
CO 485/685
Mathematics of Public-Key

Cryptography
https://sachink003.github.io

Sachin Kumar

Fall 2023

https://sachink003.github.io

Contents

0 Preface 5

1 Introduction to Cryptography 7
1.1 (09/07; skipped) . 7
1.2 Almost-Public Key Cryptosystems (09/09) 7
1.3 A Public Key Cryptosystem – RSA (09/12) 8
1.4 Security Definitions (09/14) . 9
1.5 Actual IND-CPA systems (09/16) . 10

2 Quadratic Residues 13
2.1 Number Theory Background (09/19) . 13
2.2 Squares Under a Modulus (09/21) . 13
2.3 Squares cont’d (09/23) . 14
2.4 Applying to DDH (09/26) . 15
2.5 Quadratic Characters in the Complex Plane (09/28) 16
2.6 Quadratic Reciprocity (09/30) . 18

3 Primality 21
3.1 Primality Testing (10/03) . 21
3.2 Strong Primality Testing (10/05) . 22
3.3 Malleability (10/07) . 23
3.4 Factorization Algorithms (10/17) . 24
3.5 Better Sieves (10/19) . 25
3.6 (10/21) . 26
3.7 Index Calculus (10/26) . 26

4 Signatures 29
4.1 Hash Functions (10/28) . 29
4.2 Signature Schemes (10/31) . 30
4.3 Hashed RSA (11/02) . 31
4.4 Zero-Knowledge Proofs (11/04) . 32
4.5 ZKP Signatures (11/07) . 33
4.6 CCA2-Secure Signature Schemes (11/09) 35
4.7 Proving Fujisaki–Okamoto Security (11/11) 36

5 Elliptic Curve Cryptography 39
5.1 Elliptic Curves (11/14) . 39
5.2 (11/16) . 40
5.3 Attacks on ECDH (11/18) . 40
5.4 Pairing-Based Cryptography (11/21) . 41
5.5 Divisors (11/23) . 42
5.6 (11/25) . 44
5.7 Weil Pairing (11/28) . 45
5.8 (12/02) . 46
5.9 Closing Remarks (12/05) . 46

3

0 Preface

This course was taught by David Jao in Fall 2023. This course approaches cryptography
in a more mathematical and abstract (proof) manner, compared to its main CO and
CS counterparts. This course provides an in-depth study of public-key cryptography.
Number-theoretic problems: prime generation, integer factorization, discrete logarithms.
Public-key encryption, digital signatures, key establishment, elliptic curve cryptography,
post-quantum cryptography. Proofs of security.

5

1 Introduction to Cryptography

§1.1 (09/07; skipped)

§1.2 Almost-Public Key Cryptosystems (09/09)
• For a symmetric key cryptosystem, require sets of key space K, message space M ,

and ciphertext space C

– Define encryption function Enc : K → M → C and decryption Dec : K →
C →M

– Correctness property: for all k, Dec(k) is a left inverse of Enc(k)

– Symmetric means that both decryption and encryption use shared secret k,
which we assume is drawn randomly from K

• Public key encryption scheme (Diffie, Hellman, Merkle, c. 1976)

– Setup similar: message space M and ciphertext space C but with two key
spaces K1 of public keys and K2 of private keys

– Define Enc : K1 →M → C and Dec : K2 → C →M

– Define KeyGen : 1ℓ → R ⊂ K1 ×K2

∗ For some reason, let 1n be the unary representation of n??

– Correctness: for all (k1, k2) ∈ R related, Dec(k2) is a left inverse of Enc(k1)

• Merkle puzzle (1974)

– Each party creates “puzzle” which is hard to solve but not too hard

– Alice generates 1,000,000 puzzles and sends them to Bob

– Bob solves one of the puzzles arbitrarily and sends half of the answer to Alice

– Alice knows the answer, so Alice knows the second half of the answer, which
becomes the shared secret

– Eve cannot (realistically) solve 500,000 puzzles in time to intercept

• Diffie–Hellman key exchange

– Consider the multiplicative group G = (Z/pZ)∗ = {1, . . . , p − 1} and some
arbitrary element g ∈ G with sufficiently large order

– Alice privately picks some x ∈ Z, computes gx, and sends it to Bob

– Bob privately picks some y ∈ Z, computes gy, and sends it to Alice

– Both can now calculate a shared secret k = gxy = (gx)y = (gy)x

– Eve would have to solve the Diffie–Hellman problem: given p, g, gx, gy, find
gxy which is known to be hard

7

8 Sachin Kumar (Fall 2023)

• Clifford Cocks privately discovered RSA 1973, DH 1974 for GCHQ (if you believe
the intelligence community)

§1.3 A Public Key Cryptosystem – RSA (09/12)
• RSA (Rivest, Shamir, Adleman 1977): first cryptosystem and remains secure

• Theoretically secure, but implementations are ass (cf. “Fuck RSA”)

• MATH 135/145 review of the algorithm:

– This “textbook RSA” has practical flaws and is insecure

– KeyGen : 1ℓ → (pk, sk) ∈ R

1. Choose random primes p, q ≈ 2ℓ where p and q are odd and distinct

2. Compute n = pq

3. Choose e ∈ (Z/ϕ(n)Z)× where ϕ(n) = (p− 1)(q − 1)

4. Compute d = e−1 mod ϕ(n)

5. Disclose public key (n, e) and keep secret key (n, d)

– Enc : K1 → M → C : (n, e) 7→ m 7→ me mod n where M = (Z/nZ)× = {x :
Z/nZ : gcd(x, n) = 1} = C

– Weird that M depends on n (part of the key). In practice, it doesn’t matter
because the only messages that divide n are the primes, which breaks RSA
anyways

– Dec : K2 → C →M : (n, d) 7→ c 7→ cd mod m

• Correctness: Must show that (me mod n)d mod n = m

Proof. (me mod n)d mod n = med mod n (exponentiation under mod). Then, since
d = e−1 mod ϕ(n), there exists k such that de − 1 = kϕ(n), we have mϕ(n)k+1 ≡
(mϕ(n))km ≡ m (mod m). This holds by Euler’s theorem (∀m ∈ (Z/nZ)×, mϕ(n) ≡
1 (mod n)) or Fermat’s Little Theorem + Chinese Remainder Theorem (MATH
135/145)

• Security: Trivial that factoring n = pq breaks RSA by computing ϕ(n)

– Conversely, if you know ϕ(n) = (p−1)(q−1) you can take qϕ(n) = (n−1)(q−1)
and solve for q

∗ To avoid this, use the Carmichael exponent λ(n) = lcm(p − 1, q − 1)
instead of ϕ(n) which works. Of course, this doesn’t work in practice
because it’s not actually that much different

– For any non-trivial case, knowing one pair (e, d) also allows factoring n

– Must make an assumption about hardness to prove security:

∗ Factoring assumption: factoring random integers is hard

1 Introduction to Cryptography 9

∗ RSA factoring assumption: factoring n = pq is hard (see, e.g., ellip-
tical curve algorithm which depends on size of smallest prime in the
factorization)

· Of course, quantum computing fucks all of this to hell (see troll PQRSA
which uses many small primes to make terabyte-sized moduli)

∗ RSA assumption: given n, e, me mod n, it is hard to find m

– Can prove RSA assumption =⇒ RSA works (cannot prove without assump-
tion without better results from complexity theory)

§1.4 Security Definitions (09/14)
• Security definitions, e.g., OW-CPA, IND-CPA, IND-CCA (Boneh, Shoup)

• How secure is a cryptosystem? Specify:

– Allowable interactions between adversaries and parties

∗ Second part of abbreviation

– Computational limits of adversary

∗ Not usually specified, usually probabilistic polynomial time

– Goal of the adversary to break the cryptosystem

∗ First part of abbreviation

• OW-CPA: one-way chosen-plaintext attack

– Adversary, given public key pk and encryption c of message m under pk, wants
to determine m

– Formally, given a random pk and c such that c = Enc(pk, m) for some
random m, it is infeasible for any probabilistic polynomial time algorithm A
to determine m with non-negligible probability. That is, Pr[A(pk, c) = m] =
O(1

λc) for all c > 0.

• Easier way to formalize (Sequences of Games, Shoup 2004)

– Two players: challenger C and adversary A

– Then, OW-CPA is

1. C runs KeyGen : (pk, sk) $←− 1
λ

2. C chooses m
$←−M

3. C computes c← Enc(pk, m)

4. m′ $←− A(pk, c)

with the win condition that m′ = m, and we say that a cryptosystem is
OW-CPA if a probabilistic polynomial time adversary A cannot win this
game with non-negligible probability

– IND-CPA (Goldmeier, Micoli 1984): indistinguishability

10 Sachin Kumar (Fall 2023)

1. C runs (pk, sk) $←− KeyGen(1λ)

2. (m0, m1) $←− A(1λ, pk)

3. C picks b
$←− {0, 1}

4. C computes c
$←− Enc(pk, mb)

5. b′ $←− A(1λ, pk, c)

with the win condition b = b′, and a cryptosystem is IND-CPA if for
all prob. poly. time A,

∣∣∣12 − Pr[win]
∣∣∣ = O(1

λε) for all ε > 0. Encryption
function must be random, otherwise A can re-encrypt

§1.5 Actual IND-CPA systems (09/16)
• IND-CPA is the standard security definition for symmetric security

– Ciphertext contains no information about plaintext (except length)

• Design a slightly different equivalent IND-CPA game:

1. C runs (pk, sk) $←− KeyGen(1λ)

2. (m0, m1) $←− A(1λ, pk)

3. C picks b
$←− {0, 1}

4. C computes c1
$←− Enc(pk, mb) and c2

$←− Enc(pk, mb−1)

5. b′ $←− A(1λ, pk, c1, c2)

• Consider textbook RSA: A can choose m0 ̸= m1 and compute Enc(pk, m0) and
Enc(pk, m1) which allows it to win

– In general, this applies to any scheme with deterministic encryption

• Goldwasser-Micali (Probabilistic Encryption 1982)

1. Pick n = pq (useful to have p ≡ q ≡ 3 (mod 4))

2. Pick r ∈ (Z/nZ)× such that r ̸≡ x2 (mod p) and r ̸≡ x2 (mod q)

3. Define pk = (n, r) and sk = (p, q)

4. Select a message bit b from M = {0, 1}

5. Encrypt Enc(b) = rby2 for some y
$←− (Z/nZ)×

Then, decrypt by determining ciphertext’s squareness mod n

– This is easy with the factorization n = pq by Euler’s criterion (a is square
mod prime p if and only if a(p−1)/2 ≡ 1 (mod p))

– Determining squareness without factorization of n is hard, apparently

Since plaintexts are one bit, OW ⇐⇒ IND and this is provable under the circular-y
assumption that determining squareness is hard. Also one bit messages are literally
useless so who cares

1 Introduction to Cryptography 11

• Elgamal (1984) (sometimes IND-CPA)

– Public-key cryptosystemified Diffie-Hellman

1. Setup is the same as DH, take some element g ∈ G of a group

2. Define pk = gx and sk = x

3. Encrypt Enc(m) = (gy, gxy ·m) for y
$←− Z

– Then, decrypt Dec(c1, c2) = c2

cx
1

= gxy ·m
(gy)x = m

– In general, key sharing schemes can be cryptosystemified like this

– In an IND-CPA game, given (gy, gxymb)

