On the weakly modular form of weight k

Sachin Kumar

Faculty of Mathematics, University of Waterloo

April 2024

Abstract

Modular forms play a super important role in number theory. In fact, the Modularity Theorem, which asserts that elliptic curves over the rationals are related to modular forms in a particular way, implies Fermat's Last Theorem! We are familiar with the Riemann zeta function $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$ with $\Re(s) > 1$, and using the Summation Theorem, we recall that $\zeta(2) = \frac{\pi^2}{6}$. In this essay, we will analyze its two-dimensional analogue.

Contents

1	Definition	•																	•						1
2	Our Claims .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2

Definition 1

DEFINITION 1.1 (WEAKLY MODULAR FORM OF WEIGHT *k*). Let $\mathcal{H} = \{z \in \mathbb{C} : \mathfrak{T}(z) > 0\}$ denote the upper half-plane. We say $f : \mathcal{H} \to \mathbb{C}$ is a *weakly modular form of weight* k, where $k \in \mathbb{N}$ if and only if

- (a) $f(\tau + 1) = f(\tau)$ for every $\tau \in \mathcal{H}$ (i.e., *f* is periodic with period 1)
- (b) $f\left(\frac{-1}{\tau}\right) = \tau^k f(\tau)$ for every $\tau \in \mathcal{H}$
- (c) f is analytic in \mathcal{H}
- (d) f is analytic at ∞

We nore that in this context, we say that f is analytic at ∞ if and only if there exist positive

real numbers *R* and *M* such that *f* is analytic at τ and $|f(\tau)| \le M$ whenever $\mathfrak{T}(\tau) \ge R$. We are familiar with the Riemann zeta function $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$ with $\mathfrak{R}(s) > 1$, and using the Summation Theorem, we recall that $\zeta(2) = \frac{\pi^2}{6}$. Let's now analytic its twodimensional analogue

$$G_k : \mathcal{H} \to \mathbb{C}, \ G_k(\tau) = \sum_{\substack{(m,n) \in \mathbb{Z}^2 \ (m,n) \neq (0,0)}} \frac{1}{(m\tau + n)^k}$$

where k > 2 is an integer.

2 Our Claims

LEMMA 2.1. G_k is a weakly modular form of weight k.

Before providing the proof, we will dicuss the idea behind the proof. First, we will show that the series,

$$\sum_{\substack{(c,d)\in\mathbb{Z}^2\\(c,d)\neq(0,0)}}\frac{1}{\max\{|c|,|d|\}^k}$$

converges. Then using this fact, we prove that $G_k(\tau)$ converges absolutely and uniformly for all $\tau \in \Omega_{A,B}$, with *A* and *B* are positive real numbers, where

$$\Omega_{A,B} = \{ \tau \in \mathcal{H} : |\Re(\tau)| \le A \text{ and } \Im(\tau) \ge B \}$$

Let's provide the proof,

PROOF (LEMMA 2.1). To show that G_k is a weakly modular form of weight k, we will have to show that G_k satisfies the conditions in Definition 1.1,

(a) We observe that,

$$\begin{aligned} G_k(\tau+1) &= \sum_{\substack{(m,n) \in \mathbb{Z}^2 \\ (m,n) \neq (0,0)}} \frac{1}{(m(\tau+1)+n)^k} = \sum_{\substack{(m,n) \in \mathbb{Z}^2 \\ (m,n) \neq (0,0)}} \frac{1}{(m\tau+(m+n))^k} \\ &= \sum_{\substack{(m,n') \in \mathbb{Z}^2 \\ (m,n'-m) \neq (0,0)}} \frac{1}{(m\tau+n')^k} \quad \text{where } n' = m+n \\ &= \sum_{\substack{(m,n') \in \mathbb{Z}^2 \\ (m,n') \neq (0,0)}} \frac{1}{(m\tau+n')^k} = G_k \end{aligned}$$

