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Abstract
Modular forms play a super important role in number theory. In fact, theModularity

Theorem, which asserts that elliptic curves over the rationals are related to modular
forms in a particular way, implies Fermat’s Last Theorem! We are familiar with the
Riemann zeta function 𝜁(𝑠) = ∑∞

𝑛=1 𝑛
−𝑠 with ℜ(𝑠) > 1, and using the Summation

Theorem, we recall that 𝜁(2) = 𝜋2

6
. In this essay, we will analyze its two-dimensional

analogue.
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1 Definition
Definition 1.1 (weakly modular form of weight 𝑘). Letℋ = {𝑧 ∈ ℂ ∶ ℑ(𝑧) > 0}
denote the upper half-plane. We say 𝑓 ∶ℋ → ℂ is aweakly modular form of weight 𝑘,
where 𝑘 ∈ ℕ if and only if
(a) 𝑓(𝜏 + 1) = 𝑓(𝜏) for every 𝜏 ∈ℋ (i.e., 𝑓 is periodic with period 1)
(b) 𝑓

(−1
𝜏

)
= 𝜏𝑘𝑓(𝜏) for every 𝜏 ∈ℋ

(c) 𝑓 is analytic inℋ
(d) 𝑓 is analytic at∞

We nore that in this context, we say that 𝑓 is analytic at∞ if and only if there exist positive
real numbers 𝑅 and𝑀 such that 𝑓 is analytic at 𝜏 and |𝑓(𝜏)| ≤ 𝑀 whenever ℑ(𝜏) ≥ 𝑅.

We are familiar with the Riemann zeta function 𝜁(𝑠) = ∑∞
𝑛=1 𝑛

−𝑠 withℜ(𝑠) > 1, and
using the Summation Theorem, we recall that 𝜁(2) = 𝜋2

6
. Let’s now analytic its two-

dimensional analogue

𝐺𝑘 ∶ℋ → ℂ, 𝐺𝑘(𝜏) =
∑

(𝑚,𝑛)∈ℤ2

(𝑚,𝑛)≠(0,0)

1
(𝑚𝜏 + 𝑛)𝑘

where 𝑘 > 2 is an integer.

1
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2 Our Claims
Lemma 2.1. 𝐺𝑘 is a weakly modular form of weight 𝑘.

Before providing the proof, we will dicuss the idea behind the proof. First, we will show
that the series,

∑

(𝑐,𝑑)∈ℤ2

(𝑐,𝑑)≠(0,0)

1
max{|𝑐|, |𝑑|}𝑘

converges. Then using this fact, we prove that 𝐺𝑘(𝜏) converges absolutely and uniformly
for all 𝜏 ∈ Ω𝐴,𝐵, with 𝐴 and 𝐵 are positive real numbers, where

Ω𝐴,𝐵 = {𝜏 ∈ℋ ∶ |ℜ(𝜏)| ≤ 𝐴 and ℑ(𝜏) ≥ 𝐵}

Let’s provide the proof,

Proof (Lemma 2.1). To show that 𝐺𝑘 is a weakly modular form of weight 𝑘, we will have
to show that 𝐺𝑘 satisfies the conditions in Definition 1.1,
(a) We observe that,

𝐺𝑘(𝜏 + 1) =
∑

(𝑚,𝑛)∈ℤ2

(𝑚,𝑛)≠(0,0)

1
(𝑚(𝜏 + 1) + 𝑛)𝑘

=
∑

(𝑚,𝑛)∈ℤ2

(𝑚,𝑛)≠(0,0)

1
(𝑚𝜏 + (𝑚 + 𝑛))𝑘

=
∑

(𝑚,𝑛′)∈ℤ2

(𝑚,𝑛′−𝑚)≠(0,0)

1
(𝑚𝜏 + 𝑛′)𝑘

where 𝑛′ = 𝑚 + 𝑛

=
∑

(𝑚,𝑛′)∈ℤ2

(𝑚,𝑛′)≠(0,0)

1
(𝑚𝜏 + 𝑛′)𝑘

= 𝐺𝑘

Since, we know that (𝑚, 𝑛′ −𝑚) = (0, 0) if and only if (𝑚, 𝑛′) = (0, 0).
(b) We observe that,