∗ Divide out m0 to get either gxy (if mb = m0) or garbage

∗ Real challenge is distinguishing gxy from garbage

– Decisional Diffie-Hellman assumption: in the following game,
∣∣∣Pr[A wins]− 1

2

∣∣∣
is negligible in λ

1. C chooses p
$←− Z prime, p ≈ 2λ

2. C chooses g ∈ (Z/pZ)×

3. C chooses x, y
$←− Z and h

$←− (Z/pZ)×, computes g1 = gx, g2 = gy,
g3 = gxy

4. C chooses b
$←− {0, 1} and g4 = g3 if b = 0 and h if b = 1

5. b′ ← A(1λ, p, g, g1, g2, g4)

∗ Can prove: if DDH assumption holds, Elgamal is IND-CPA

• Layers of assumptions here:

– DLOG: given g and gx, it is hard to find x

– CDH: given g, gx, and gy, it is hard to find gxy (equivalent to Elgamal being
OW-CPA)

– DDH: given gxy and garbage, is hard to distinguish the garbage

• How to piss off mathematicians: solving DLOG in Z/nZ is easy but in (Z/pZ)× is
hard

– But (Z/pZ)× is isomorphic to Z/(p − 1)Z so DLOG difficulty must not be
preserved over isomorphism

– Specifically, DLOG is as exactly hard as computing the isomorphism (notice
that we send x 7→ gx)

• DDH is actually easy in (Z/pZ)×, need a subgroup G ⊂ (Z/pZ)× with |G| prime

2 Quadratic Residues

§2.1 Number Theory Background (09/19)
• Recall: RSA primes are gigantic so it takes time to do operations

– e.g. picking e ∈ (Z/ϕ(n)Z)× or finding d = e−1 (mod ϕ(n)) using EEA which
runs in a logarithmic number of steps

– e.g. running Enc(m) = me (mod n) or Dec(c) = cd (mod n) using square-
and-multiply which runs in a logarithmic number of steps

• Hard: picking non-squares in integers modulo p

– Set of primes |((Z/pZ)×)2| = p−1
2 for odd p > 2

– This is because f(x) = x2 is a 2-to-1 function on (Z/pZ)×

∗ To prove, show f(a) = f(b) ⇐⇒ a = ±b

∗ Apply Euclid’s Lemma: p | (x− y)(x + y) implies p | x− y or p | x + y,
equivalently, x = y (mod p) or x = −y (mod p)

∗ Also another theorem: for R integral domain, every polynomial of degree
n over R has at most n roots

§2.2 Squares Under a Modulus (09/21)
The big problem: Given (Z/nZ)× and x ∈ (Z/nZ)×, when is x ≡ □ (mod n)?

For example, for Z/15Z, 1 and 4 are squares; for 8: just 1; for 7: 1, 2, and 4; and for 13:
1, 3, 4, 9, 10, and 12.

This breaks down into cases: n composite, n prime power, n prime

Theorem 2.2.1
Suppose n = ∏

pei
i . Then, x ≡ □ (mod n) if and only if for all i, x ≡ □ (mod pei

i).

Proof. Suppose x = y2 (mod n) for a unit y. Then, n | (x − y2) and pei
i | (x − y2) by

transitivity. That is, x ≡ y2 (mod pei
i). In the reverse direction, if pei

i | (x− y2) for all i,
then by UPF (with some omitted detail), n | (x− y2).

The prime power case reduces to the prime case under condtions discovered in the
homework problems lol.

Theorem 2.2.2
The number of squares in (Z/pZ)× is p−1

2 for primes p ≥ 3.

13

14 Sachin Kumar (Fall 2023)

Proof. This is because x = y2 = (−y)2 and the size of the set is p− 1.

Build a table (x, gx) instead of (x, x2):

For p = 13 and g = 2, we get (1, 2, 4, 8, 3, 6, 12 = −1,−2,−4,−8,−3,−6,−12 = 1) and
the squares are the even-indexed values (1, 4, 3, 12, 9, 10, 1).

This works for tables starting with non-squares: in fact, if g ̸= □, then g3 ̸= □ (by the
contrapositive, if g3 = □, then g = g3

g2 = □
□ = □).

This gives us the result that gx = gy when x ≡ y (mod p−1) (note that this is equivalent
to Fermat’s Little Theorem, the reverse direction requires g coprime to p− 1).

Definition 2.2.3 (order). ord(a) is the period of x 7→ ax for a ∈ (Z/pZ)×.

Equivalently, ord(a) = min{t ∈ Z : at = 1, t > 0}.

Lemma 2.2.4
Given elements a and b, numbers x and y:

• ax = 1 if and only if ord(a) | x

• ax = ay if and only if x ≡ y (mod ord(a))

• ord(ax) = ord(a)
gcd(x,ord(a))

• If ord(a) and ord(b) are coprime, then ord(ab) = ord(a) ord(b).

Proof. Only prove the last one:

Let t = ord(a), u = ord(b), v = ord(ab). Then, (ab)tu = atubtu = 1u1t = 1 so we have
v | tu. Now, without the loss of generality, (ab)vu = 1u = 1 =⇒ avubvu = avu1 = avu = 1.
This gives t | vu and t | v since gcd(t, u) = 1. Likewise, u | v and we can conclude tu | v
because gcd(t, u) = 1. That is, tu = v.

§2.3 Squares cont’d (09/23)
Definition 2.3.1 (primitive element). g ∈ G where {gn : n ∈ N} = G. Also called a
generator.

Recall: if there exists primitive g ∈ (Z/pZ)×, then for all h ∈ (Z/pZ)× where h = gk,
h ≡ □ ⇐⇒ k even. We can determine squareness using this fact, but finding k such
that h = gk is doing a discrete log, which is hard.

Whether or not a primitive element exists is a non-trivial observation:

Theorem 2.3.2 (Gauss’ primitive root)
For all primes p, (Z/pZ)× has a primitive element.

Proof. Observe that for all polynomials f(x) ̸= 0 over Z/pZ, the number of roots of
f(x) is at most deg f . Note that factorization fails in Z/nZ in general: e.g. x2 − 1 =

2 Quadratic Residues 15

(x− 1)(x + 1) = (x− 3)(x− 5) mod 8 or something weird like x = (3x + 2)(2x + 3) mod
6. We have this observation because Z/pZ is an integral domain (and indeed, a field).

Consider a ∈ (Z/pZ)×.

Claim t = ord(a) | p− 1. Write p− 1 = tq + r. If r = 0, done. If r > 0, ord(a) = r < t,
contradiction and indeed r = 0.

For each divisor d of p − 1, consider Sd = {x ∈ (Z/pZ)× : ord(x) = d}. Then,⋃
d|p−1 Sd = (Z/pZ)× and this is a disjoint union. To prove Gauss’ theorem, we just need
|Sp−1| > 0.

Proceed in general for arbitrary |Sd| > 0 for all d | p− 1.

If Sd = ∅, then |Sd| = 0. Otherwise, claim that |Sd| = ϕ(d) = |(Z/dZ)×|.

If Sd is not empty, then ∃a ∈ Sd where ord(a) = d. Consider xd − 1. The roots of this
polynomial will include all elements of Sd (and others). We can write the set of roots
as exactly {a0, . . . , ad−1}. So for all b ∈ Sd, b = ak since b is a root and we need only
count those powers with order d. But that is exactly ord(ai) = ord(a)

gcd(i,d) = d
gcd(i,d) . So we

are counting the i such that gcd(i, d) = 1, which is exactly ϕ(d).

Now, p − 1 = |(Z/pZ)×| =
∣∣∣⋃d|p−1 Sd

∣∣∣ = ∑ |Sd| ≤
∑

ϕ(d) which is equal to p − 1 by
Möbius inversion. That last inequality being an equality implies that |Sd| ≠ 0 for any
d | p− 1, and in particular p− 1 | p− 1.

Quick combinatorical proof of this fact: write out all the p− 1 fractions over p− 1, then
each of ϕ(d) is the number of fractions where the denominator reduces to d. The sum
must be p− 1.

§2.4 Applying to DDH (09/26)
Recall the Decisional Diffie-Hellman problem: Given g, gx, gy, gz, determine if z = xy.
Formally, as a game:

nosep C chooses a bit b ∈ {0, 1} and x, y
$←− Z

nosep b′ ← A(g, gx, gy, gz) where z ←

xy b = 0
$←− Z b = 1

nosep Win condition: b = b′ with non-negligible probability

Notice that if g is a primitive root, then |{gx : x ∈ Z}| = p− 1. But bruteforce DLOG
takes p−1

2 steps on average. Then, Elgamal is IND-CPA ⇐⇒ DDH holds.

Proposition 2.4.1
The Decisional Diffie-Hellman assumption in (Z/pZ)× with a primitive base g does
not hold.

Proof. We tell squares and non-squares apart.

Recall from last lecture’s theorem we have that if g is a primitive root, gx ≡ □
(mod p) ⇐⇒ x ≡ 0 (mod 2). Then, by Euler’s criterion, a ≡ □ (mod p) ⇐⇒

16 Sachin Kumar (Fall 2023)

a(p−1)/2 ≡ 1 (mod p). Therefore, it is possible to tell the parity of x, y, and z in
reasonable time using Euler’s criterion (since raising to a power is easy).

If xy is odd only when x and y are odd, so if you know the parity of z you can distinguish
if z = xy or random with non-negligible advantage.

Proposition 2.4.2 (Euler’s criterion)
a ≡ □ (mod p) ⇐⇒ a(p−1)/2 ≡ 1 (mod p)

Proof. Suppose a ≡ □ iff a ≡ gk for even k = 2ℓ iff a(p−1)/2 = (gk)(p−1)/2 = gk(p−1)/2 =
(gp−1)ℓ = 1ℓ = 1 by Fermat’s Little Theorem.

Otherwise, a ̸≡ □ iff a = gk for k = 2ℓ + 1 iff a(p−1)/2 = (gk)(p−1)/2 = g(p−1)/2·(2ℓ+1) =
g(p−1)/2·2ℓ · g(p−1)/2 = g(p−1)/2 ̸= 1. But in fact g(p−1)/2 =

√
gp−1 =

√
1 = −1 since it is

not positive 1.

Corollary 2.4.3
For p > 2, −1 is a square mod p if and only if p ≡ 1 (mod 4).

Proof. For −1 to be a square, we need (−1)(p−1)/2 ≡ 1 (mod p). That is, p−1
2 is even

and we have p ≡ 1 (mod 4).

This quantity g(p−1)/2 is useful and we give it a name:

Definition 2.4.4 (Legendre symbol). For p > 2 and a ∈ Z/pZ, the quadratic character
of a, written (a

p
) = a(p−1)/2, is 1 if a ≡ □, 0 if a ≡ 0, and -1 if a ̸≡ □.

Equivalently, define χp : (Z/pZ)× → {±1} : a 7→ (a
p
) and notice that this is a multiplica-

tive homomorphism that preserves χp(ab) = χp(a)χp(b).

Theorem 2.4.5 (multiplicativity)
(ab

p
) = (a

p
)(b

p
)

Proof. (ab
p

) = (ab)(p−1)/2 = a(p−1)/2b(p−1)/2 = (a
p
)(b

p
)

§2.5 Quadratic Characters in the Complex Plane (09/28)
Recall: we have that for odd primes, (−1

p
) = 1 ⇐⇒ p ≡ 1 (mod 4) which we proved by

applying Euler’s criteron. We have the similar lemma:

Lemma 2.5.1
(2

p
) = 1 ⇐⇒ p ≡ 1, 7 (mod 8).

2 Quadratic Residues 17

Proof. This is harder because 2(p−1)/2 is not easy to analyze, i.e., the order of 2 is not
easy to derive.

What numbers, in general, have finite/known order? Complex roots of unity ζn = e2πi/n.