Since, we know that (m, n' - m) = (0, 0) if and only if (m, n') = (0, 0). (b) We observe that,

$$\begin{aligned} G_k\left(\frac{-1}{\tau}\right) &= \sum_{\substack{(m,n)\in\mathbb{Z}^2\\(m,n)\neq(0,0)}} \frac{1}{\left(m\left(\frac{-1}{\tau}\right)+n\right)^k} = \tau^k \sum_{\substack{(m,n)\in\mathbb{Z}^2\\(m,n)\neq(0,0)}} \frac{1}{(n\tau-m)^k} \\ &= \tau^k \sum_{\substack{(m',n')\in\mathbb{Z}^2\\(-n',m')\neq(0,0)}} \frac{1}{(m'\tau+n')^k} \quad \text{where } m' = n \text{ and } n' = -m \\ &= \tau^k \sum_{\substack{(m',n')\in\mathbb{Z}^2\\(m',n')\neq(0,0)}} \frac{1}{(m\tau+n')^k} = \tau^k G_k \end{aligned}$$

Since, we know that (-n', m') = (0, 0) if and only if (m', n') = (0, 0).

(c) Let us show that the series,

$$\sum_{\substack{(c,d)\in\mathbb{Z}^2\\(c,d)\neq(0,0)}}\frac{1}{\max\{|c|,|d|\}^k}$$

converges. We have

$$\begin{split} \sum_{\substack{(c,d)\in\mathbb{Z}^2\\(c,d)\neq(0,0)}} \frac{1}{\max\{|c|,|d|\}^k} &= \sum_{\substack{d\in\mathbb{Z}\\d\neq0}} \frac{1}{\max\{0,|d|\}^k} + \sum_{\substack{c\in\mathbb{Z}\\c\neq0}} \sum_{\substack{d\in\mathbb{Z}\\c\neq0}} \frac{1}{\max\{|c|,|d|\}^k} \\ &= 2\sum_{\substack{d=1\\d=1}}^{\infty} \frac{1}{d^k} + 2\sum_{\substack{c=1\\c=1}}^{\infty} \sum_{\substack{d\in\mathbb{Z}\\d\in\mathbb{Z}}} \frac{1}{\max\{c,|d|\}^k} \\ &= 2\sum_{\substack{d=1\\d=1}}^{\infty} \frac{1}{d^k} + 2\sum_{\substack{c=1\\c=1}}^{\infty} \frac{1}{c^k} + 2\sum_{\substack{c=1\\d\neq0}}^{\infty} \sum_{\substack{d\in\mathbb{Z}\\d\neq0}} \frac{1}{\max\{c,|d|\}^k} \\ &= 4\zeta(k) + 4\sum_{\substack{c=1\\c=1}}^{\infty} \sum_{\substack{d=1\\d\neq0}}^{\infty} \frac{1}{\max\{c,|d|\}^k} \\ &= 4\zeta(k) + 4\sum_{\substack{c=1\\c=1}}^{\infty} \left(\sum_{\substack{d=1\\c=1}}^{c} \frac{1}{c^k} + \sum_{\substack{d=c+1\\d=1}}^{\infty} \frac{1}{d^k}\right) \\ &= 4\zeta(k) + 4\zeta(k-1) + 4\sum_{\substack{c=1\\c=1}}^{\infty} \sum_{\substack{d=c+1\\d=1}}^{\infty} \frac{1}{d^k} \end{split}$$

At this point we apply the integral test:

$$\begin{split} \sum_{\substack{(c,d)\in\mathbb{Z}^2\\(c,d)\neq(0,0)}} \frac{1}{\max\{|c|,|d|\}^k} &\leq 4\zeta(k) + 4\zeta(k-1) + 4\sum_{c=1}^{\infty}\sum_{d=c+1}^{\infty}\frac{1}{d^k} \\ &\leq 4\zeta(k) + 4\zeta(k-1) + 4\sum_{c=1}^{\infty}\left(\frac{1}{(c+1)^k} + \int_{c+1}^{\infty}\frac{1}{x^k}\,dx\right) \\ &= 4\zeta(k) + 4\zeta(k-1) + 4(\zeta(k)-1) + 4\sum_{c=1}^{\infty}\frac{1}{(k-1)(c+1)^{k-1}} \\ &= 4\zeta(k) + 4\zeta(k-1) + 4(\zeta(k)-1) + 4\sum_{c=1}^{\infty}\frac{1}{(c+1)^{k-1}} \\ &\leq 4\zeta(k) + 4\zeta(k-1) + 4(\zeta(k)-1) + 4(\zeta(k-1)-1) \end{split}$$

Hence the series converges absolutely.