𝐺𝑘 (
−1
𝜏 ) =

∑

(𝑚,𝑛)∈ℤ2

(𝑚,𝑛)≠(0,0)

1
(
𝑚
(−1

𝜏

)
+ 𝑛

)𝑘 = 𝜏𝑘
∑

(𝑚,𝑛)∈ℤ2

(𝑚,𝑛)≠(0,0)

1
(𝑛𝜏 −𝑚)𝑘

= 𝜏𝑘
∑

(𝑚′,𝑛′)∈ℤ2

(−𝑛′,𝑚′)≠(0,0)

1
(𝑚′𝜏 + 𝑛′)𝑘

where𝑚′ = 𝑛 and 𝑛′ = −𝑚

= 𝜏𝑘
∑

(𝑚′,𝑛′)∈ℤ2

(𝑚′,𝑛′)≠(0,0)

1
(𝑚𝜏 + 𝑛′)𝑘

= 𝜏𝑘𝐺𝑘

Since, we know that (−𝑛′, 𝑚′) = (0, 0) if and only if (𝑚′, 𝑛′) = (0, 0).
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(c) Let us show that the series,

∑

(𝑐,𝑑)∈ℤ2

(𝑐,𝑑)≠(0,0)

1
max{|𝑐|, |𝑑|}𝑘

converges. We have

∑

(𝑐,𝑑)∈ℤ2

(𝑐,𝑑)≠(0,0)

1
max{|𝑐|, |𝑑|}𝑘

=
∑

𝑑∈ℤ
𝑑≠0

1
max{0, |𝑑|}𝑘

+
∑

𝑐∈ℤ
𝑐≠0

∑

𝑑∈ℤ

1
max{|𝑐|, |𝑑|}𝑘

= 2
∞∑

𝑑=1

1
𝑑𝑘 + 2

∞∑

𝑐=1

∑

𝑑∈ℤ

1
max{𝑐, |𝑑|}𝑘

= 2
∞∑

𝑑=1

1
𝑑𝑘 + 2

∞∑

𝑐=1

1
𝑐𝑘 + 2

∞∑

𝑐=1

∑

𝑑∈ℤ
𝑑≠0

1
max{𝑐, |𝑑|}𝑘

= 4𝜁(𝑘) + 4
∞∑

𝑐=1

∞∑

𝑑=1

1
max{𝑐, 𝑑}𝑘

= 4𝜁(𝑘) + 4
∞∑

𝑐=1
(

𝑐∑

𝑑=1

1
𝑐𝑘 +

∞∑

𝑑=𝑐+1

1
𝑑𝑘)

= 4𝜁(𝑘) + 4
∞∑

𝑐=1
( 1
𝑐𝑘−1 +

∞∑

𝑑=𝑐+1

1
𝑑𝑘)

= 4𝜁(𝑘) + 4𝜁(𝑘 − 1) + 4
∞∑

𝑐=1

∞∑

𝑑=𝑐+1

1
𝑑𝑘

At this point we apply the integral test:

∑

(𝑐,𝑑)∈ℤ2

(𝑐,𝑑)≠(0,0)

1
max{|𝑐|, |𝑑|}𝑘

≤ 4𝜁(𝑘) + 4𝜁(𝑘 − 1) + 4
∞∑

𝑐=1

∞∑

𝑑=𝑐+1

1
𝑑𝑘

≤ 4𝜁(𝑘) + 4𝜁(𝑘 − 1) + 4
∞∑

𝑐=1
( 1
(𝑐 + 1)𝑘

+ ∫
∞

𝑐+1

1
𝑥𝑘 𝑑𝑥)

= 4𝜁(𝑘) + 4𝜁(𝑘 − 1) + 4(𝜁(𝑘) − 1) + 4
∞∑

𝑐=1

1
(𝑘 − 1)(𝑐 + 1)𝑘−1

= 4𝜁(𝑘) + 4𝜁(𝑘 − 1) + 4(𝜁(𝑘) − 1) + 4
∞∑

𝑐=1

1
(𝑐 + 1)𝑘−1

≤ 4𝜁(𝑘) + 4𝜁(𝑘 − 1) + 4(𝜁(𝑘) − 1) + 4(𝜁(𝑘 − 1) − 1)