We can write
√

2 = ζ8 + ζ7
8 , so 2(p−1)/2 = (ζ8 + ζ7

8)p−1 = (ζ8+ζ7
8)p

ζ8+ζ7
8

. The last transformation
is helpful since p powers behave well mod p.

Now, notice that (x + y)p ≡ xp + yp (mod p) because all the other terms will have a
factor of p |

(
p
i

)
.

Therefore, (2
p
) ≡ 2(p−1)/2 ≡ ζp

8 +ζ7p
8

ζ8+ζ7
8

(mod p).

There are four cases for p (mod 8) because we assume p > 2:

1. ζp
8 = ζ1

8 and ζ7p
8 = ζ7

8

3. ζp
8 = ζ3

8 and ζ7p
8 = ζ5

8

5. ζp
8 = ζ5

8 and ζ7p
8 = ζ3

8

7. ζp
8 = ζ7

8 and ζ7p
8 = ζ1

8

Clearly, for p ≡ 1, 7 (mod 8), we have ζp
8 +ζ7p

8
ζ8+ζ7

8
= ζ8+ζ7

8
ζ8+ζ7

8
= 1. Slightly less intuitively, for

p ≡ 3, 5 (mod 8), notice that ζ3
8 + ζ5

8 = −
√

2, so the fractions go to −1.

Note: We can algebraically extend Z/pZ with the necessary complex numbers to make
the proof valid (or simply assert that the necessary roots of unity exist).

The pattern sort of extends:

nosep (3
p
) = 1 if p = 1, 11 mod 12 and −1 if p = 5, 7 mod 12.

nosep (5
p
) = 1 if p = ±1,±9 mod 20 and −1 if p = ±3,±7 mod 20.

nosep (7
p
) = 1 if p = ±1,±3,±9 mod 28 and −1 if p = ±5,±11,±13 mod 28.

In fact, we have (7
p
) = 1 if p = ±1,±9,±25 mod 28. This flips the question from is 7 a

square mod p to asking if p is a square mod 28.

Lemma 2.5.2

(−3
p

) =

1 p ≡ 1 (mod 3)
−1 p ≡ 2 (mod 3)

Proof. Consider again (−3)(p−1)/2 = (
√
−3)p−1. We can notice

√
−3 =

√
3i = ζ6 + ζ3.

This gives us (
√
−3)p−1 = ζp

3 −ζ2p
3

ζ3−ζ2
3

because ζ6 = −ζ2
3 .

If p ≡ 1 (mod 3), then ζp
3 −ζ2p

3
ζ3−ζ2

3
= ζ3−ζ2

3
ζ3−ζ2

3
= 1 and if p ≡ 2 (mod 3), ζp

3 −ζ2p
3

ζ3−ζ2
3

= ζ2
3 −ζ1

3
ζ3−ζ2

3
= −1.

Notice that to get to
√

3 on the complex plane, we need ζ12, which explains why we see
mod 12 in the rule. To get

√
5, we can either use the fact that cos 2π

5 = 1
4(
√

5 − 1) or
notice that (ζ5− ζ2

5 − ζ3
5 + ζ4

5)2 = (4− ζ5− ζ2
5 − ζ3

5 − ζ4
5) = 5− (1 + ζ1

5 + ζ2
5 + ζ3

5 + ζ4
5) = 5.

We can then execute the same fraction-by-cases technique, getting our result mod 5.

18 Sachin Kumar (Fall 2023)

Aside: This is the Gauss sum for
√

5 = ∑(i
5)ζ i

5.

§2.6 Quadratic Reciprocity (09/30)
Recall the pattern from last lecture, where we noticed that asking if q is a square mod p
seems to be like asking if p is a square mod 4q. This is almost true, but in fact

Theorem 2.6.1 (Quadratic Reciprocity)
(q

p
) = (p

q
) for odd primes p ̸= ±q where at least one is congruent to 1 mod 4 and at

least one is positive.

Equivalently, for all distinct positive odd primes p and q, (p
q
)(q

p
) = (−1) p−1

2
q−1

2

The proof follows by Gauss sums and the vague ideas from the last lecture.

This means we can evaluate any Legendre symbol using a modulus as either one of
(
−1
p

)
= (−1)

p−1
2 =

1 p ≡ 1 (mod 4)
−1 p ≡ 3 (mod 4)(

2
p

)
= (−1)

p2−1
8 =

1 p ≡ ±1 (mod 8)
−1 p ≡ ±3 (mod 8)(

q

p

)
=
(

p

q

)
(−1)

p−1
2

q−1
2 =

(p
q
) p ≡ ±1 (mod 4) or q ≡ ±1 (mod 4)
−(p

q
) p ≡ q ≡ 3 (mod 4)

which is nicer than using Euler’s criterion.

Example 2.6.2
Is 71 a square mod 101?

Write
(

71
101

)
=
(

101
71

)
=
(

30
71

)
=
(

2
71

) (
3
71

) (
5
71

)
by quadratic reciprocity and multiplicativ-

ity.

Then,
(

2
71

)
= 1 since 71 ≡ 7 (mod 8).

Also,
(

3
71

)
= −

(
71
3

)
= −

(
2
3

)
= 1 since 71 ≡ 3 (mod 4).

Finally,
(

5
71

)
=
(

71
5

)
=
(

1
5

)
= 1 since 1 is always a square.

This gives
(

71
101

)
= 1 · 1 · 1 = 1 so 71 is a square mod 101.

Asymptotically, this is not faster than Euler’s criterion because we require factoring.
However, it is prettier.

To deal with a random large number, we must consider what to do after factoring out all
the 2s (since we can deal with those quickly).

Definition 2.6.3 (Jacobi symbol). For all m, n ∈ N>0 with n odd,
(

m
n

)
= ∏k

i=1

(
m
pi

)
where ∏k

i=1 pi = n is the prime factorization of n

2 Quadratic Residues 19

Theorem 2.6.4 (Jacobi)
For all positive and odd m and n,

(−1
n

)
= (−1)

n−1
2 =

1 n ≡ 1 (mod 4)
−1 n ≡ 3 (mod 4)(2

n

)
= (−1)n2−1

8 =

1 n ≡ ±1 (mod 8)
−1 n ≡ ±3 (mod 8)

(
m

n

)
=
(

n

m

)
(−1)

n−1
2

m−1
2 =


(n

m
) n ≡ ±1 (mod 4) or m ≡ ±1 (mod 4)

0 gcd(m, n) ̸= 1
−(n

m
) n ≡ m ≡ 3 (mod 4)

Note: For Legendre symbols,
(

a
p

)
= 1 ⇐⇒ a ≡ □ (mod p). However, for Jacobi

symbols, we only have the one-way implication
(

m
n

)
= −1 =⇒ m ̸≡ □ (mod n).

Return now to the application to cryptography, specifically to Goldwasser–Micali.

Goldwasser–Micali cryptosystem

Key Generation: Choose random primes p, q. Set n = pq.

Choose x ∈ (Z/nZ)× such that
(

x
p

)
=
(

x
q

)
= −1, then

(
x
n

)
= 1. Publish x.

Encrypt: m ∈ {0, 1}

Choose some r
$←− (Z/nZ)×. Then, Enc(m) = xmr2 = c.

Decrypt: Determine whether c is a “fake” square using the factorization.

The underlying assumption is that it is not easy to distinguish actual squares mod n and
“fake” squares mod n.

3 Primality

§3.1 Primality Testing (10/03)
Given n ∈ Z, how can we tell if n is prime?

Lemma 3.1.1 (Fermat test)
Recall Fermat’s Little Theorem: for a prime p, a ∈ (Z/pZ)× =⇒ ap−1 = 1.
Therefore, if a ∈ (Z/nZ)× and an−1 ̸= 1, then n is not prime.

Definition 3.1.2 (Fermat witness). Let n ∈ N, α ∈ (Z/nZ)× where αn−1 ̸= 1.

When n is prime, no Fermat witness can exist. When n is not prime, only some elements
are Fermat witnesses. The other elements are Fermat liars. How many liars are in
(Z/nZ)×?

Theorem 3.1.3
For n > 2, if there exists one Fermat witness in (Z/nZ)×, then there exist at least
ϕ(n)

2 Fermat witnesses.

Proof. Consider the set H = {α ∈ (Z/nZ)× : αn−1 = 1}.

H is a subgroup: 1 ∈ H, ab ∈ H, a−1 ∈ H (trivial by exponentiation properties).

So by Lagrange’s theorem, |H| | |(Z/nZ)×|.

Either (1) |H| = ϕ(n), so there are no witnesses, or (2) |H| < ϕ(n), so |H| ≤ ϕ(n)
2 .

Definition 3.1.4 (Carmichael number). n ∈ N, n > 2 such that n is composite and n
has no Fermat witnesses.

Examples: n = 561 = 3× 11× 17. By Fermat’s Little Theorem, we have αn−1 = α560 is
1 mod 3, 1 mod 11, and 1 mod 17.

Recall that for n prime: a
n−1

2 ≡
(

a
n

)
= 1 (mod n) when n > 2, odd, and a ∈ (Z/nZ)×.

This gives us the following test:

Lemma 3.1.5 (Solovay–Strassen test)
If a

n−1
2 ̸≡

(
a
n

)
(mod n), then n is not prime.

We can calculate a
n−1

2 by repeated squaring and
(

a
n

)
by Jacobi reciprocity and factoring

out 2’s. We can now define witneses as in the Fermat test.

Definition 3.1.6 (Euler (Solovay–Strassen) witness). An element α ∈ (Z/nZ)× where(
α
n

)
̸≡ α

n−1
2 (mod n). If an element is not an Euler witness, it is an Euler liar.

21

22 Sachin Kumar (Fall 2023)

Notice that all Euler witnesses must also be Fermat witnesses, meaning that hopefully
we have a more refined test here.

Theorem 3.1.7
If n > 2 is composite and odd, then there exists at least one Euler witness.

Proof. Suppose n is composite and n = p× k.

If p ∤ k, then solve α ≡ β (mod p) and α ≡ 1 (mod k) where β is a quadratic non-residue
mod p. Now, calculate

(
α

n

)
=
(

α

p

)(
α

k

)
=
(

β

p

)(1
k

)
= (−1)(1) = −1

Suppose α
n−1

2 is −1. Then, α
n−1

2 ≡ −1 (mod n) and that means α
n−1

2 ≡ −1 (mod k).
But we know α ≡ 1 (mod k), so this is a contradiction.

Otherwise, p | k. Let α = 1 + k. Calculate

(
α

n

)
=
(

1 + k

n

)
=
(

1 + k

p

)(
1 + k

k

)
=
(

1
p

)(1
k

)
= (1)(1) = 1

Suppose α
n−1

2 = 1. This implies that ord(α) | n−1
2 . Calculate αp = (1 + k)p = 1p +

pk1 + · · ·+
(

p

p

)
kp

︸ ︷︷ ︸
0 (mod n)

= 1 which implies ord(α) = p. But p | n =⇒ p ∤ n− 1 =⇒ p ∤ n−1
2 .

Therefore, α is an Euler witness.

This theorem combined with the at-least-ϕ(n)
2 theorem means that we have for every odd,

composite n > 2 there are ϕ(n)
2 Euler witnesses.

§3.2 Strong Primality Testing (10/05)
Recall: for the Fermat test, evaluate an−1 a bunch of times. If it is equal to 1, prime
or liar; otherwise, composite. For the Solovay–Strassen test, evaluate a

n−1
2 =

(
a
n

)
. If

yes, prime or Euler liar; otherwise, composite. Also, there are an infinite number of
Carmichael numbers that screw with this but otherwise you have around a 50% chance
of getting a witness.