Now, consider the set $\Omega_{A,B}$. We will claim (w/o proof) that there exists a constant C > 0, which depends only on *A* and *B*, such that $|\tau + \delta| > C \max\{1, |\delta|\}$ for every

 $\tau \in \Omega_{A,B}$ and every $\delta \in \mathbb{R}$. Consequently,

$$\begin{split} \sum_{\substack{(m,n)\in\mathbb{Z}^2\\(m,n)\neq(0,0)}} \frac{1}{(m\tau+n)^k} \middle| &\leq \sum_{\substack{(m,n)\in\mathbb{Z}^2\\(m,n)\neq(0,0)}} \frac{1}{|m\tau+n|^k} \\ &= 2\zeta(k) + \sum_{\substack{(m,n)\in\mathbb{Z}^2\\m\neq0}} \frac{1}{|m|^k \left|\tau + \frac{n}{m}\right|^k} \\ &< 2\zeta(k) + \sum_{\substack{(m,n)\in\mathbb{Z}^2\\m\neq0}} \frac{1}{|m|^k C^k \max\left\{1, \left|\frac{n}{m}\right|\right\}^k} \\ &< 2\zeta(k) + \frac{1}{C^k} \sum_{\substack{(m,n)\in\mathbb{Z}^2\\m\neq0}} \frac{1}{\max\{|m|, |n|\}^k} \\ &\leq 2\zeta(k) + \frac{1}{C^k} \sum_{\substack{(c,d)\in\mathbb{Z}^2\\(c,d)\neq(0,0)}} \frac{1}{\max\{|c|, |d|\}^k} \end{split}$$

Hence the series converges absolutely and uniformly on $\Omega_{A,B}$. Since for every $\tau \in \mathcal{H}$ there exists $A, B \in \mathbb{R}_+$ such that $\tau \in \Omega_{A,B}$, it follows from the Analytic Convergence Theorem that G_k is analytic in \mathcal{H} .

(d) Let R = 1 and let

$$M = 2\zeta(k) + \frac{1}{C^k} \sum_{\substack{(c,d) \in \mathbb{Z}^2 \\ (c,d) \neq (0,0)}} \frac{1}{\max\{|c|, |d|\}^k}$$

From Part (c), we know that $G_k(\tau)$ analytic in $\Omega_{1,1}$. It remains to prove that $|f(\tau)| \le M$ whenever $\mathfrak{T}(\tau) \ge R$. Suppose that τ satisfies $\mathfrak{T}(\tau) \ge R$. We consider two cases. Case 1. Suppose that $|\mathfrak{R}(\tau)| \le 1$. Then $\tau \in \Omega_{1,1}$ and from Part (c), we know that

 $G_k(\tau)$ is bounded on $\Omega_{1,1}$ by M. So the result holds in this case. Case 2. Suppose that $|\Re(\tau)| > 1$. It follows from Part (a) that $G_k(\tau) = G_k(\tau + \ell)$ for every integer ℓ . We choose ℓ so that $0 \le \Re(\tau) + \ell < 1$. Since $\Re(\tau + \ell) = \Re(\tau) + \ell$ and $\Im(\tau + \ell) = \Im(\tau)$, we conclude that $\tau + \ell \in \Omega_{1,1}$. But then $|G_k(\tau + \ell)| \le M$, and so $|G_k(\tau)| = |G_k(\tau + \ell)| \le M$, as expected. Hence G_k is analytic at ∞ .

Combining (a), (b), (c), (d), we conclude that G_k is a weakly modular form of weight k.

