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Abstract
Modular forms play a super important role in number theory. In fact, the Modularity
Theorem, which asserts that elliptic curves over the rationals are related to modular
forms in a particular way, implies Fermat’s Last Theorem! We are familiar with the
Riemann zeta function {(s) = Z:;l n~S with R(s) > 1, and using the Summation

2
Theorem, we recall that {(2) = %. In this essay, we will analyze its two-dimensional

analogue.
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1 Definition

DEFINITION 1.1 (WEAKLY MODULAR FORM OF WEIGHT k). Let H = {z € C : J(z) > 0}
denote the upper half-plane. We say f : H — C is a weakly modular form of weight k,
where k € N if and only if

(@) f(t+1) = f(r)forevery T € I (i.e., f is periodic with period 1)

b) f (‘—1) = 5 f(z) for every T € H

(c) f is analytic in H

(d) f isanalytic at oo
We nore that in this context, we say that f is analytic at co if and only if there exist positive

real numbers R and M such that f is analytic at 7 and | f(7)| £ M whenever 3(7) > R.
We are familiar with the Riemann zeta function {(s) = Zoo n~s with R(s) > 1, and

2
using the Summation Theorem, we recall that {(2) = % Let’s now analytic its two-

n=1

dimensional analogue

1
Gy : I - C, G (1) = —_—
(m,nz)‘ézz (mt + n)k
(m,n)#(0,0)

where k > 2 is an integer.


https://www.wikiwand.com/en/Modularity_theorem
https://www.wikiwand.com/en/Modularity_theorem
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2 Our Claims

LEMMA 2.1. G, is a weakly modular form of weight k.

Before providing the proof, we will dicuss the idea behind the proof. First, we will show
that the series,

1
2 max{|c], |d|}*

(c,d)ez?
(e, d)#(0,0)

converges. Then using this fact, we prove that G, (7) converges absolutely and uniformly
forall T € Q, p, with A and B are positive real numbers, where

Qup=1{t € H . |R(7)| £ Aand J(r) > B}
Let’s provide the proof,

PROOF (LEMMA 2.1). To show that G, is a weakly modular form of weight k, we will have
to show that G, satisfies the conditions in Definition 1.1,
(a) We observe that,

1 1
Gz +1) = Zzz e+ Dk Zzz (mt + (m + n)k

(m,n)e (m,n)e
(m,n)#(0,0) (m,n)#(0,0)
= Z _ wheren' =m+n
ez (mt + n')k
(m,n'—m)#(0,0)
1
— =G,
(e (mt +n')k
(m,n")#(0,0)

Since, we know that (m,n’ — m) = (0, 0) if and only if (m, n’) = (0, 0).
(b) We observe that,

o) 3 — e 3 o

— k
(m,n)ez? (m (__1> + n) (m,n)ez? (I’lT m)
(m,n)#(0,0) T (m,n)#(0,0)
1
=k Z ——  wherem' =nandn' = -m
(ml’n/)622 (mIT + n/)k
(—n’,m")#(0,0)
1
k k
=7 — =71"G,
(ml,nl)622 (mT + n’)k
(m',n")#(0,0)

Since, we know that (—n’, m’") = (0, 0) if and only if (m’, n") = (0, 0).
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(c) Let us show that the series,

1
(§ max{|c, |d|}
(c,d)#(0,0)

converges. We have

2 maX{ICI iy = 2 o, |7 maX{O iy 2 2, maxtiel, T max{|c| |d]}*

(c,d)ez? dez ceZ dezZ
(c.d)#(0,0) d#0 c#0
(o]
=2 + 2
dzz:l CZ;(%:Z max{c |d |3+
(o]
=2 +2)> —4+2 _
dZ::l Z cz;%:z max{c ||}
d+#0

= 4¢(k) +422

c=1d=1

_4g(k)+42<2—+ > dk)

max{c d}x

c=1 \d=1 d=c+1

—4§(k)+42( + Z dk)
d=c+1

= 4 (k) + 4¢(k — 1) +4Z Z —
c=1d= c+1

At this point we apply the integral test:
1
Z ——— <4 (k) + 4 (k — 1)+4Z Z
(Cd)EZZ max{lcl |d|}k c=1d= C+1

(c,d)#(0,0)

<4§(k)+4§(k—1)+42(( +1)k+f Fdx>

1
{ (k= 1)(c+ Dk

=4(k)+4¢(k—1)+4¢Kk)—1) + 42

_4g(k)+4§(k—1)+4(§(k)—1)+4z )k 1
< 409 + (K — 1)+ 40— 1) + 4 (k -D-1D

Hence the series converges absolutely.