We can refine this further beyond considering n− 1 and n−1
2 .

Write n − 1 = 2t · s so that s is odd. Then, an−1 is as squared t times. So instead of
asking if a2ts = 1, consider if a2t−1s is an “expected” square root of 1, i.e., ±1. If it is
not, it is composite. If it is and it is −1, we have a prime or liar. If it is and it is 1, keep
going back. If we reach as = 1, we get no information.

3 Primality 23

Lemma 3.2.1 (Miller–Rabin test)
Let x← as. Do:

• If x = 1, stop. Probably prime.

• If x = −1, stop. Probably prime.

• Otherwise, x← x2

while x ̸= a2ts. If we reach the end, it is composite.

Definition 3.2.2 (Miller–Rabin (strong) liar). a ∈ (Z/nZ)× if either as = 1 or a2ks = −1
for 0 ≤ k < t.

We call this a “strong liar” because every strong liar is an Euler liar, and every Euler liar
is a Fermat liar.

Theorem 3.2.3
Suppose n has at least two distinct prime factors. Then, the number of Miller–Rabin
liars is at most ϕ(n)

4 and in general, if n has ℓ distinct prime factors, there are at
most ϕ(n)

2ℓ Miller–Rabin liars.

We can make these primality tests deterministic by iterating a = 1, . . . , n. We do not
need to go to a = n and instead we can establish an upper bound on the smallest
witness. The bound (by Bach) is O(log2 n), specifically, 2 log2 n. But this requires the
Generalized Riemann Hypothesis which everyone believes anyways, so we just check
a = 1, . . . , 2 log2 n.

To analyze complexity, notice that we have log n multiplications at each step, i.e., log1+ϵ n
bit operations using fast multiplication. So the complexity is O(log2+(1+ϵ)+1 n).

Further reading:

• AKS (Agrawal–Kayal–Saxena; 2004) primality test in O(log6 n) which does not
rely on GRH and was an undegrad project(!!)

• ECPP (elliptic curve prime proving) notable for not having liars, also does not
require GRH and runs non-deterministically (Monte Carlo) in O(log5 n)

• Cyclotomic primality test in O((log n)log log n), best until AKS proved that primality
is in P.

Since there are n
log n

+ O(
√

n) primes less than n, we can pick random numbers of size eℓ

to get an approximate 1
ℓ

probability of a prime.

§3.3 Malleability (10/07)
Recall the Goldwasser–Micali cryptosystem. It satisfies IND-CPA provided that the
quadratic reciprocity problem is hard. That is, determining whether an x = pq with(

x
n

)
= 1 is actually a square or not (i.e.

(
x
p

)
= 1).

However, an adversary can still alter the message without needing to decrypt. This
also applies, for example, to XOR one-time pads (since if c = k ⊕m and we intercept

24 Sachin Kumar (Fall 2023)

c 7→ c⊕ n, recepient will get m′ = m⊕ n). Using MACs can get around this problem
(e.g. AES with GCM or Chacha20 with Poly1305).

Definition 3.3.1 (non-malleability). Given the game NM-CPA:

1. C generates (pk, sk)

2. (m0, m1, m′
0, m′

1)
$←− A(λ, pk) where m′

0 ̸= m′
1

3. C chooses b
$←− {0, 1}

4. C computes c = E(mb)

5. c′ ← A(λ, pk, c)

with win condition D(c′) = m′
b with non-negligible probability above 50%.

Instead of CPA games, consider CCA2 (chosen-ciphertext attack 2) games. Here, the
adversary has a decryption oracle that takes anything except c. In CCA1, the oracle can
only be accessed prior to receiving c.

Theorem 3.3.2
IND-CCA2 is equivalent to NM-CCA2

Note that IND-CPA is not equivalent to NM-CPA, which is instead equal to IND-PCA
(parallel ciphertext attack, where all oracle queries must occur at once).

§3.4 Factorization Algorithms (10/17)
Naive approach: trial division by 1, . . . ,

√
n which is O(

√
n) = O(exp(1

2 log n)). Note
that we call this “exponential” because we measure with respect to the size of the input,
i.e., lg n ≈ log n.

Proposition 3.4.1
If x, y ∈ (Z/nZ)× satisfy x2 ≡ y2 (mod n) and x ̸≡ ±y (mod n), then gcd(n, x− y)
is a non-trivial factor of n.

Proof. Since x2 − y2 ≡ 0, we have (x− y)(x + y) ≡ 0. But we know that x− y ̸≡ 0 and
x + y ̸≡ 0 so there must be some weird hidden factor.

If gcd(n, x− y) = n, then n | (x− y) =⇒ x ≡ y (mod n) and if gcd(n, x− y) = 1, then
n | (x − y)(x + y) which implies n | (x + y) by Gauss’ Lemma which gives the same
contradiction. Therefore, since the GCD must divide n, it is non-trivial.

Using this, we can find non-trivial factors of n by finding x and y and then applying the
EEA. How to find x and y?

Random squares (Dixon)

Definition 3.4.2 (B-smoothness). n ∈ N where the largest prime factor is less than B

3 Primality 25

Choose xi
$←− (Z/nZ)×. For each xi, compute x2

i (mod n) and keep the B-smooth squares.
We can tell if a number is B-smooth by trial division (since B is small).

We need at least t + 1 squares that are B-smooth.1

This gives us squares x2
1 mod n = p

e1,1
1 · · · pet,1

t up to x2
t+1 mod n = p

e1,t+1
1 · · · pet,t+1

t .

Take the subset product ∏x2
i mod n = p

∑
e1,i

1 · · · p
∑

et,i

t .

We can define bi =

0 i ∈ S

1 i ̸∈ S
so that ∑i∈S ej,i = ∑t+1

i=1 ej,ibi = 0 mod 2 to find squares.

Solve this homogeneous linear system over Z/2Z (where the bi are variables). We know
there exists a non-trivial solution because there are more variables (at least t + 1) than
equations (exactly t).

That gives a square subset product x2 =
t+1∏
i=1

(x2
i)bi mod n =

t∏
j=1

p
∑t+1

i=1 ej,ibi

j mod n = y2.

The LHS and RHS are unrelated except for the fact that they are equal mod n. In
fact, with about 50% probability, x ̸≡ ±y mod n. The probability can be improved by
increasing t + 1 to like t + 10. Since t ≈ B is large, this is negligible.

Picking B: large B makes it more likely to find B-smooth squares, however, the amount
of work t + 1 is proportional to B.

We want to pick B such that the probability of squares being B-smooth is 1
B

. This
depends on n.

From analytic number theory, the probability that a random y
$←− Z/nZ is L(α, c)-smooth

is L(1− α, 1−α
c

).2 So we set a bound on B of Ln(1
2 ,

√
2

2). Since (log n)k ≪ B ≪
√

n, we
call this subexponential.

§3.5 Better Sieves (10/19)
What is the probability that a particular x2 mod n is B-smooth? Vanishingly small for
large n (in the hundreds of digits) and small-ish B (around 109). However, we can prove
that the runtime for random squares is Ln(1

2 , 2
√

2) using results from analytic number
theory, i.e., probabilistic subexponential time.

How can we improve? Pick x such that x2 mod n is small (and more likely to be B-
smooth). Naively: small numbers stay small (but are useless). Instead, pick x ≈

√
n so

that x2 mod n = x2 − n.

Then, if x =
√

n + k, x2 = (
√

n + k)2 − n = 2k
√

n + k2 = O(k
√

n), i.e., around half the
size of n and much smaller than n.

This is the quadratic sieve. We can bound B < Ln(1
2 , 1) and prove runtime Ln(1

2 ,
√

2).

Suppose we write
√

n = a0 + 1
a1+ 1

a2+ 1
...

= [a0, a1, . . .] as a continued fraction.

1Where t = π(B) is the prime-counting function.
2Where Ln(α, c) = O(exp(c(log n)α(log log n)1−α)). Notably, Ln(1, 1) = n and Ln(1, c) = nc. Then,√

n = Ln(1, 1
2). Also, Ln(0, c) = (log n)c. That is, we interpolate between Ln(0, c) polynomial time

and Ln(1, c) exponential time

26 Sachin Kumar (Fall 2023)

Define Pi

Qi
= [a0, . . . , ai]. These fractions rapidly approach

√
n (and are in fact the best

rational approximations). That is, P 2
i − nQ2

i rapidly approaches 0. We can prove that
0 < Pi − nQ2

i < 2
√

n + 1. Then, we can take P 2
i mod n and sieve guaranteed that the

squares are O(2
√

n).

Comparing the continued fraction sieve and quadratic sieve, O(2
√

n) appears better than
O(k
√

n). However, if the quadratic sieve considers consecutive numbers to square, we
can do a sieve of Eratosthenes-like search to find good B-smooth candidates. This is
faster.

One more improvement step: number field sieve.

Choose d ≈ 6 ∈ Z and m ≈ n1/d. Write n in base m: n = a0 + a1m + · · · + a5m
5 and

consider the polynomials f(x) = a0 + a1x + · · ·+ a5x
5 and g(x) = x−m.

We know that f(m) = n ≡ 0 (mod n) and g(m) = 0. That is, m is a root of both f and
g mod n. The coefficients are also all around m = O(n1/d) in size.

Consider α a complex root of f (but consider it as part of a number field α ∈ Z[α]). We
pick ai, bi ∈ Z such that ai + biα = ∏

βi is smooth in Z[α] and ai + bim = ∏
qi is smooth

in Z.

Pick a subset S such that ∏i∈S(ai + biα) = □ in Z[α] and ∏i∈S(ai + bim) = □ mod n in
Z. We can expand the first sum, then replace α with m mod n to get congruent squares
for a sieve. In fact, α 7→ m mod n is a ring homomorphism from Z[α]→ Z/nZ.

Since the numbers are smaller, we have complexity Ln(1
3 , 3
√

64
9).

§3.6 (10/21)

§3.7 Index Calculus (10/26)
There is a connection between runtimes of factoring algorithms and DLOG algorithms:

Factoring n DLOG in Z∗
p or F∗

q where q = pk

Trial (O(n)) Trial (O(p))
O(
√

n) Pollard’s rho (O(√p))
Random squares (Lp(1

2 ,
√

2)) Index calculus (Lp(1
2 ,
√

2))
NFS (Ln(1

3 , 3
√

64
9)) NFS for DLOG (Lp(1

3 , 3
√

64
9))

Special NFS (Ln(1
3 , 3
√

32
9)) Tower NFS (Lq(1

3 , 3
√

32
9) if k < 50)

??? Lq(ε, c) for p < 10

Theorem 3.7.1 (Shoup)
For a generic group, classical probabilistic DLOG algorithms require Ω(√p) group
operations.

What we mean by generic here is that the group “interface” is exposed (multiplication,
inversion, equality) but we don’t know anything about the elements/structure.

3 Primality 27

Index calculus

Consider Z∗
p = {1, 2, . . . , p − 1}, g, h = gα. We want to find α, the “index”. We

construct “random index calculus” from the random squares algorithm. Pick random xi

and calculate:

gx1 mod p = p
e1,1
1 . . . p

et,1
t

...
gxt+1 mod p = p

e1,t+1
1 . . . p

et,t+1
t

where we keep B-smooth gxi mod p ≈ O(p) until we get more equations than primes pi.

If we take log base g on both sides: x1 ≡
∑

ei,1 logg pi (mod p− 1).3 Since we know the
xi and ei,j , we can solve the system of linear equations for the discrete logs logg pi (since
there are at least t + 1 equations and t variables).

