Eπ = Eω over
E. When E = K̂un, this is always non-empty.

Lemma 4.3.5
Let B be the valuation ring of the completion of Kun. Then we have exact sequences

1 −→ A −→ B
σ−1−−→ B −→ 1, 1 −→ A× −→ B× σ/1−−→ B× −→ 1.

Proof. Let R be the valuation ring of Kun with maximal ideal q = πR. Then B is the
q-adic completion of R. The map σ − 1 on R/q = F̄q is x 7→ xq − x, which is surjective
with kernel Fq. Hence we have an exact sequence

1 −→ A/p −→ R/q
σ−1−−→ R/q −→ 1.

Consider the diagram

1 // R/q

σ−1
��

πn−1
// R/qn

σ−1
��

// R/qn−1

σ−1
��

// 1

1 // R/q
πn−1

// R/qn // R/qn−1 // 1

.
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It follows from induction and the Snake lemma that

1 −→ A/pn −→ R/qn σ−1−−→ R/qn −→ 1

is exact. Taking inverse limits gives the first exact sequence. Similar proof applies for
the second exact sequence as the map x 7→ xq−1 is surjective on F̄×

q with kernel F×
q .

Lemma 4.3.6
Let B be the valuation ring of the completion of Kun. Then the map σ/1 : B× → B×

defined by b 7→ bσ/b is surjective.

Proof. The proof is essentially the same as the surjectivity of norms on units for unramified
extensions. Fix some uniformizer π0 of K. Then we have a filtration on B× by Un where
Un = 1 + (πn

0 )B for n ≥ 1. The map σ/1 descends to Un/Un+1 → Un/Un+1 as follows.

• When n = 0, σ/1 is the map x 7→ xq−1 on B×/U1 = F̄×
q .

• When n ≥ 1, σ/1 is the map x 7→ xq − x on Un/Un+1 ∼= F̄q.

These maps on the algebraic closure F̄q are all surjective. We are now done by complete-
ness.

Remark: Recall that we have the Teichmüller lift α : F̄q → B defined for any complete
non-archimedean valuation ring with perfect residue fields (in Lecture 4). This is a
multiplicative map and so σ acts as raising to the q-th power on its image. Fix some
uniformizer π0 of K. We can then express every element of B uniquely as the power
series

a0 + a1π0 + a2π
2
0 + · · · , where ai ∈ α(F̄q).

If E/K is unramified of degree m, then elements of AE are of the same form as above
where each ai ∈ α(Fqm).

Corollary 4.3.7
Let E,E ′ be finite unramified extensions of K. For any uniformizer π of E and
uniformizer ω of E ′, we have

Eπ.K
un = E ′

ω.K
un =: KLT.

Proof. It suffices to prove that for any n ≥ 1, we have

Kun(Λ[πn]) = Kun(Λ[ωn]).

We know that this is true when we take completion of Kun:

K̂un(Λ[πn]) = K̂un(Λ[ωn]).

Let Lπ,n = Kun(Λ[πn]). We note that K̂un(Λ[πn]) is the completion L̂π,n since it is
complete and Lπ,n is dense. The Galois group Gal(K̄/Lπ,n) acts trivially on Lπ,n and so
by continuity also acts trivially on its completion. Hence we have Lπ,n = L̂π,n ∩ K̄ =
L̂ω,n ∩ K̄ = Lω,n.
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Fixing a uniformizer π of K and some f ∈ Fπ. We have an isomorphism

UK × Ẑ ∼= Gal(Kπ/K)×Gal(Kun/K) ∼= Gal(KLT/K).

We define the reciprocity map

ϕπ : K× → Gal(KLT/K)

by: for any u ∈ UK and m ∈ Z,

ϕπ(uπm)|Kπ = [u−1]f and ϕπ(uπm)|Kun = σm.

It is easy to see that ϕπ is injective, (continuous) and its image consists of τ ∈ Gal(KLT/K)
such that τ |Kun = σm for some integer m.

Theorem 4.3.8
The map ϕK = ϕπ is independent of π.

Proof. Let ω be another uniformizer of K. It suffices to prove that ϕπ(ω) = ϕω(ω) since
then for any uniformizer π′, ϕπ and ϕπ′ are equal on all uniformizers of K, which generate
K×. Both act as Frobenius on Kun. Since ϕω(ω) acts trivially on Kω, it suffices to show
that ϕπ(ω) also acts trivially on Kω which we prove below in Theorem ??.

Remark: For the purpose of defining the Lubin-Tate extension KLT/K and the reci-
procity map, there is no need to deal with unramified extensions of K and Frobenius
twists. However, according to future Jerry, this will be needed to prove the norm
compatibility of the reciprocity maps.