LEMMA 2.2. For even k > 2, the Fourier Series of $E_k(\tau) = G_k(\tau)/2\zeta(k)$ is given by

$$E_k(\tau) = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) e^{2\pi i n \tau}$$

Here B_k is the k^{th} Bernoulli number and $\sigma_m = \mathbb{N} \to \mathbb{N}$ is the m^{th} sum of positive divisor function:

$$\sigma_m(n) = \sum_{\substack{d|n \\ d>0}} d^m$$

Perhaps surprisingly, the set of all weakly modular forms of weight k, denoted \mathcal{M}_k , forms a finite-dimensional vector space over \mathbb{C} . Use the fact that the vector space \mathcal{M}_8 is onedimensional, as well as the fact that the Fourier series is unique, to prove that $E_8(\tau) = (E_4(\tau))^2$ for every $\tau \in \mathcal{H}$.

PROOF (LEMMA 2.2). We observe that, since $E_4(\tau)$ is a weakly modular form of weight 4, and $(E_4(\tau))^2$ is a weakly modular form of weight 8. Using the similar technique used in Lemma 2.1, we can verify that all the desired four properties are satisfied. Now, since the vector space \mathcal{M}_8 is one-dimensional and E_8 , $E_4^2 \in \mathcal{M}_8$, the set $\{E_8, E_4^2\}$ is linearly dependent. Since neither E_8 nor E_4^2 are identically equal to zero, it must be the case that E_4^2 is a scalar multiple of E_8 , i.e., $E_8(\tau) = c(E_4(\tau))^2$ for some nonzero $c \in \mathbb{C}$. But the leading coefficient of E_8 is 1, while the leading coefficient of $c(E_4(\tau))^2$ is c. Since the Fourier series is unique, the leading coefficients must be equal, and so we conclude that c = 1. Hence, $E_8 = E_4^2$. \Box

LEMMA 2.3. By equating the coefficients in the relation $E_8(\tau) = (E_4(\tau))^2$, we have

$$\sigma_7(n) = \sigma_3(n) + 120 \sum_{i=1}^{n-1} \sigma_3(i) \sigma_3(n-i)$$

for every $n \in \mathbb{N}$.

PROOF (LEMMA 2.3). We recall that if $\sum_{a_i q^i}$ is a formal power series, then the *n*th coefficient of $\sum b_k q^k = (\sum a_i q^i)^2$ is equal to

$$b_n = \sum_{i=0}^n a_i a_{n-i}$$

Now, let $q = e^{2\pi i \tau}$. From Lemma 2.2 we know that

$$E_4(\tau) = 1 + 240 \sum_{n=1}^{\infty} \sigma_3(n) e^{2\pi i n \tau} = \sum_{n=0}^{\infty} a_n q^n$$
$$E_8(\tau) = 1 + 480 \sum_{n=1}^{\infty} \sigma_7(n) e^{2\pi i n \tau} = \sum_{n=0}^{\infty} b_n q^n$$

where

$$a_0 = 1, a_n = 240\sigma_3(n)$$

 $b_0 = 1, b_n = 480\sigma_7(n)$

for $n \in \mathbb{N}$. Since, $E_8 = E_4^2$ and the Fourier series is unique, we conclude that, for every

 $n \in \mathbb{N}$,

$$480\sigma_{7}(n) = b_{n}$$

$$= \sum_{i=0}^{n} a_{i}a_{n-i}$$

$$= 2a_{0}a_{n} + \sum_{i=1}^{n-1} a_{i}a_{n-i}$$

$$= 480\sigma_{3}(n) + \sum_{i=1}^{n-1} (240\sigma_{3}(i))(240\sigma_{3}(n-i))$$

$$= 480\left(\sigma_{3}(n) + 120\sum_{i=1}^{n-1} \sigma_{3}(i)\sigma_{3}(n-i)\right)$$

dividing both sides by 480, we get our desired identity

$$\sigma_7(n) = \sigma_3(n) + 120 \sum_{i=1}^{n-1} \sigma_3(i) \sigma_3(n-i)$$

Hence proved.