Now, take random y find an hy = pf1
1 . . . pft

t that is B-smooth. Taking logs as above,
yα = ∑

fi logg pi and we can solve for α.

Since this is basically the same process as random squares, it is no surprise it has similar
time complexity Lp(1

2 ,
√

2). Practically, it’s slightly harder than factoring.

3logg pi always exists. If g is not a generator since some generator h exists and we have logh pi mod p−1
logh g mod p−1 .

4 Signatures

§4.1 Hash Functions (10/28)
To establish something that is NM-CCA2 secure, we need to somehow “sign” the ciphertext
to distinguish “authenticated” ciphertexts. We can do this with MACs (e.g., AES-GCM
or ChaCha20-Poly1305) but we will do something different.

Consider a hybrid encryption scheme: use public-key encryption to send a symmetric
key that encrypts the message. This is CO 487 content.

Hash functions

Most common hash functions are the SHA family: SHA0 (broken 2005), SHA1 (broken
2017), SHA2 (actually used), SHA3 (not really used, made in anticipation of SHA2
breaking). Again, CO 487 content beyond the scope of this course.

Definition 4.1.1 (hash function). Function H : S → T (typically, S = {0, 1}∗ and
T = {0, 1}λ)

Ideally, a hash function is a random oracle, i.e., H
$←− {f : (f : S → T)}. This is useful,

e.g., for making hashed RSA signatures existentially unforgeable under chosen message
attack.

There is no way to easily construct a random oracle because (1) we can’t construct the
set of all functions and (2) we run into measure theory issues with defining a probability
distribution on that set. Instead we construct with desired properties:

1. Preimage resistant: Given t ∈ T , it is infeasible to find s ∈ H−1(t).

2. Second preimage resistant: Given s ∈ S, it is infeasible to find s′ ∈ S such that s ̸= s′

and H(s) = H(s′).

3. Collision resistant: It is infeasible to find s ̸= s′ such that H(s) = H(s′).

Example 4.1.2
Are all preimage resistant functions second preimage resistant?

Proof. Consider f(x) = x2 mod n. To find a preimage, take x = √y (hard). To find a
second preimage, take x′ = −x ̸= x so (−x)2 = x2 (easy).

To be formal, use games. For example, with collision resistance: Suppose we have a
family of hash functions HashGen : 1λ 7→ Hλ. Play the game:

1. Pick a hash function Hλ
$←− HashGen(1λ)

2. (s, s′)← A(1λ, Hλ)

29

30 Sachin Kumar (Fall 2023)

with win condition Hλ(s) = Hλ(s′) and s ≠ s′. We define {Hλ : λ ∈ N} to be
collision-resistant if no probabilistic polynomial time adversary A can win this game
with non-negligible probability in λ.

We can construct collision-resistant hash functions from claw-free permutations by
Damgård.

Definition 4.1.3 (claw-free permutation). Given a set X, the pair of permutations (f, g)
is claw-free if it is infeasible to find x1, x2 ∈ X such that f(x1) = g(x2).

The wrong way: Given claw-free permutations f : X → X and g : X → X, we define
H : {0, 1}∗ → X with H(ε) = xε. Inductively, H(b1b2 · · · bn) = h(H(b1 · · · bn−1)) where
h = f if bn = 0 and g if bn = 1. Claim this is collision-resistant because if there is
a collision H(m) = H(m′) and m ̸= m′, we have a claw at some point, which is a
contradiction. Unfortunately, we could run into a loop back to xε.

Instead, pick x0 ∈ X and define xε = g(f(x0)) and define H(b0 · · · bn) = h(h(H(b0 · · · bn−1)))
as above. Then, we cannot arrive at xε because generating pairs of f(f(. . .)) and h(h(. . .))
cannot create g(f(. . .)).

§4.2 Signature Schemes (10/31)
Consider some RSA modulus n = pq, p > 2, q > 2, p ≠ q where p ≡ 3 (mod 4) and
q ≡ 3 (mod 4) (Blum integers, notable for use in the Blum–Blum–Shub generator).

Let yp and −yp be square roots of y mod p (and for q). Notice that
(

−1
p

)
= −1 and(

−1
q

)
= −1. Then, exactly one of {yp,−yp} is a square mod p (and for q).

Finally, combining gives exactly one of the square roots of y mod n is a square mod n.
This means that f(x) = x2 is a permutation on ((Z/nZ)×)2.

Choose a ∈ (Z/nZ)× such that
(

a
n

)
= −1 Then, define g(y) = a2y2 which is also a

permutation.

Note: suppose f(x) = g(y). Then, x2 = (ay)2 and x ≠ ±ay because if x = ±ay then(
x
n

)
=
(

±1
n

) (
a
n

) (
y
n

)
but this is 1 = (1)(−1)(1), contradiction. From this, we can factor

n (by Fermat).

Overall: claw-free permutations → collision-resistant hash functions → {secure digital
signatures, CCA2-secure encryption, etc.}

How do we generate secure digital signatures?

Suppose we have RSA pk = (n, e) and sk = (n, d). Then, define signing and verification
as Sign : (Z/nZ)× → (Z/nZ)×m 7→ σ := md mod n and V erify : (m, σ) 7→ σe mod n

?=
m.

Definition 4.2.1 (signature schemes). A signature (scheme) is a tuple (KeyGen, Sign, V erify)
where

nosep KeyGen : 1λ 7→ (pk, sk)

nosep Sign : (sk, m) 7→ σ

nosep V erify : (pk, m, σ) 7→ {0, 1}

4 Signatures 31

and we have that if (pk, sk) $←− KG(1λ) and σ
$←− S(sk, m), then V (pk, m, σ) = 1.

Under Textbook RSA, it is trivial to forge junk (but valid) signatures, i.e., given random
signature σ, it signs some calculable message.

Example security definition game: EUF-CMA
Existential unforgeability (EUF): adversary produces a valid signature
Chosen-message attack (CMA): adversary can always use a signing oracle

1., nosep (pk, sk) $←− KeyGen(1λ)

2., nosep for i = 1 . . . q do:
mi

$←− A(1λ, pk, (m1, σ1), . . . , (mi−1, σi−1))
σi

$←− Sign(sk, mi)
end

3., nosep (m, σ) $←− A(1λ, pk, (m1, σ1), . . . , (mq, σq))

with win condition V erify(pk, m, σ) = 1 and for all i, m ̸= mi.

Definition 4.2.2 (EUF-CMA). A signature scheme is EUF-CMA if there does not
exist a probabilistic polynomial time adversary A which wins the EUF-CMA game with
non-negligible probability.

Hashed RSA KeyGen : 1λ 7→ ((n, e), (n, d))
Sign : m 7→ H(m)d mod n for hash H : {0, 1}∗ → (Z/nZ)× (i.e., a claw-free permutation)
V erify : (m, σ) 7→ H(m) ?= σe mod n

We can prove that if the RSA assumption holds1 and the hash function H is a random
oracle, then Hashed RSA is EUF-CMA.

§4.3 Hashed RSA (11/02)
Recall EUF-CMA and Hashed RSA. We want to prove

Theorem 4.3.1
Hashed RSA is EUF-CMA assuming:

nosep The RSA assumption holds

nosep The hash functions H are random oracles

Proof. For a contradiction, let A be an adversary that wins the EUF-CMA game,
generating a forged signature (m∗, σ∗). Note that we must expose the hash function H
to the adversary.

Consider when H has the property that for some σ ∈ (Z/nZ)×, H(m∗) = mσe. Then,
σ∗ = H(m∗)d = (mσe)d = mdσ so σ∗σ

−1 = md. We could return H(m∗) = mσe but we
still have to respond to signing queries of A somehow.

1Given n, e, me, it is infeasible to find m.

32 Sachin Kumar (Fall 2023)

To respond to a query for mi, pick a random σi
$←− (Z/nZ)× and set H(mi) = σe

i and
respond with σi. Note that the challenger must maintain a table of H(mi) to respond to
duplicates.

To make this work somehow, we define H(m) =

mσe with probability 1
q+1

σe with probability q
q+1

.

Then, notice that the adversary will make at most q + 1 relevant hash function requests
(q for the signing queries, 1 for m∗). Now, the probability that we get what we want, i.e.,
calculate md, is

(
q

q+1

)q 1
1+1Adv(A) > 1

(q+1) exp(1)Adv(A) which is non-negligible since q is
polynomial and Adv(A) is non-negligible.

That is, we can break RSA in probabilistic polynomial time with non-negligible probability,
violating the RSA assumption. Therefore, A cannot exist.

Note: non-negligible means that there exists an n such that Pr[A wins] = f(λ) ∈ Ω(1
λn).

Further reading: EdDSA (Schnorr), “Short signatures without random oracles” (Boneh–
Boyen)

§4.4 Zero-Knowledge Proofs (11/04)
Suppose that x ∈ (Z/nZ)× where n = pq.

Claim: there exists a y such that x = y2 mod n.

If Alice knows that x = y2 and sends y to Bob, that is a full-knowledge proof. A
zero-knowledge proof would not send y.

Instead, Alice chooses a random r
$←− (Z/nZ)× and computes xr2 = y2r2 = (yr)2. If she

sends β = xr2 and α = yr, Bob can verify that α2 = β. However, Bob cannot trust that
α is in fact yr and cannot prove that β

x
= r2 without sending r.

Protocol For Alice to prove that she knows y such that y2 = x,

1.,nosep Alice picks r
$←− (Z/nZ)× and sends xr2

2.,nosep Bob picks b
$←− {0, 1} and sends b

3.,nosep Alice sends ρ = ybr and sends ρ

4.,nosep Bob verifies that ρ2 = βxb−1

Then, if b = 0, Bob can catch a forged y and if b = 1, Bob is more certain that y exists.
The chance that Alice is cheating and avoids being caught in λ iterations is 2−λ.

Suppose Alice does not know a square root y =
√

x. She could:

nosep Choose r randomly, send β = xr2, and hope that b = 0 to send r

nosep Choose α randomly, send β = α2, and hope that b = 1 to send α

meaning that Alice can forge with success probability 50%, and indeed Bob could fool
himself half the time by doing this himself. That is, a zero-knowledge proof does not
introduce any new information that Bob could not have produced on his own.

4 Signatures 33

Then, a security definition for a ZKP protocol requires

1. Correctness: With an honest prover and honest verifier, the proof succeeds with
probability 100%.

2. Soundness: With a dishonest prover and honest verifier, then there is a non-negligible
probability that they get caught.

3. Zero-knowledge: With an honest prover and dishonest verifier, then the verifier can
simulate correct proofs with non-negligible probability. This means that the verifier
cannot actually use any information for anything else (e.g., cannot factor a number
even if the ZKP proves that the prover knows the factors).

where non-negligible means any useful number (e.g., 50%, 25%, 30%, etc.).

From a ZKP, we can construct a signature scheme. Generate a key (x, y) where y2 = x.
Signing is done by:

1.,nosep Alice picks random r and sends x and β = xr2.

2.,nosep Bob picks random b and sends b

3.,nosep Alice calculates ρ = ryb and sends ρ

To verify, ensure that ρ2 = βx−1.

Alternatively, if we want to use DLOG (i.e., with g and gx, prove that you know x):

1.,nosep Alice picks random r and sends g, gx, and β = gr

2.,nosep Bob picks random bit b and sends b

3.,nosep Alice calculates ρ = r + bx and sends ρ

To verify, ensure that gρ = β(gx)b.

We call these Σ protocols because the back-and-forth looks like a Σ.

Definition 4.4.1 (Fiat–Shamir transformation). To transform a ZKP protocol to a
signing scheme, set b = H(β, m) where H is a random oracle. Then, the signature of m
is (β, ρ). To verify, assert ρ satisfies the ZKP protocol given β.