Theorem 4.3.9
Suppose E/K has degree m. Let ω be a uniformizer of E and let g ∈ Fω be defined
over AE. Let π be a uniformizer of K and let f ∈ Fπ be defined over A. Let u ∈ UK

with NE/K(ω) = uπm. Let ϵ ∈ B× such that σ(ϵ)/ϵ = ω/π and let θ = [ϵ]f,g. Then

θσm = θ ◦ [u]f .

As a consequence, ϕπ(NE/K(ω)) acts trivially on Eω. In particular, if E = K, then
ϕπ(ω)|Kω = 1.

Proof. We prove the last statement first by proving that τ = ϕπ(uπm) acts trivially on
E(Λ(g)

n ). Note that it acts on Kun and K̂un by σm, so it acts trivially on E. The map θ
is a bijection Λ(f)

n → Λ(g)
n defined by a power series

θ(T ) = ϵT + a2T
2 + a3T

3 + · · · , where ϵ, a2, a3, . . . ∈ B.

Fix any α ∈ Λ(f)
n . We know that τ(ai) = aσm

i and τ(α) = [u]−1
f,f (α). Hence by continuity,

we have

τ(θ(α)) = τ(ϵ)τ(α) + τ(a2)τ(α)2 + τ(a3)τ(α)3 + · · · = θσm ◦ [u]−1
f (α).

Therefore, it suffices to prove that θσm = θ ◦ [u]f . Note that the Galois group Gal(E/K)
is the cyclic group of order m generated by σ. From ϵσ/ϵ = ω/π, we have

ϵσm

ϵ
= ϵσm

ϵσm−1 · · ·
ϵσ2

ϵσ

ϵσ

ϵ
= ωωσ · · ·ωσm−1

πm
= NE/K(ω)

πm
= u.
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Hence ϵσm = uϵ. So we have

[ϵσm ]f,g = [uϵ]f,g = [ϵ]f,g ◦ [u]f,f = θ ◦ [u]f .

Finally since σm acts trivially on E, we have θσm = [ϵσm ]fσm ,gσm = [ϵσm ]f,g = θ ◦ [u]f .

Corollary 4.3.10
Let u ∈ Un

K = 1 + (πn) and ω = uπ ∈ K. Then Kπ,n = Kω,n.

Proof. Let f ∈ Fπ and g ∈ Fω. Let θ(T ) ∈ B[[T ]] be the power series defining an A-
isomorphism Ff → Fg. Then we have θσ = θ ◦ [u]f . It suffices to prove that θ(α) ∈ Kπ,n

for any α ∈ Λ[πn]. A priori, we have

θ(α) ∈ K̂un(α) ∩ K̄ = Kun(α) ⊆ KunKπ,n.

Since Kπ,n and Kun are linearly disjoint, it suffices to show that θ(α) is fixed by the
Frobenius map σ. We have

(θ(α))σ = (θσ)(α) = θ([u]f (α)) = θ(α)

since Un
K acts trivially on Λ[πn].

While we are still fresh with the explicit construction of Kπ, let’s first prove local
Kronecker-Weber.

Theorem 4.3.11
Let K be a non-archimedean local field. Then Kab = KLT = Kun ·Kπ.

The proof is essentially identical to the proof for Qp given in Section 8 using ramification
groups and Hasse-Arf. We recall it in the language of Kπ.

• Prove that if L/K is a totally ramified abelian extension containing Kπ, then
L = Kπ.

• Prove that any finite extension of Kπ in Kab is cyclic over Kπ.

• Prove that any two finite extensions of Kπ in Kab of the same degree are equal.

• The extension K(ζqd−1) · Kπ is an extension of Kπ in KLT of degree d over Kπ.
Hence any finite abelian extension of K lies in KLT.

To prove the second bullet point, we extend the map ϕπ(π) from KLT to Kab. Recall
that ϕπ(π) acts trivially on Kπ and as the (topological generator) Frobenius σ on Kun.
Let M/Kπ be a finite extension in Kab. Then the fixed field M ⟨τ |M ⟩ is a totally ramified
abelian extension of K containing Kπ. By the first bullet point, it equals Kπ. Hence
Gal(M/Kπ) = ⟨τ |M⟩ is cyclic.

To prove the third bullet point, let M1/Kπ and M2/Kπ be two extensions in Kab of
degree d. Then Gal(M1M2/Kπ) is finite cyclic, and so has a unique quotient of size d
proving that Gal(M1M2/M1) = Gal(M1M2/M2). Hence M1 = M2.
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The first bullet point is where we used ramification groups. Let G = Gal(L/K) and
H = Gal(L/Kπ). We prove that H ⊆ ⋂Gv = 1 by proving that [Gv ∩H : Gv+1 ∩H] = 1
for all v. We know that

(G/H)v = GvH/H ∼= Gv/(Gv ∩H)

and so by Snake lemma, we have

[Gv : Gv+1] = [Gv ∩H : Gv+1 ∩H] · [(G/H)v : (G/H)v+1].