Hence the series converges absolutely.
Now, consider the set Ω𝐴,𝐵. We will claim (w/o proof) that there exists a constant
𝐶 > 0, which depends only on 𝐴 and 𝐵, such that |𝜏 + 𝛿| > 𝐶max{1, |𝛿|} for every
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𝜏 ∈ Ω𝐴,𝐵 and every 𝛿 ∈ ℝ. Consequently,
|||||||||||||||

∑

(𝑚,𝑛)∈ℤ2

(𝑚,𝑛)≠(0,0)

1
(𝑚𝜏 + 𝑛)𝑘

|||||||||||||||

≤
∑

(𝑚,𝑛)∈ℤ2

(𝑚,𝑛)≠(0,0)

1
|𝑚𝜏 + 𝑛|𝑘

= 2𝜁(𝑘) +
∑

(𝑚,𝑛)∈ℤ2

𝑚≠0

1

|𝑚|𝑘 |||||𝜏 +
𝑛
𝑚

|||||
𝑘

< 2𝜁(𝑘) +
∑

(𝑚,𝑛)∈ℤ2

𝑚≠0

1

|𝑚|𝑘𝐶𝑘max
{
1, |||||

𝑛
𝑚

|||||
}𝑘

< 2𝜁(𝑘) + 1
𝐶𝑘

∑

(𝑚,𝑛)∈ℤ2

𝑚≠0

1
max{|𝑚|, |𝑛|}𝑘

≤ 2𝜁(𝑘) + 1
𝐶𝑘

∑

(𝑐,𝑑)∈ℤ2

(𝑐,𝑑)≠(0,0)

1
max{|𝑐|, |𝑑|}𝑘

Hence the series converges absolutely and uniformly on Ω𝐴,𝐵. Since for every 𝜏 ∈ℋ
there exists 𝐴, 𝐵 ∈ ℝ+ such that 𝜏 ∈ Ω𝐴,𝐵, it follows from the Analytic Convergence
Theorem that 𝐺𝑘 is analytic inℋ.

(d) Let 𝑅 = 1 and let

𝑀 = 2𝜁(𝑘) + 1
𝐶𝑘

∑

(𝑐,𝑑)∈ℤ2

(𝑐,𝑑)≠(0,0)

1
max{|𝑐|, |𝑑|}𝑘

FromPart (c), we know that𝐺𝑘(𝜏) analytic inΩ1,1. It remains to prove that |𝑓(𝜏)| ≤ 𝑀
whenever ℑ(𝜏) ≥ 𝑅. Suppose that 𝜏 satisfies ℑ(𝜏) ≥ 𝑅. We consider two cases.
Case 1. Suppose that |ℜ(𝜏)| ≤ 1. Then 𝜏 ∈ Ω1,1 and from Part (c), we know that
𝐺𝑘(𝜏) is bounded on Ω1,1 by𝑀. So the result holds in this case.
Case 2. Suppose that |ℜ(𝜏)| > 1. It follows from Part (a) that 𝐺𝑘(𝜏) = 𝐺𝑘(𝜏 + 𝓁) for
every integer 𝓁. We choose 𝓁 so that 0 ≤ ℜ(𝜏) + 𝓁 < 1. Sinceℜ(𝜏 + 𝓁) = ℜ(𝜏) + 𝓁
andℑ(𝜏 + 𝓁) = ℑ(𝜏), we conclude that 𝜏 + 𝓁 ∈ Ω1,1. But then |𝐺𝑘(𝜏 + 𝓁)| ≤ 𝑀, and
so |𝐺𝑘(𝜏)| = |𝐺𝑘(𝜏 + 𝓁)| ≤ 𝑀, as expected. Hence 𝐺𝑘 is analytic at∞.

Combining (a), (b), (c), (d), we conclude that 𝐺𝑘 is a weakly modular form of weight 𝑘. 2

Lemma 2.2. For even 𝑘 > 2, the Fourier Series of 𝐸𝑘(𝜏) = 𝐺𝑘(𝜏)∕2𝜁(𝑘) is given by

𝐸𝑘(𝜏) = 1 − 2𝑘
𝐵𝑘

∞∑

𝑛=1
𝜎𝑘−1(𝑛)𝑒2𝜋𝑖𝑛𝜏

Here 𝐵𝑘 is the 𝑘th Bernoulli number and 𝜎𝑚 = ℕ → ℕ is the 𝑚th sum of positive divisor
function:

𝜎𝑚(𝑛) =
∑

𝑑∣𝑛
𝑑>0

𝑑𝑚
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Perhaps surprisingly, the set of all weakly modular forms of weight 𝑘, denotedℳ𝑘, forms
a finite-dimensional vector space over ℂ. Use the fact that the vector spaceℳ8 is one-
dimensional, as well as the fact that the Fourier series is unique, to prove that 𝐸8(𝜏) =
(𝐸4(𝜏))2 for every 𝜏 ∈ℋ.