Notice that there is only one bit of entropy, so it is forgeable 50% of the time. If we try
increasing entropy in the DLOG scheme by making b ∈ Z, correctness and soundness
still hold but zero-knowledge might not.

§4.5 ZKP Signatures (11/07)
Recall the Fiat–Shamir transform:

Given a Σ protocol, Peggy sends Victor the problem π and a commitment c (usually
some sort of randomized value). Victor returns a challenge b. Peggy’s response r depends
on b.

From the perspective of a signature scheme, we generate a private key (statement to be
proved) and public key π.

34 Sachin Kumar (Fall 2023)

To sign, choose a commitment at random c
$←− C. Set the challenge to be a deterministic

but random function b = H(m, c). Calculate a response for b. Then, let σ = (c, r).

To verify, recalculate the challenge and verify with the response.

Notice that if b ∈ {0, 1}, then signature forgery is permitted half the time. To actually
use this, the challenge space must be large.

Generically, the signer repeats the protocol λ times and initially commit to a commitment
vector c = (c1, . . . , cλ). They also make a challenge vector b = (b1, . . . , bλ) = H(m, c).
Then, to successfully fake the proof (and forge a signature), the signer would need to very
luckily get a b that matches perfectly with a malicious c. Finally, generate a response
vector r and return σ = (c, r).

This cannot be proved to be ZK because the proof cannot be simulated. We assume that
the heuristic (that ZKP’s produce ZKP’s) holds.

Example 4.5.1
Why do we need to generate the vectors at once?

Without the loss of generality, suppose we want to prove knowledge of x (in the
DLOG problem).

The public key is π = gx. The commitment is c = gy for random y. The challenge is
a bit b. The response is r = y + bx.

If Peggy predicts b = 0, pick y randomly, set c = gy, and Victor verifies r = y.
Otherwise, if she predicts b = 1, pick r0 randomly, set c = gr0

gx , and Victor verifies
r = r0.

If Peggy continuously generates random y, she only has to try twice until getting
desired b = 0. Then, she only needs to do 2λ work instead of 2λ work.

What we’re describing is the Schnorr signature.

Schnorr scheme Given a group G and g ∈ G, generate keys (pk, sk) = (gx, x).

A signature of m is a proof of knowledge of x. First, generate a commitment r
$←− Z,

c = gr. Then, calculate a challenge b← H(m, c) = H(m, gr). The response is r + bx, so
return (c, σ) = (gr, r + bx).

To verify a signature (c, σ), check if gσ ?= c(gx)H(m,gr). That is, compute b′ ← H(m, c) =
H(m, gr) and check if gr+bx = gr(gx)b ?= c(pk)b′ .

Alternatively, send (b, σ). Then, calculate c′ ← gσ

(gx)b and check if H(m, c′) ?= b. This is
better since b is an integer, which is easier to serialize and send than a group element c.

Theorem 4.5.2 (Schnorr)
Assuming that H is a random oracle and that DLOG is hard in G, the Schnorr
signature scheme is EUF-CMA.

Proof. Suppose we are an adversary A1 trying to solve DLOG. Let g, gα be a challenge

4 Signatures 35

from C1. Suppose also that we are a challenger C2 with access to an adversary A2 that
breaks Schnorr.

Give A2 the parameter gα. Then, the adversary forges a signature (b, r + bα). We want
to isolate α, so we need two signatures with the same public key, same commitment, but
with different hashes b and b′. Using the forking lemma, we stop execution before the
hashing and swap out the hash function H.

Then, we have (b, r + bα) and (b′, r + b′α). We can now solve for α and return it to C1.

Since A2 runs in poly. time, we (A1) ran in poly. time, meaning that DLOG is easy.

§4.6 CCA2-Secure Signature Schemes (11/09)
Recall: in IND-CCA2, A can use a decryption oracle, then produce two messages. C
picks a random one of the two and encrypts it. Then, A gets access to the decryption
oracle and wins if they can distinguish which message was encrypted.

In Textbook RSA, E(m) = me mod n, so an attacker can pick garbage k and ask for
the decryption of meke. The core issue here is that E is a group homomorphism, i.e.,
E(m1m2) = E(m1)E(m2).

Remark 4.6.1 — Any homomorphic cryptosystem is not CCA2-secure.

For example, Rabin encryption E(m) = m2 mod n is homomorphic and Elgamal E(m) =
(gy, gxym) is also homomorphic in each entry.

Symmetric + asymmetric hybrid Let KeyGen, Enc : M → C, and Dec : C →M be
a public key cryptosystem. Also let Enc and Dec be a symmetric key cryptosystem.

Suppose Alice wants to send to Bob. Bob generates (pk, sk) $←− KeyGen and publishes
pk.

Alice picks random σ
$←−M , encrypts both c = Enc(pk, σ) and d = Enc(σ, m), and sends

(c, d). Notice that we can reinterpret σ as a key for the SKC by just treating it as an
appropriately-sized bistring.

Bob can now decrypt (c, d) by first decrypting σ = Dec(sk, c) and then m = Dec(σ, d).

Fujisaki–Okamoto (1999) is a CCA2-secure one-time pad (OTP) hybrid. Let KeyGen,
Enc, Dec be a PKC. Then, make a pseudo-OTP Enc(k, m) = m ⊕ H1(k) and add a
MAC H2(k, m).

Generate (pk, sk) $←− KeyGen(1ℓ) and pick σ
$←−M .

Then, E(m) = (Enc(pk, σ), m⊕H1(σ), H2(σ, m)).

To invert, D(c, d, e) = d⊕H1(Dec(sk, c)) = m and check H2(σ, m) = e. If the MAC does
not check out, either explicitly error or implicitly output random garbage H3(s, (c, d, e))
with a secret seed s.

Then, the CCA2 oracle is sabotaged.

36 Sachin Kumar (Fall 2023)

§4.7 Proving Fujisaki–Okamoto Security (11/11)
Recall the Fujisaki–Okamoto inputs: KGen : 1ℓ 7→ (pk, sk), Enc : M → C, Dec : C →
M , H1 : M → {0, 1}n, and H2 : {0, 1}n ×M → T .

Then, Enc(pk, m) = (Enc(pk, r), m⊕H1(σ), H2(m, σ)) where m ∈ {0, 1}n and σ
$←−M .

Theorem 4.7.1
If the original PKC is OW-CPA and H1, H2 are reandom oracles, then this basic
Fujisaki–Okamoto is IND-CPA.

Proof. Let A be an adversary that can win IND-CPA for FO. Recall IND-CPA: let
m0, m1 ← A(1ℓ, pk) and b′ ← A(1ℓ, pk, Enc(pk, mb)). Then, A can find b = b′ with
non-negligible probability.

Notice that the second term m⊕H1(σ) is garbage since σ is random so m is randomly
scrambled. Therefore, it is information-theoretically indistinguishable from random
garbage. So the only way to get any information about m is to find σ.

Therefore, Pr[A wins] ≤ Pr[A finds σ].

Suppose we are challenged to break the PKC in the OW-CPA game and are given (pk, σ).

Then, we can challenge A with (Enc(pk, σ), τ, µ) with random garbage τ , µ. Then, at
some point A must call H1(σ). We intercept all the calls to H1 (since we control H1)
and respond with σ with non-negligible probability. Therefore, if FO is not IND-CPA,
then the PKC is not OW-CPA.

This reduction is not tight because we randomly pick potential σ candidates. If the
original PKC is deterministic, then we can re-encrypt all potential σ to find the right
one.

Theorem 4.7.2
If Enc is deterministic, the PKS is OW-CPA, and H1, H2 are random oracles, then
FO is IND-CCA2.

Proof. First, notice that the IND-CCA2 game without the decryption oracle is the
IND-CPA game.

However, in FO, we claim the decryption oracle is “useless” because there is no information-
theoretic use of it. Therefore, since FO is IND-CPA, it is also IND-CCA2.

To prove the claim, consider Enc(pk, m) = (Enc(pk, σ), m⊕H1(σ), H2(m, σ)).

Then, Dec(sk, (c1, c2, c3)) =


H1(

σ′︷ ︸︸ ︷
Dec(sk, c1))⊕ c2︸ ︷︷ ︸

m′

otherwise

⊥ c3 ̸= H2(m′, σ′)

Since encryption is deterministic, the only way to construct a valid ciphertext that gets
a return value is to know both m and σ to calculate Enc(pk, m) and H2(m, σ).

4 Signatures 37

We can simulate this for the adversary by intercepting calls to H2 and checking if σ
matches the encryption of m (i.e. c1). Therefore, there is no difference between IND-CPA
and IND-CCA2.

Full Fujisaki–Okamoto Instead of using Enc(pk, σ), randomize to Enc(pk, σ; r). For
example, in Elgamal, Enc(gx, σ; r) = (gr, gxrσ).

Then, Enc(pk, m) = (Enc(pk, σ; H2(m, σ)), m⊕H1(σ)) for σ
$←−M .

That is, we use the tag as the randomness.

Finally,

Dec(sk, (c1, c2)) =


H1(

σ′︷ ︸︸ ︷
Dec(sk, c1))⊕ c2︸ ︷︷ ︸

m′

otherwise

⊥ c1 ̸= Enc(pk, σ′; H2(m′, s′))

Theorem 4.7.3
If the PKC is OW-CPA and H1, H2 are random oracles, then full FO is IND-CCA2.

What if we don’t have random oracles? Cramer–Shoup (1998) gets IND-CCA2 using
DDH and a collision-resistant hash function. It is also stupid complicated.

Given a group |G| = q with two generators g1, g2 where ⟨g1⟩ = ⟨g2⟩ = G.

The sk = (x1, x2, y1, y2, z) ∈ (Z/qZ)5 and pk = (c, d, h) = (gx1
1 gx2

2 , gy1
1 gy2

2 , gz
1).

Encryption is Enc(pk, m) = (gr
1, gr

2, hrm, crdrH(gm
1 ,gm

2 ,hrm)) for m ∈ G and r
$←− Z/qZ.

Then, the last part crdrα acts as a checksum. To generate a valid ciphertext and use the
CCA2 oracle, an adversary must generate this, which breaks DDH.

5 Elliptic Curve Cryptography

§5.1 Elliptic Curves (11/14)
Recall the conic sections: y2 = 1−x2 (circles), y2 = x2− 1 (hyperbola), etc. If we replace
the quadratic in x with a cubic, we get an elliptic curve. For our purposes,

Definition 5.1.1 (curve). The set of points satisfying f(x, y) = 0 where f ∈ K[x, y] for
a field K.

where K is a (usually finite) field, e.g., Z/pZ or something funny like Z/3Z[i] = F9.

Note that we can rewrite any cubic ax3 + bx2 + cx + d by first dividing through by a to
get x3 + b′x2 + c′x + d′. Then, send x 7→ x− b′

3 to get x3 + c′′x + d′′. This only works if
3 ̸= 0 so we can divide by 3, i.e., the characteristic of K is not 3.

To simplify the quadratic in y, we can complete the square as long as 2 ̸= 0, i.e., the
characteristic of K is not 3.

Definition 5.1.2 (elliptic curve). A solution set to an equation of the form y2 = x3+ax+b
where a, b ∈ K and char(K) ̸= 2, 3.