From an explicit description of (G/H)v, we know that Gv is finite index in G. Since it is
always closed, its fixed field Ev is some finite abelian extension of K. We then have

Gv/Gv+1 ↪→ Gal(Ev+1/K)v/Gal(Ev+1/K)v+1 ↪→

k× if v = 0,
k if v ≥ 1.

The last inclusion is a consequence of Hasse-Arf, which implies that for finite abelian
extensions, consecutive upper numbering ramification groups (with integer indices) are
either equal or are consecutive lower numbering ramification groups. It then remains to
compute the ramification groups of Kπ/K to show that

(G/H)v/(G/H)v+1 ∼=

k× if v = 0,
k if v ≥ 1.

Theorem 4.3.12
Under the isomorphism UK = A× ∼= Gal(Kπ/K), We have for any integer v ≥ 1,

Gal(Kπ/K)v = U v
K = 1 + πvA.

Proof. The proof here is also almost identical to the Qp(ζpn) calculation. We consider
Kπ,n/K with Galois group isomorphic to (A/(πn))×. The isomorphism sends a ∈ A to
σa = [a]f where f(T ) = T q + πT . Suppose now a = 1 + uπv for some integer v ≥ 1 and
unit u ∈ A×. Recall the elements π1, . . . , πn in Kπ,n where f(πi) = πi−1 for i ≥ 2 and
(f/T )(π1) = 0. Then each πi is an uniformizer for K(πi). Let µi denote the normalized
valuation on K(πi) so that µi(πi) = 1. Then we have,

iG(σa) = µn([a]f (πn)− πn) = µn([u]f [π]vfπn)) = µn(πn−v) = qv.

Hence we see that

Gqv−1 = · · · = Gqv−1 = 1 + πv(A/(πn))× = Gv.

Taking inverse limits gives the desired result.

Proof of Theorem ??: We now prove the desired θσm = θ ◦ [u]f . From the definition
of θ, we have that

g = θσ ◦ f ◦ θ−1.

Hence, by repeatedly taking σ and composing, we get

gm = θσm ◦ fm ◦ θ−1 = θσm ◦ f (m) ◦ θ−1 = θσm ◦ [πm]f ◦ θ−1.
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Since Gal(E/K) is cyclic of order m generated by σ, we see that

gm ≡ NE/K(ω)T (mod T 2).

Moreover, since g ∈ AE[[T ]] is fixed by σm, we have

g ◦ gm = gσm ◦ gm = gm+1 = gσ
m ◦ g.

Hence
gm = [uπm]g = [ϵ]f,g ◦ [u]f ◦ [πm]f ◦ [ϵ]−1

f.g = θ ◦ [u]f ◦ [πm]f ◦ θ−1.

Therefore, we have θσm ◦ [πm]f = θ ◦ [u]f ◦ [πm]f . That is

θσm ◦ f (m) = θ ◦ [u]f ◦ f (m).

Here f (m) = fm is f composed with itself m times. We are now done by the next Lemma
??.

Lemma 4.3.13
Suppose h ∈ B[[T ]] and f ∈ Fπ. For any integer ℓ ≥ 1, if h ◦ f ≡ 0 (mod πℓ), then
h ≡ 0 (mod πℓ). In particular, h ◦ f = 0 implies h = 0.

Proof. Modulo π, we have h(T q) ≡ 0. Hence h ≡ 0. Divide h by π and repeat.

§4.4 Norm compatibility
Our main theorem this section is the following norm compatibility result of ϕK .

Theorem 4.4.1
Let L/K be a finite extension of non-archimedean local fields. Then the following
diagram commutes.

L× ϕL //

NL/K

��

Gal(Lab/L)
σ 7→σ|

Kab
��

K× ϕK // Gal(Kab/K)

Remark: We have used Theorem ?? to replace KLT by Kab and similarly for L. Note
also that KabL/L is abelian and so Kab is a subfield of Lab. We are not assuming that
L/K is abelian because the proof won’t need it. The proof can also be made to work
without proving Theorem ?? first, with LLT in place of Lab and LLT ∩KLT in place of
Kab in the above diagram.

Corollary 4.4.2
Suppose L/K is a finite abelian extension.Then ϕK defines an isomorphism

ϕL/K : K×/NL/K(L×) ∼= Gal(L/K).
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Proof. Write ϕL/K also for the composite map K× → Gal(Kab/K)→ Gal(L/K). Since
the image of ϕK is dense and Gal(Kab/L) is a closed subgroup of finite index, we see that
the image of ϕK hits every coset of Gal(Kab/L) and so ϕL/K is surjective. The kernel of
ϕL/K clearly contains NL/K(L×). Suppose now ϕL/K(a) = 1. Then ϕK(a) ∈ Gal(Kab/L).
Extend it to Gal(KabL/L) and then to some τ ∈ Gal(Lab/L). Let E = Kun ∩ L. Then
τ acts on Eun = Kun via ϕK(a), which is some integer power of Frobenius. Since L/E is
totally ramified, Lun is formed from L by adjoining the same roots of unities as Eun is
formed from E. Hence τ acts on Lun by some integer power of Frobenius. There then
exists b ∈ L× such that ϕL(b) = τ . Then ϕK(a) = ϕK(NL/K(b)). By injectivity, we have
a = NL/K(b).