Now, consider the set Q, 5. We will claim (w/o proof) that there exists a constant
C > 0, which depends only on A and B, such that |7 + §| > C max{1, |6|} for every
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(d)

7 € Q4 p and every § € R. Consequently,

> ol Y

k| = k
(mmez? (mt +n) ez |mt + n|
(m,n)#(0,0) (m,n)#(0,0)

=2k + ).
(m,n)ez? |m|k ‘T + n
m#£0 m

1

1
'k

<2k + Y

(mmez? |m|kCk max {1,
m#£0

n ‘}k
1 1
<2l += )
k
Ck & . max{|m], |n|}*
m#0

1 1
< 2(0) + = —
C* (C,d)zezz max{|c|, [d[}*
(c,d)#(0,0)

Hence the series converges absolutely and uniformly on Q, 5. Since for every T € J
there exists A, B € R, such that 7 € Q, 3, it follows from the Analytic Convergence
Theorem that G, is analytic in J.

Let R =1 and let

1 1
M =20(k) + — S —
G 2, max(el 1T
(c,d)#(0,0)

From Part (c), we know that G, (7) analyticin Q, ;. It remains to prove that | f(7)| < M
whenever 3(7) > R. Suppose that 7 satisfies §(7) > R. We consider two cases.
Case 1. Suppose that |R(7)| < 1. Then t € Q,; and from Part (c), we know that
Gy(7) is bounded on Q, ; by M. So the result holds in this case.

Case 2. Suppose that |R(7)| > 1. It follows from Part (a) that G,(t) = G, (t + ¢) for
every integer ¢. We choose ¢ sothat0 < R(7) + ¢ < 1. Since R(t +¢) =R(t) + ¢
and (7 + ¢) = (1), we conclude that  + ¢ € Q, ;. But then |G, (7 + ¢)| < M, and
s0 |G (7)| = |G (T + €)| £ M, as expected. Hence G, is analytic at co.

Combining (a), (b), (¢), (d), we conclude that G, is a weakly modular form of weight k.

LEMMA 2.2. For even k > 2, the Fourier Series of E;(7) = G, (t)/2¢(k) is given by

2k — .
E(t)=1- B, Z oy (n)e*™"*

n=1

Here B, is the k'™ Bernoulli number and ¢,, = N — N is the m™ sum of positive divisor
function:

HOEDWL

dln
d>0
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Perhaps surprisingly, the set of all weakly modular forms of weight k, denoted M, forms
a finite-dimensional vector space over C. Use the fact that the vector space Mj is one-
dimensional, as well as the fact that the Fourier series is unique, to prove that Eg(7) =
(E,(1))* for every T € J(.

PROOF (LEMMA 2.2). We observe that, since E,(7) is a weakly modular form of weight 4,
and (E,(7))? is a weakly modular form of weight 8. Using the similar technique used in
Lemma 2.1, we can verify that all the desired four properties are satisfied. Now, since the
vector space M is one-dimensional and Eg, E; € Mj, the set {Eg, E} is linearly dependent.
Since neither E; nor E; are identically equal to zero, it must be the case that E; is a scalar
multiple of Eg, i.e., Eg(t) = c¢(E,(t))?* for some nonzero ¢ € C. But the leading coefficient
of Eg is 1, while the leading coefficient of ¢(E,(7))? is c. Since the Fourier series is unique,
the leading coefficients must be equal, and so we conclude that ¢ = 1. Hence, Eg = E;.

LEMMA 2.3. By equating the coefficients in the relation E¢(t) = (E,(7))? we have

n—1

05(n) = 05(n) + 120 Y 05(i)os(n — i)

i=1
foreveryn € N.

PROOF (LEMMA 2.3). We recall that if Za.qi is a formal power series, then the n™ coefficient
of ¥ bq* = O] a;q')? is equal to

bn = a;ay,_;
i=0

Now, let ¢ = ¢?™*. From Lemma 2.2 we know that

E,(t) =1+ 240 Z o5(n)e? it = Z a,q"

n=1 n=0
Eg(7) =1+ 480 Z o,(n)e* it = Z b,q"
n=1 n=0

where

a, =1, a, = 24005(n)
b, =1, b, = 4800,(n)

for n € N. Since, Eg = Ej and the Fourier series is unique, we conclude that, for every
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neN,

4800,(n) = b,

n
= Z a;Qp_;
i=0
n—1

= 2a,0a, + Z a;a,_;
i=1
n-1

= 48003(n) + ) ,(24005(1))(24005(n — 1))

i=1

= 480 <a3(n) + 120 Z_: o;(i)os(n — i))

i=1
dividing both sides by 480, we get our desired identity

n—1

0,(n) = o5(n) + 120 Z o5(i)os(n —1i)

i=1

Hence proved.
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