Consider an ellipse centered at the origin with semimajor axes a and b. Then, the arc
length is

∫ π/2
0
√

a2 cos2 t + b2 sin2 t dt. Make the substitution u = sin t, du = cos t dt to
get

∫ √
a2 − (a2−b2)u2

1−u2 du. Then, k2 = 1− b2

a2 gives
∫

a
√

1−k2u2

1−u2 du and finally x = 1− k2u2

for 1
2
∫ 1

1−k2
x dx√

x(x−1)(x−(1−k2))
. This is our elliptic integral.

Generally, elliptic integrals of the first kind
∫ dx√

x3+··· and of the second kind
∫ x dx√

x3+··· .

Just as
∫ dx√

x2+··· gives sin−1(x), the inverse of a periodic function, complex analysis shows
that elliptic integrals of the first kind gives the inverse of the doubly periodic Weierstrass
function ℘−1(x).

By analogy to circles which can be defined by f 2 + f ′2 = 1, elliptic integrals of the first
kind satisfy ℘′2 = 4℘3 + c1℘ + c2.

Elliptic curves have a somewhat natural group law.

Lemma 5.1.3
Every line intersects an elliptic curve in exactly three places (up to multiplicity).

Proof. Let y2 = x3 + ax + b be an elliptic curve.

Consider a line L through P = (xP , yP) and Q = (xQ, yQ). Then, the slope of L is
yQ−yP

xQ−xP
= m. Substitute y = mx + c into the elliptic curve to get a cubic in x. The cubic

has three roots.

Then, it is (x − xP)(x − xQ)(x − xR). Taking the coefficient on x2, we have xR =
m2 − xP − xQ and yR = m((m2 − xP − xQ)− xP) + yP .

39

40 Sachin Kumar (Fall 2023)

Define the group law as P + Q = (xR,−yR).

What is P + P? Take the tangent line to P , i.e., “limQ→P (P + Q)”.

What if there is no tangent line (self-intersection or cusps)? To ensure this cannot happen,
assert that the discriminant 4a3 + 27b2 ̸= 0.

What is the identity? Not really a point, denote ∞ or [0 : 1 : 0] in Sage.

§5.2 (11/16)

§5.3 Attacks on ECDH (11/18)
Recall: we have an elliptic curve y2 = x3 + ax + b over a field K and a group law
xP +Q = m2 − xP − xQ and yP +Q = yP −m(xP +Q − xP) where m = yQ−yP

xQ−xP
if xP ≠ xQ

and m = 3x2
P +a

2yP
if P = Q.

We denote this as E(K) = {
affine (finite) points︷ ︸︸ ︷

(x, y) ∈ K2 : y2 = x3 + ax + b}∪{∞}, so E(K) ⊂ K2∪{∞}.

We can show by Hasse–Weil that for any elliptic curve over Fq with prime power q,
|E(Fq)| = q + 1− t for a trace of Frobenius |t| ≤ 2√q.

Consider the size of E(Fp). We want to find square roots of x3 + ax + b for all x to find
y. There are two square roots (x,±y), one square root (x, 0), or potentially none. We
can show that

|{P ∈ E : xP = x0}| =
(

x3
0 + ax0 + b

p

)
+ 1

This gives us

|E(Fp)| = 1 +
∑

x∈Fp

(
1 +

(
x3 + ax + b

p

))
= p + 1 +

∑
x∈Fp

(
x3 + ax + b

p

)

and we can say that t = −∑(
x3+ax+b

p

)
.1

Then, |E(Fp)| ≈ O(p), so a generic DLOG algorithm over E should take around O(√p)
steps. For some elliptic curves, this is the best we can do.

This is very attractive. To get time approximately 2128, p only needs to be 2256 whereas
the NFS would require n ≥ 23072. This means faster computation with smaller keys.

There are some issues.

CRT attack Suppose that |E(Fp)| = p + 1− t = p1p2 for small primes (or in general,
that it is q-smooth). Then, Pohlig–Hellman allows us to find DLOG by the CRT in
about O(√p1 +√p2) time.

This is because E ≃ Z/p1p2Z ≃ Z/p1Z× Z/p2Z. We can compute these isomorphisms.
Let P ∈ E with order p1p2 and Q = αP . Then, p1Q has order p2 and p2Q has order p1.

1Consider that
∑(

x
p

)
≤ √p ln p

5 Elliptic Curve Cryptography 41

That is, p1αP = p1Q is in Z/p2Z and we can solve DLOG here to obtain α mod p2.
Likewise with p2 to find α mod p1. Then, by CRT, we can find α.

Invalid curve attack Let an otherwise secure curve y2 = x3 + ax + b over |E(Fp)| = q.
Notice that the equations to calculate P + Q do not use B.

Suppose Alice generates A = αP and Bob B = βP so that they calculate αB and βA,
respectively. If Bob instead sends B ∈ E ′ : y2 = x3 + ax + b′ where |E ′(Fp)| = 3 · · · (or
smooth or otherwise insecure). Then, Alice instead computes αB ∈ E ′ and Bob can find
α mod 3. Repeating, Bob can recover Alice’s key by CRT.

To avoid this, just check that B ∈ E. Alternatively, express P + Q using b. When we
are doubling P + P , m2 = (3x2

P +a)2

4y2
P

= (3x2
P +a)2

4(x3
P +axP +b) so then x2P = (3x2

P +a)2

4(x3
P +axP +b) − 2xP .

Since this relies only on xP , we can only send the x-coordinate in ECDH. That is,
Alice sends xαP (i.e., ±αP) and Bob sends xβP (i.e., ±βP). They both calculate
±αβP = ±βαP , so xαβP is the shared secret.

§5.4 Pairing-Based Cryptography (11/21)
Recall: starting at an elliptic curve E, we get a group E(Fp) and from there get ECDLOG
and ECDH. Applying the idea of Schnorr signatures gives us EdDSA.2 CCA2 security
can be achieved with Cramer–Shoup.

After basic ECC developed, pairing-based and post-quantum isogeny3-based cryptosys-
tems developed.

Definition 5.4.1 (cryptographic pairing). Bilinear (i.e., e(gα, gβ) = e(g, g)αβ = ∆αβ or
in additive notation, e(αP, βP) = e(P, P)αβ) non-degenerate (i.e., for all g, (∀h, e(g, h) =
1T) =⇒ g = 1G and for all h, (∀g, e(g, h) = 1T) =⇒ h = 1G) map e : G × G → GT

where (usually) |G| = |GT | = p.

MOV attack (Menezes–Okamoto–Vanstone) Suppose E is an elliptic curve admitting
a cryptographic pairing. Consider a ECDLOG problem P, αP → α.

Let e(P, P) = g so that e(P, αP) = gα by bilinearity. Then, we can consider the DLOG
for g and gα in the new group GT which is some finite field F∗

q. But the whole point of
ECDLOG is that it is harder than DLOG on a similarly sized finite field. Transferring
from E to F∗

q made it easy again.

Over time, people found enough use in pairings to make it worth using large enough
curves admitting pairings.

Joux (2000) 3-party Diffie-Hellman setup. Suppose Alice, Bob, and Carol have keys
ga, gb, and gc. Alice and Bob can generate a shared secret gab by normal DH but can’t
easily add Carol.

2There is a slight difference, where instead of hashing H(m, gr), we hash H(m, gr, gα)
3SIDH and SIKE broken but CSIDH and SQIsign still unbroken.

42 Sachin Kumar (Fall 2023)

But with pairings, each one calculates e(g, g)abc = e(ga, gb)c︸ ︷︷ ︸
Carol

= e(gb, gc)a︸ ︷︷ ︸
Alice

= e(ga, gc)b︸ ︷︷ ︸
Bob

.

For this to work, we must assume the bilinear Diffie–Hellman assumption: given ga, gb,
gc, it is infeasible to compute e(g, g)abc.

Likewise, define bilinear DDH as given ga, gb, gc ∈ G and h ∈ GT , it is infeasible to
compute h

?= e(g, g)abc.

Note that normal DDH does not hold in a pairing, i.e., given ga, gb, gz ∈ G, is z = ab?
Simply take e(g, gz) = e(g, g)z ?= e(g, g)ab = e(ga, gb).

Proposition 5.4.2
CDH ≥P BDH

Proof. Suppose CDH is broken, i.e., we can find gab from ga and gb. Then, we can take
e(gab, gc) = e(g, g)abc.

Proposition 5.4.3
CDHT ≥P BDH

Proof. Suppose CDHT is broken. Then, we can find e(ga, gb) = e(g, g)ab and e(g, gc) =
e(g, g)c normally but use CDHT to get e(g, g)abc.

§5.5 Divisors (11/23)
Definition 5.5.1 (divisor). Formal sum ∑

P ∈E
aP (P) of points P ∈ E with integer coeffi-

cients aP ∈ Z where only finitely many aP are non-zero.

Example 5.5.2
Given points P and Q in E, (P), −(P), 2(P), and 3(P)− (Q) are divisors.

The set of all divisors Div(E) is a free Z-module with basis E(K).4

Example 5.5.3
Let E : y2 = x3 − x over some finite field Fp. Then, there are roots P = (−1, 0),
Q = (0, 0), and R = (1, 0). We can make divisors (P) + (Q) + (R) or (P) − (R).
Notice that (P)− (R) ̸= (P) + (−(R)). Likewise, (P + Q) ̸= (P) + (Q).

If we define the empty divisor ∅ = ∑
P ∈E

0(P), notice that we get a group.

We can treat divisors as prime factorizations in disguise. Consider that if n = pα1
1 · · · pαk

k ,
then log n = α1 log p1 + · · ·+ αk log pk.

4Recall: a vector space V over a field K with basis B is V = {
∑

b∈B kbb : kb ∈ K, finite kb are non-zero}.
By analogy, a Z-module is a “vector space” over Z (because Z is not a field).

5 Elliptic Curve Cryptography 43

Then, let (n) = log n and we get (n) = α1(p1) + · · ·+ αk(pk). We have (1) = log 1 = 0,
the “empty divisor”.

Definition 5.5.4 (degree). If D = ∑
aP (P), then deg(D) = ∑

aP .

Example 5.5.5
deg((P)− (∞)) = 0 and deg(2(P)− 4(Q)) = −2.

Proposition 5.5.6
deg : div(E)→ Z is a homomorphism, i.e., deg(D1 + D2) = deg(D1) + deg(D2).

Since this is a homomorphism, we get a kernel ker deg = {D ∈ div(E) : deg(D) = 0}
which is the degree zero divisors div0(E).

Definition 5.5.7 (rational function). A quotient of polynomials.

Note: On E : y2 = x3 + ax + b, a rational function f1(x,y)
f2(x,y) is written in two variables.

Example 5.5.8
Consider the polynomial 2x+3y+5y2+7x2y+y3 over the elliptic curve y2 = x3+ax+b.

Substituting gives 2x + 5(x3 + ax + b) + (3 + 7x2 + x3 + ax + b)y, i.e., f0(x) + f1(x)y
for some polynomials in only x.

That is, we can always split into a “real” part f0(x) and “imaginary” part f1(x) and only
consider them the way we would consider only a + bi in Z[i].

Therefore, the set of polynomials K[E] = {f0 + f1y : f0, f1 ∈ K[x]}. Then, the
set of rational functions K(E) = {f

g
: f, g ∈ K[E]} where f

g
= f0+f1y

g0+g1y
· g0−g1y

g0−g1y
=

f0g0+2f1g1+f1g1y2

g2
0−g2

1y2 = F0
G

+ F1
G

y because we can again substitute out the y2 terms.

(since these are commutative rings, PMATH 446 says we can get this just by localizing)

Definition 5.5.9 (divisor of a polynomial). Consider the set of polynomials K[x] over
an algebraically closed field K. Then, div(f) = ∑n

i=1 ei(ri) where ri are the roots of f , n
is the number of roots of f , and ei is the multiplicity of the corresponding root.