Proof of Theorem ??: We now prove the desired θσm = θ ◦ [u]f which implies that
ϕK(NE/K(ω)) acts trivially on Eω, where E/K is unramified of degree m. Note that the
Galois group Gal(E/K) is the cyclic group of order m generated by σ. From ϵσ/ϵ = ω/π,
we have

ϵσm

ϵ
= ϵσm

ϵσm−1 · · ·
ϵσ2

ϵσ

ϵσ

ϵ
= ωωσ · · ·ωσm−1

πm
= NE/K(ω)

πm
= u.

Hence ϵσm = uϵ. Note that both sides are in AK̂un
π,ω . So we have

[ϵσm ]f,g = [uϵ]f,g = [ϵ]f,g ◦ [u]f,f = θ ◦ [u]f .
Finally since σm acts trivially on E, we have

θσm = [ϵσm ]fσm ,gσm = [ϵσm ]f,g = θ ◦ [u]f .

We work towards proving Theorem ??. It is easy to see that it suffices to prove it
when L/K is unramified; and when L/K is totally ramified. It also suffices to prove that
for any uniformizer ω of L,

ϕL(ω)|Kab = ϕK(NL/K(ω)).

OnKun, we know that ϕL(ω) acts as FrobL = FrobfL/K

K . We know also that µK(NL/K(ω)) =
fL/K , so we see that ϕL(ω)|Kun = ϕK(NL/K(ω))|Kun .

In the unramified case, Theorem ?? implies that ϕK(NL/K(ω)) acts trivially on Lω,
and so does ϕL(ω). Hence they agree on Kun · Lω = KLT = Kab.

We focus now on the totally ramified case. In this case, ϕL(ω) acts as FrobL = FrobK

on Kun. So
ϕL(ω)|Kab = ϕK(π)

for some uniformizer π of K. The goal now is to prove that
NL/K(ω) = π.

Observe that we have
(Kab)ϕK(π) = Kπ ↪→ Lω = (Lab)ϕL(ω).

They are all totally ramified over K. The key idea now is to recover π from the norm
subgroups, recalling that π ∈ N(K×

π,n).
Suppose now L/K is totally ramified. Consider first that L = Kπ,n for some uniformizer

π and integer n ≥ 1. In this case, ϕL(a)|Kπ,n is trivial for all a ∈ UL. Hence if the
diagram does commute, then every element of NL/K(UL) acts trivially on Kπ,n. Under
the isomorphism A/(πn)× → Gal(Kπ,n/L), this means that NL/K(UL) ⊂ 1 + pn where
p = (π). We claim that conversely, this is enough to prove the diagram commutes for
any totally ramified L/K.
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Theorem 4.4.3
We have N(K×

π,n) = (1 + pn)× πZ.

For any infinite extension F/K, we write

N(F×) =
⋂

L⊂F, [L:K]<∞
N(L×).

Corollary 4.4.4
We have N(K×

π ) = πZ. Moreover, if F/K is a totally ramified extension containing
Kπ, then N(F×) = πZ.

Proof. Since F contains Kπ, we have N(F×) ⊆ N(K×
π ) ⊆ πZ. It remains to prove that

N(F×) contains a uniformizer, which then must be π. We know this is true for finite
totally ramified extensions. To prove it for infinite totally ramified extensions, we use a
little bit of topology. For any finite L/K contained in F , let S(L) denote the nonempty
set of uniformizers of K contained in N(L×). Then S(L) = NL/K(πLUL) is a compact
subset of the compact set πUK such that any finite intersection S(L1) ∩ · · · ∩ S(Lm)
contains S(L1 · · ·Lm) which is nonempty. Hence, the intersection of all of the S(L) is
nonempty. (Otherwise, their complements is a cover of πUK that does not admit a finite
subcover.)

Proof of Theorem ??: Suppose L/K is totally ramified. For any finite extension M/K
contained in Lω, we have N(M×) ∩ N(L×) = N((LM)×). We write NK for the norm
groups down to K and NL for the norm groups down to L. Then

NK(L×
ω ) =

⋂
M⊆Lω

[M :K]<∞

NK(M×) =
⋂

L⊆M⊆Lω

[M :K]<∞

NK(M×) = NL/K(NL(L×
ω )) = NL/K(ωZ).

On the other hand, Lω is totally ramified over K containing Kπ so we have NK(L×
ω ) = πZ.