Proof (Lemma 2.2). We observe that, since 𝐸4(𝜏) is a weakly modular form of weight 4,
and (𝐸4(𝜏))2 is a weakly modular form of weight 8. Using the similar technique used in
Lemma 2.1, we can verify that all the desired four properties are satisfied. Now, since the
vector spaceℳ8 is one-dimensional and 𝐸8, 𝐸2

4 ∈ℳ8, the set {𝐸8, 𝐸2
4} is linearly dependent.

Since neither 𝐸8 nor 𝐸2
4 are identically equal to zero, it must be the case that 𝐸2

4 is a scalar
multiple of 𝐸8, i.e., 𝐸8(𝜏) = 𝑐(𝐸4(𝜏))2 for some nonzero 𝑐 ∈ ℂ. But the leading coefficient
of 𝐸8 is 1, while the leading coefficient of 𝑐(𝐸4(𝜏))2 is 𝑐. Since the Fourier series is unique,
the leading coefficients must be equal, and so we conclude that 𝑐 = 1. Hence, 𝐸8 = 𝐸2

4 . 2

Lemma 2.3. By equating the coefficients in the relation 𝐸8(𝜏) = (𝐸4(𝜏))2, we have

𝜎7(𝑛) = 𝜎3(𝑛) + 120
𝑛−1∑

𝑖=1
𝜎3(𝑖)𝜎3(𝑛 − 𝑖)

for every 𝑛 ∈ ℕ.

Proof (Lemma 2.3). We recall that if
∑

𝑎𝑖𝑞𝑖
is a formal power series, then the 𝑛th coefficient

of
∑ 𝑏𝑘𝑞𝑘 = (∑ 𝑎𝑖𝑞𝑖)2 is equal to

𝑏𝑛 =
𝑛∑

𝑖=0
𝑎𝑖𝑎𝑛−𝑖

Now, let 𝑞 = 𝑒2𝜋𝑖𝜏. From Lemma 2.2 we know that

𝐸4(𝜏) = 1 + 240
∞∑

𝑛=1
𝜎3(𝑛)𝑒2𝜋𝑖𝑛𝜏 =

∞∑

𝑛=0
𝑎𝑛𝑞𝑛

𝐸8(𝜏) = 1 + 480
∞∑

𝑛=1
𝜎7(𝑛)𝑒2𝜋𝑖𝑛𝜏 =

∞∑

𝑛=0
𝑏𝑛𝑞𝑛

where

𝑎0 = 1, 𝑎𝑛 = 240𝜎3(𝑛)
𝑏0 = 1, 𝑏𝑛 = 480𝜎7(𝑛)

for 𝑛 ∈ ℕ. Since, 𝐸8 = 𝐸2
4 and the Fourier series is unique, we conclude that, for every
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𝑛 ∈ ℕ,

480𝜎7(𝑛) = 𝑏𝑛

=
𝑛∑

𝑖=0
𝑎𝑖𝑎𝑛−𝑖

= 2𝑎0𝑎𝑛 +
𝑛−1∑

𝑖=1
𝑎𝑖𝑎𝑛−𝑖

= 480𝜎3(𝑛) +
𝑛−1∑

𝑖=1
(240𝜎3(𝑖))(240𝜎3(𝑛 − 𝑖))

= 480 (𝜎3(𝑛) + 120
𝑛−1∑

𝑖=1
𝜎3(𝑖)𝜎3(𝑛 − 𝑖))

dividing both sides by 480, we get our desired identity

𝜎7(𝑛) = 𝜎3(𝑛) + 120
𝑛−1∑

𝑖=1
𝜎3(𝑖)𝜎3(𝑛 − 𝑖)

Hence proved. 2
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