Example 5.5.10
div(x3 + 2x2) = div(x2(x + 2)) = 2(0) + 1(−2).

By analogy, log(x3 + 2x2) = log x + log x + log(x + 2). Then, if (r) = log(x− r), we
have (0) + (0) + (−2) = 2(0) + 1(−2).

Key Observation. A prime factor of multiplicity r corresponds exactly with a root of
multiplicity r.

Definition 5.5.11 (divisor of a rational function). div(f
g
) = div f − div g.

Definition 5.5.12 (order of vanishing). For f ∈ K(E) and P ∈ E, ordP (f) is the
multiplicity of the “prime” P in the factorization of f , i.e., the coefficient in the divisor.

44 Sachin Kumar (Fall 2023)

Theorem 5.5.13
ordP (f · g) = ordP (f) + ordP (g)

Suppose we have polynomials f = f0 + f1y and its “conjugate” g = f0 − f1y. Then,
ordP (f · g) = ordP (f 2

0 − f 2
1 y2) which is a polynomial in only x, so we can find the

multiplicity normally. Using a symmetry argument, we can then derive other orders.

§5.6 (11/25)
Let en(P, Q) = fP

fQ
where fP = div(P)

Recall the degree of a single-variable polynomial deg(a + a1x + · · · + adxd) = d. This
definition breaks for multi-variable polynomials, so instead define the degree as the
number of roots.5

For a polynomial f ∈ K[E], we can without the loss of generality write f(x, y) =
f0(x) + f1(x)y and say that deg f is the number of roots of f .

Example 5.6.1
deg x = deg(x− α) = 2, deg y = deg(y − α) = 3

We have properties of normal degrees: deg(f · g) = deg f + deg g, deg(f + g) =
max{deg f, deg g}.

Definition 5.6.2 (conjugation). If f = f0 + f1y, then f̄ = f0 − f1y.

Since conjugation is an automorphism, deg f = deg f̄ . Then, deg(f · f̄) = 2 deg f but we
have that f · f̄ = f 2

0 − f 2
1 y2 = f 2

0 − f 2
1 (x3 + ax + b) ∈ K[x]. We can factor the usual way

to get n linear factors, which each have degree 2, so deg f = deg(f 2
0 − f 2

1 (x3 + ax + b)).

There are three points where y = 0, i.e., Pi = (ri, 0) where ri are the roots of the cubic.
Claim that div y = (P1) + (P2) + (P3).

Relate every point P = (α, β) and relate it to a maximal prime ideal generated by
(x−α, y− β), i.e., K[x, y]/(x−α, y− β) = K. Considering the principal ideal generated
by (y) = (x − r1, y − 0)(x − r2, y − 0)(x − r3, y − 0) which factors into prime ideals.
This is why we have div y = (P1) + (P2) + (P3) since divisors correspond with prime
factorizations.

But we need to find ord∞(y). With projective coordinates x = X
Z

and y = Y
Z

, we get
Y 2Z = X3 +aXZ2 + bZ3. Finally, if x̃ = X

Y
and z̃ = Z

Y
, then we have z̃ = x̃3 +ax̃z̃2 + bz̃3.

Then, we have ord∞(y) = ord∞(1
z̃
) = − ord∞(z̃) = − ord(0,0)(z̃) = −3.

So div y = (P1) + (P2) + (P3)− 3(∞) and deg(div y) = 0. In fact, deg(div f) = 0 for all
f .

Example 5.6.3
Calculate div x.

5Assuming the polynomial is separable and the field is algebraically closed, counting multiplicities.

5 Elliptic Curve Cryptography 45

Proof. Likewise, div x = (Q1) + (Q2) − 2(∞) because we have two points on the line
x = 0 and ord∞(x) = ord(0,0)(x̃

z̃
) = ord(0,0)(x̃)− ord(0,0)(z̃) = 1− 3 = −2.

Example 5.6.4
Calculate div(x

x2+y
).

Proof. First, we have div x− div(x2 + y).

Using the conjugate trick, div(x2 +y)+div(x2−y) = div(x4− (x3 +ax+b)) which factors
div∏(x− ei) = ∑ div(x− ei) with roots ei. Then, we have ∑((Pi) + (−Pi))− 8(∞). By
symmetry, div(x2 + y) = ∑(±(Pi))− 4(∞).

§5.7 Weil Pairing (11/28)
Definition 5.7.1 (Weil pairing). en(P, Q) = fP (AQ)

fQ(AP) where AP ∼ (P) − (∞), AQ ∼
(Q)− (∞), div fP = nAP , and div fQ = nAQ.

Definition 5.7.2 (equivalence). For P, Q ∈ div(E), P ∼ Q if there exists a rational
function f ∈ K(E) such that P −Q = div f .

Lemma 5.7.3
∼ is an equivalence relation.

Useful properties:

nosep P ∼ Q implies deg(P) = deg(Q) because deg(div f) = 0.

nosep (P) ∼ (∞) if and only if P =∞

Example 5.7.4
Consider collinear points P , Q, and R which lie on a line L : f(x, y) = 0. Then,
div f = (P)+(Q)+(R)−3(∞) since f vanishes only at those 3 points. By definition,
(P)− (∞) + (Q)− (∞) ∼ (R)− (∞).

With L′ : g(x, y) = 0 being the line with R and S = P +Q, we get div g = (R)+(S)−
2(∞) and (∞)− (R) ∼ (S)− (∞). Then, (P)− (∞) + (Q)− (∞) ∼ (P + Q)− (∞)

Example 5.7.5
Let D ∈ div0(E) so that D = ∑

aP (P) with ∑ aP = 0. Then, D = ∑
aP ((P)− (∞)).

By the last example, D ∼ (∑ aP P)− (∞).

Therefore (up to abuse of notation), div0(E) ∼ {(P)− (∞) : P ∈ E} ∼= E.

Notice that K[E] = K[x][
√

x3 + ax + b] =: R is a field extension and has some ideal
class group Cl(R) ∼= div0(E)/ ∼= E.

Suppose that P and Q lie in the n-torsion subgroup E[n] such that nP = nQ =∞.

46 Sachin Kumar (Fall 2023)

Consider the Weil pairing en(P, Q). We want to:

1. Choose AP ∈ div0(E) such that AP ∼ (P)− (∞).

2. Choose AQ ∈ div0(E) such that AQ ∼ (Q)− (∞).

3. By Example, nAP ∼ n((P) − (∞)) ∼ (nP) − (∞) = (∞) − (∞) = ∅. Then, there
must exist fP such that div fP = nAP

4. Likewise, let fQ be some function such that div fQ = nAQ.

Then, en(P, Q) := fP (AQ)
fQ(AP) .

Definition 5.7.6 (function at a divisor). If D = ∑
aP (P) and f ∈ K(E), then f(D) =∏

f(P)aP

Notice that rational functions fQ and f ′
Q can only have the same roots and poles (i.e.,

divisors) if f ′
Q = cfQ for some constant c.

Then, f ′
Q(AP) = fQ(AP)∏ caP = fQ(AP)c

∑
aP = fQ(AP)c0 = fQ(AP).

§5.8 (12/02)

§5.9 Closing Remarks (12/05)
This class takes us to state-of-the-art cryptography as of about 2001.

We defined a pairing e(P, Q) = fP (AQ)
fQ(AP) with bilinearity, anti-symmetry, and non-degeneracy.

Sometimes, we don’t actually want anti-symmetry because we need e(g, g) ̸= 1 for
tripartite Diffie–Hellman to work.

Consider a curve E : y = x3 + ax over Fp where p ≡ 3 (mod 4). We need this because
we want i =

√
−1 ̸∈ Fp but i ∈ F2

p.

We define a ϕ such that ϕ(P) = (−x, iy), so that P ∈ E implies ϕ(P) ∈ E. Also, we
want ϕ to be a homomorphism ϕ(P + Q) = ϕ(P) + ϕ(Q).

Then, we define a modified Weil pairing ê(P, Q) = e(P, ϕ(Q)) which is still bilinear and
non-degenerate (which we can prove since ϕ2 = −1).

Alternatively, consider E : y = x3 + b over Fp where p ≡ 2 (mod 3). Then, pick a
cube root of unity ζ such that ζ ∈ F2

p \ Fp. With ϕ(x, y) = (ζx, y), we get a pairing
ê(P, Q) = e(P, ϕ(Q)) with the same desired properties.

These days, DLOG over curves with small characteristic is insecure, because e(αP, Q) =
e(P, Q)α, so if DLOG can be solved in Fpk , it can be solved by the MOV attack in the
elliptic curve using modified index calculus due to Joux.

Boneh–Franklin Identity-Based Encryption Any binary string is a valid public key.

Public parameters: pairing e : G×G→ GT , element g ∈ G, hash H : {0, 1}∗ → G.

Trusted third-party picks a system private key α
$←− Z and generates system pubkey gα.

User A has public key pkA ∈ {0, 1}∗. TTP generates skA = hα where h = H(pkA).

5 Elliptic Curve Cryptography 47

To encrypt, E(pkA, m) = (gr, e(gα, hr)⊕m) with random r
$←− Z.

To decrypt, D(skA, (c1, c2)) = e(skA, c1)⊕ c2 = m.

Can prove that Boneh–Franklin is IND-CPA assuming decisional bilinear Diffie–Hellman
and random oracle.

Recall (DBDH): Given g, ga, gb, gc, h it is hard to determine if h = e(g, g)abc.

This is technically not secure enough, so we want IND-ID-CPA (semantically secure
assuming an arbitrary number of other identities are compromised).

Consider now the hash H : {0, 1}∗ → G = E(Fq). Bad idea: do this in two steps
H : {0, 1}∗ → Z→ E : pkA 7→ β 7→ gβ. But then skA = hα = gαβ = (gα)β and this is all
computable by anyone since gα is public and the initial step in the hash function gives β.

Good idea: consider the curve E : y2 = x3 + b with p ≡ 2 (mod 3). Then, ζ = 3
√

1 ∈
Fp2 \Fp and ∀β ∈ Fp,∃!α ∈ Fp, α3 = β. This lets us hash by first picking the y-coordinate
then calculating the unique x-coordinate to place us on the curve.

	Contents
	Preface
	Introduction to Cryptography
	(09/07; skipped)
	Almost-Public Key Cryptosystems (09/09)
	A Public Key Cryptosystem – RSA (09/12)
	Security Definitions (09/14)
	Actual IND-CPA systems (09/16)

	Quadratic Residues
	Number Theory Background (09/19)
	Squares Under a Modulus (09/21)
	Squares cont'd (09/23)
	Applying to DDH (09/26)
	Quadratic Characters in the Complex Plane (09/28)
	Quadratic Reciprocity (09/30)

	Primality
	Primality Testing (10/03)
	Strong Primality Testing (10/05)
	Malleability (10/07)
	Factorization Algorithms (10/17)
	Better Sieves (10/19)
	(10/21)
	Index Calculus (10/26)

	Signatures
	Hash Functions (10/28)
	Signature Schemes (10/31)
	Hashed RSA (11/02)
	Zero-Knowledge Proofs (11/04)
	ZKP Signatures (11/07)
	CCA2-Secure Signature Schemes (11/09)
	Proving Fujisaki–Okamoto Security (11/11)

	Elliptic Curve Cryptography
	Elliptic Curves (11/14)
	(11/16)
	Attacks on ECDH (11/18)
	Pairing-Based Cryptography (11/21)
	Divisors (11/23)
	(11/25)
	Weil Pairing (11/28)
	(12/02)
	Closing Remarks (12/05)