Therefore, NL/K(ω) = π. 2

Corollary 4.4.5
Let n,m be any positive integers. Let π be a uniformizer of K. Let E be the
unramified extension of K of degree m. Let L = Kπ,nE. Then N(L×) = (1 + pn)×
πmZ.

Proof. Since Kπ,n has norm group (1 + pn)× πZ and E has norm group UK × πmZ, we
see that the norm group of L is contained in (1 + pn)× πmZ. Comparing indices gives
equality.

We will have completed the proofs of the main theorems of LCFT once we prove that
Kπ,n has the correct norm group.
Proof of Theorem ??: From Corollary ??, we see that N(K×

π,n) contains uπ for any
u ∈ Un

K . Hence it remains to prove that the norm of any unit lies in Un
K . Fix f = πT +T q.

Since Kπ,n is totally ramified over K with uniformizer πn, we see that any unit in Kπ,n
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is of the form h(πn) for some h ∈ A[T ] with h(0) ∈ UK . So h ∈ A[[T ]]×. Moreover, the
conjugates of πn over K are exactly the elements of Λn\Λn−1 using the fact that Λn is
the A-cyclic module generated by πn and Λn−1 is generated by [π0](πn) = πn−1. Hence

N(h(πn)) =
∏

β∈Λn\Λn−1

h(β) =
 ∏

β∈Λn

h(β)
 /

 ∏
β∈Λn−1

h(β)
 .

The trick is to consider

hn(T ) =
∏

β∈Λn

h(T +f β) =
∏

β∈Λn

h(Ff (T, β)).

Lemma 4.4.6
There exists a unique map N : A[[T ]]→ A[[T ]] such that for any h ∈ A[[T ]],

N(h) ◦ f(T ) =
∏

λ∈Λ1

h(T +f λ).

This is the Coleman norm operator.

Proof. Let h1(T ) denote the right hand side. Since h1(T ) is symmetric in λ ∈ Λ1, we see
that h1(T ) ∈ A[[T ]]. By the associativity of Ff , we have

h1(T +f λ) = h1(T ), for any λ ∈ Λ1.

Then the power series h1(T ) − h1(0) ∈ TA[[T ]] vanishes at all λ ∈ Λ1. Since f(T ) =∏
λ∈Λ1(T − λ), we have f(T ) | h1(T )− h1(0) in A[[T ]] by Lemma ??. Let g1(T ) ∈ A[[T ]]

be their quotient. Then
h1(T ) = h1(0) + g1(T )f(T ).

Now for any λ ∈ Λ, we have f(T +f λ) = f(T ) +f f(λ) = f(T ). Hence

h1(T +f λ) = h1(0) + g1(T +f λ)f(T +f λ) = h1(0) + g1(T +f λ)f(T ).

In other words,
g1(T +f λ) = g1(T ), for any λ ∈ Λ1.

We can then repeat the above to write

g1(T ) = g1(0) + g2(T )f(T ).

We thus have a sequence a0, a1, . . . in A such that

h1(T ) = a0 + a1f(T ) + a2f(T )2 + · · · = N(h) ◦ f

where
N(h)(T ) := a0 + a1T + a2T

2 + · · · ∈ A[[T ]].

It is easy to see that N(h) is unique since g ◦ f = 0 implies that g = 0. (Exercise.)
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Lemma 4.4.7
Suppose h ∈ A[[T ]] with distinct roots α1, . . . , αn in Λ. Then (T −α1) · · · (T −αn) | h
in A[[T ]].

Proof. The same proof for polynomials works here. The condition that αi ∈ Λ ensures
convergence.

Lemma 4.4.8
Let Nn denote N composed with itself n times. Then for any h ∈ A[[T ]],

hn(T ) =
∏

β∈Λn

h(T +f β) = Nn(h) ◦ f (n)(T ).

Proof. We now prove by induction on n. The case n = 1 is the definition of N . Let Ω be
a set of representatives for Λn/Λ1. In other words, every element of Λn can be written
uniquely as β +f γ for some β ∈ Ω and γ ∈ Λ1. We also have f(Ω) = Λn−1. Then

hn(T ) =
∏
β∈Ω

∏
λ∈Λ1

h(T +f β +f λ) =
∏
β∈Ω

N(h) ◦ f(T +f β) =
∏

λ∈Λn−1

N(h)(f(T ) +f λ)

which by induction equals Nn−1(N(h)) ◦ f (n−1)(f(T )) = Nn(h) ◦ f (n)(T ).

Lemma 4.4.9
The Coleman norm operator N has the following properties:

(a) N(h1h2) = N(h1)N(h2);

(b) N(h) ≡ h (mod π);

(c) If h ∈ T iA[[T ]]× for some i ≥ 0, then N(h) ∈ h(A[[T ]])×;

(d) If h ≡ 1 (mod πn), then N(h) ≡ 1 (mod πn+1).

Combining these, we see that if h ∈ T iA[[T ]]× for some i ≥ 0, then Nn(h)/Nn−1(h) ≡
1 (mod πn).

Proof. Statement (a) follows from uniqueness. For (b), we note that N(h) ◦ f(T ) ≡
N(h)(T q) mod π. On the other hand, Λ1 ⊂ (π1) and so T +f λ ≡ T mod π1 for any
λ ∈ Λ1. Hence the product∏

λ∈Λ1

h(T +f λ) ≡ h(T )q ≡ h(T q) (mod π),

since they are congruent mod π1 but have coefficients in A. This proves (b). Statement
(c) when i = 0 follows from (b) (which is all we need) since N(h)(0) ≡ h(0) ̸≡ 0 (mod π).
Consider h(T ) = T . It is clear from the construction of N that N(T ) = Tg(T ) for some
g ∈ A[[T ]]. It suffices to prove that g(0) ∈ A×. By definition, we have

(πT + T q)g(πT + T q) = T
∏

λ∈Λ1\{0}
(T +f λ).
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Divide by T and set T = 0. We get πg(0) = NKπ,1/K(π1) = (−1)q−1π. Hence g(0) ∈ A×.
The general case follows by multiplicativity (a). For (d), write h = 1 + πng for some
g ∈ A[[T ]]. Then

N(h) ◦ f(T ) =
∏

λ∈Λ1

(1 + πng(T +f λ)) ≡ (1 + πng(T ))q ≡ 1 (mod πn+1).

So (N(h) − 1) ◦ f(T ) ≡ 0 (mod πn+1). Modulo π, we find (N(h) − 1)(T q) ≡ 0 and so
N(h) − 1 ≡ 0 (mod π). Divide it by π and repeat. We conclude that N(h) − 1 ≡ 0
(mod πn+1).

Finally, by (b) and (c), we see that N(h)/h ≡ 1 (mod π). Now apply (d) and (a) n− 1
times to N(h)/h.

Theorem ?? now follows because

N(h(πn)) = Nn(h)(0)
Nn−1(h)(0) ∈ 1 + pn.

§4.5 Summary for the proof of Local class field theory
1. Given the data (E, π, f ∈ Fπ) of a complete unramified extension E/K, a uni-

formizer π of E, and some f = T q + πT + · · · :
• Obtain a formal group law Ff such that f ∈ Hom(Ff , F

σ
f ).

• Define Eπ,n as the field over E generated by the roots of fσn−1 ◦ · · · ◦ fσ ◦ f .
• Prove that Eπ,n/E is totally ramified with Galois group isomorphic to (A/(πK)n)×.

Take
Eπ = lim−→Eπ,n.

2. Given two such (E, π, f) and (E,ω, g) and some a ∈ AE
π,ω ∩ A×

E:
• Obtain an isomorphism [a]f,g : Eπ → Eω.
• Pass to the completion of Kun and then intersect with K̄ to show that

KLT = KunEπ.

is independent on the choice of the data (E, π, f) where E/K is finite.

3. Define the reciprocity map

ϕπ : K× → Gal(KLT/K)

by having ϕπ(uπm) act as [u]−1
f on Kπ and as σm on Kun.

• Prove that given (E,ω, g) where E/K is finite unramified,

ϕπ(NE/K(ω))|Eω = id.

• Use this to prove that ϕπ is independent on the choice of π and that it is norm
compatible with respect to finite unramified extensions.

• Compute the ramification groups of Kπ/K and use Hasse-Arf to prove the
local Kronecker-Weber theorem (exactly as in the Qp case):

KLT = Kab.
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4. Prove that N(K×
π,n) = Un

K × πZ.

• The containment N(K×
π,n) ⊇ Un

K × πZ follows from Kπ,n = Kω,n when ω/π ∈
Un

K and that π ∈ N(Kπ,n)×.

• The containment N(K×
π,n) ⊆ Un

K × πZ uses the Coleman norm operator to
prove that the norm of a unit is in Un

K .
• The equality is used to prove norm compatibility with respect to finite totally

ramified extensions.

§4.6 A little bit of GCFT
We begin with an example. Let q be an odd prime and let K = Q(√q∗), where q∗ =
(−1)(q−1)/2. So K is the discriminant subfield of Q(ζq). We identify Gal(K/Q) ∼= {1,−1}
and consider the reciprocity maps

ϕv : Q×
v → Gal(Kw/Qv) ↪→ Gal(K/Q) = {1,−1}.

Suppose first that v = ∞. If q ≡ 1 (mod 4), then q∗ > 0 and ϕ∞ is trivial. If q ≡ 3
(mod 4), then q∗ < 0 and ϕ∞ : R× → {1,−1} is the sign map. So we have

ϕ∞(p) = 1 and ϕ∞(−1) = lg−1q.

Suppose now v ̸= q is a finite prime. Then Kw/Qv is unramified so every unit Z×
v maps

to 1. If p = v, then ϕv(p) is Frobenius which equals 1 if and only if p splits completely in
K. So we have

for v ̸= q : ϕv(p) =
lg q∗p if p = v

1 if p ̸= v
and ϕv(−1) = 1.

Finally suppose v = q. In this case, Kw/Qq is totally ramified of degree 2. So its norm
group is an index 2 subgroup of Q×

q containing q as q = N(ζq − 1). The only such
subgroup is qZ × ⟨ζ2

q−1⟩ × (1 + qZq). So we have

ϕq(p) =
lg pq if p ̸= q

1 if p = q
and ϕq(−1) = lg−1q.

Quadratic reciprocity then implies∏
v∈MQ

ϕv(a) = 1, ∀a ∈ Q×.

This suggests a global reciprocity map

ϕ :
∏

v∈MQ

Q×
v → Gal(K/Q)

having the diagonally embedded Q× in the kernel. Such a map is certainly not well-
defined. We need to replace the infinite product with a restricted direct product. For
any global field K, we define the group JK of idèles to be

JK = {(av) ∈
∏

v∈MK

K×
v : av ∈ O×

v for all but finitely many v} =
∏′

v∈MK

(K×
v ,O×

v ).
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where Ov denote the valuation ring of Kv for v finite. For any finite abelian extension
L/K and any (av) ∈ JK , we can now multiply the local reciprocity maps ϕLw/Kv : K×

v →
Gal(Lw/Kv) ↪→ Gal(L/K) into a global reciprocity map

ϕL/K : JK → Gal(L/K).

Note since for any (aV ) ∈ JK , for all but finitely many v, Lw/Kv is unramified and
av ∈ O×

v , we have ϕLw/Kv(av) = 1 so the above map is well-defined.

Theorem 4.6.1
The map ϕL/K is surjective with kernel K×NL/K(JL).

Let CK = JK/K
× denote the idèle class group. Then we have an isomorphism

ϕL/K : CK/NL/K(CL) ∼−−→ Gal(L/K).

Taking inverse limit over L, we have the norm compatible global reciprocity map

ϕK : CK → Gal(Kab/K).

Example: What is CQ? Elements in JQ have coordinates pa1
1 u1, . . . , p

am
m um for finitely

many primes, with the rest all units, and some r ∈ R. Modding out by Q× gets rid of all
the finitely many prime powers, and the sign of r. Hence

CQ ∼= (0,∞)×
∏
p

Z×
p
∼= (0,∞)× Ẑ× ∼= (0,∞)×Gal(Qab/Q).

When taking norms from K = Q(√q∗), we see that it surjects onto (0,∞) and each Z×
p

for p ̸= q. The image of the units in Z×
q is the index 2 subgroup ⟨ζ2

q−1⟩ × (1 + qZq). We
see that the quotient is isomorphic to C2.

To state the Existence theorem, we need to define topologies on JK and CK . There is
also the ring of adeles

AK = {(av) ∈
∏

v∈MK

Kv : av ∈ Ov for all but finitely many v} =
∏′

v∈MK

(Kv,Ov)

where a basis of open sets is of the form ∏
v Uv where all but finitely many Uv = Ov.

It is easy to see that JK = A×
K and we give it the topology induced from the map

x 7→ (x, x−1) : JK → AK × AK . Note this is not the same as the restricted directed
product topology of JK itself.

Proposition 4.6.2
Embed K diagonally in AK . Then K is discrete in AK and K× is discrete in JK .
Let J1

K = {(av) ∈ JK : ∏v |av|v = 1}. Then AK/K and J1
K/K

× are compact.

Remark: Suppose K is a number field with r1 real embeddings and r2 conjugate pairs of
complex embeddings. Then the quotient AK/K is the same as ∏v∤∞Ov× (Rr1×Cr2/OK).
The compactness of J1

K/K
× implies the finiteness of class groups and Dirichlet’s unit

theorem that UK
∼= Zr1+r2−1 × ⟨µ∞⟩ where ⟨µ∞⟩ denotes the finite (cyclic) subgroup of

roots of unities contained in K.
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Theorem 4.6.3
When K is a number field, ϕK defines an isomorphism CK/C

◦
K
∼= Gal(Kab/K) where

C◦
K denote the connected component of the identity of CK , which also equals the

subgroup of infinitely divisible elements of CK . When K is a function field over Fp,
ϕK is injective and its image consists of elements in Gal(Kab/K) that restricts to
some integer power of Frobenius in Gal(F̄p/Fp).

Theorem 4.6.4
(Existence Theorem) There is a one-to-one correspondence between open subgroups of
CK of finite index and finite abelian extensions L/K via the norm group NL/K(CL).

We end by giving an interpretation of these results in terms of the classical treatment
using ideals. Any open subgroup of JK of finite index contains a subgroup of the form
Um = ∏

v Um,v where the modulus m = ∏
v v

ev is a formal product where ev = 0 for all
but finitely many v; ev ∈ {0, 1} if v is real and ev = 0 if v is complex; and

Um,v =


O×

v if v is finite and ev = 0
1 + pev if v = p is finite and ev > 0
K×

v if v is infinite and ev = 0
R+ if v is real and ev = 1.

Let Cm
K be the image of Um in CK . This is called the congruence subgroup of CK of

modulus m. When all ev = 0, namely m = 1, the quotient group JK/U1 is isomorphic
to the ideal group IK of K. In other words, CK/C

1
K is isomorphic to the class group

Cl(K) of K. Since U1/Um is clearly finite, we see that Cm
K is an open subgroup of CK

of finite index. By the Existence Theorem, it corresponds to a finite abelian extension
K(m)/K, called the ray class field of modulus m. The quotient

CK/C
m
K
∼= Gal(K(m)/K)

is called the ray class group of modulus m. Since Cm
K is the norm group of K(m),

we see that K(m)/K is unramified at all places v with ev = 0. When m = 1, K(1) is
the Hilbert class field of K, which is the maximal abelian extension of K unramified
everywhere.

Proposition 4.6.5
Let m be a positive integer. The ray class field of Q of modulus m · ∞ is Q(ζm).

Proof by “elimination”: What else could it be? For any prime p and positive integer
n, we know that the norm group of Qp(ζpn) contains 1 + pnZp. So Q(ζm) ⊂ Q(m · ∞).
For equality, it is not hard to show that CQ/C

m·∞
Q
∼= (Z/mZ)×. 2

Remark: The ray class field of Q of modulus m is Q(ζm + ζ−1
m ).

The ray class group of modulus m is traditionally defined as the quotient ImK/Km

where ImK is the group of fractional ideals generated by prime ideals with ev = 0 and
Km = K× ∩∏ev ̸=0 Um,v. We have an isomorphism

JK/Um → ImK ×
∏

ev ̸=0
K×

v /Um,v
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and an exact sequence

1→ Km → K× →
∏

ev ̸=0
K×

v /Um,v → 1.

Therefore, we have an isomorphism

CK/C
m
K
∼= JK/(UmK

×) ∼= ImK/K
m.

Note that ImK is generated by prime ideals unramified in K(m). We can then extend the
Frobenius (p, K(m)/K) by linearity to the Artin symbol (a, K(m)/K) for any a ∈ ImK .

Theorem 4.6.6
The isomorphism

Clm(K) = ImK/K
m → CK/C

m
K → Gal(K(m)/K)

is given by the Artin symbol (a, K(m)/K).

We say two prime ideals p1 and p2 coprime to m are congruent mod m if their images
in ImK/Km are equal. We note that for any finite abelian L/K, the norm group NL/K(CL)
contains some Um since it is an open subgroup of finite index. As a consequence, L is a
subfield of the ray class field K(m). Recall in the case of Q where upon embedding L
inside Q(ζm), primes that split completely in L are defined by congruence conditions mod
m. Here, primes p of K that split completely in L are defined by congruence conditions
mod the modulus m. The converse is also true!

Proposition 4.6.7
Let L/K be a finite Galois extension of number fields. Suppose there is a modulus
m such that except for a finite set S of primes, the condition that a prime p of K
splitting completely in L is defined by congruence conditions mod m. Then L/K is
abelian.

Proof. Let M be the Galois closure of LK(m) over K. We prove L ⊆ K(m) by showing
that for all but finitely many primes, if p splits completely in K(m), then it splits
completely in L. By the Chebotarev density theorem, there exists a prime q /∈ S of
K that split completely in M . Then q splits completely in L and K(m). Let p /∈ S
be a prime that splits completely in K(m). Then p ≡ q ≡ 1 mod m since this is the
condition for splitting completely in K(m). Since q splits completely in L, we have p
splits completely in L since that’s also defined by (possibly more) congruence conditions
mod m.

Corollary 4.6.8
(Furtwängler) For any subgroup H of the class group of K, there is an unramified
abelian extension L/K such that the primes that split completely in L are exactly
those whose ideal class lies in H.
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What’s next if one wants to learn more?
There are many directions one can go from here:

1. Group cohomology: A proof of global class field theory and another proof of
local class field theory.

2. Complex multiplication: A construction of the ray class fields for imaginary
quadratic fields, using torsion points of elliptic curves.

3. Drinfeld modules: A construction of ray class field for function fields.

4. The Langlands program: A study of n-dimensional representations of Gal(K̄/K)
with a lot of correcting adjectives! The case n = 1 is the group Gal(Kab/K) and
follows from class field theory.
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