Simplicity of the alternating group A_n for $n \ge 5$

Sachin Kumar

University of Waterloo, Faculty of Mathematics

Abstract

In this essay, we will provide the required background (in form of *claims*) to prove that the alternating group A_n is simple for $n \ge 5$.

Theorem. The alternating group A_n is a simple group for $n \ge 5$.

Proof. We will prove our following claims (which build a background for our proof):

Claim 1. For $n \ge 3$, A_n is generated by 3-cycles. For $n \ge 5$, A_n is generated by the permutations of type (2, 2).

Proof of Claim 1. The identity (1) is (123)(132), which is a product of 3-cycles. Now pick an non-identity element of A_n , say σ and write it as a product of transpositions in S_n :

$$\sigma = \tau_1 \tau_2 \cdots \tau_r$$

The left side has sign 1 and the right side has sign $(-1)^r$, so r is even. Therefore, we can collect the products of the right into successive transpositions $\tau_i \tau_{i+1}$, where i = 1, 3, ... is odd. We will now show every product of two transpositions in S_n is a product of two 3-cycles, so σ is a product of 3-cycles.

<u>Case 1:</u> τ_i and τ_{i+1} are equal. Then $\tau_i \tau_{i+1} = (1) = (123)(132)$, so we can replace $\tau_i \tau_{i+1}$ with a product of two 3-cycles.

<u>Case 2:</u> τ_i and τ_{i+1} have exactly one element in common. Let the common element be a, so we can write $\tau_i = (ab)$ and $\tau_{i+1} = (ac)$, where $b \neq c$. Then,

$$\tau_i \tau_{i+1} = (ab)(ac) = (acb) = (abc)(abc)$$

so we can replace $\tau_i \tau_{i+1}$ with a product of two 3-cycles.

<u>Case 3:</u> τ_i and τ_{i+1} have no element in common. This means τ_i and τ_{i+1} are disjoint, so we can write $\tau_i = (ab)$ and $\tau_{i+1} = (cd)$ where a, b, c, d are distinct, so $n \ge 4$. Then

$$\tau_i \tau_{i+1} = (ab)(cd) = (ab)(bc)(bc)(cd) = (bca)(adb) = (abc)(bcd)$$

so we can replace $\tau_i \tau_{i+1}$ with a product of two 3-cycles.

To show for $n \ge 5$ that A_n is generated by permutations of type (2, 2), it suffices to write each 3-cycle (abc) in terms of such permutations. Pick $d, e \notin \{a, b, c\}$, we can do this since $n \ge 5$. Then note

$$(abc) = (ab)(de)(de)(bc)$$

and the permutations (ab)(de) and (de)(bc) have type (2,2), since a, b, c, d, e are distinct. \Box

Claim 2. For $n \geq 5$, all 3-cycles in A_n are conjugate in A_n .

Proof of Claim 2. We show every 3-cycle in A_n is conjugate within A_n to (123). Let σ be a 3-cycle in A_n . It can be conjugated to (123) in S_n :

$$(123) = \pi \sigma \pi^{-1}$$

for some $\pi \in S_n$. If $\pi \in A_n$, we're done! Otherwise, let $\pi' = (45)\pi$, so $\pi' \in A_n$ and

$$\pi' \sigma \pi'^{-1} = (45)\pi \sigma \pi^{-1}(45) = (45)(123)(45) = (123)$$

Hence proved. \Box

Claim 3. When $n \ge 5$, each non-trivial σ in A_n has a conjugate $\sigma' \ne \sigma$ such that $\sigma(i) = \sigma'(i)$ for some *i*.

Proof of Claim 3. Let r be the longest length of a disjoint cycle in σ . By replacing σ with a conjugate permutation, which is also in A_n and has the effect of just relabeling the numbers form 1 to n when σ permutes in them, so we can assume the disjoint r-cycle in σ is (12...r) and then we can write

$$\sigma = (12 \dots r)\pi$$

where (12...r) and π are disjoint.

If $r \ge 3$, let $\tau = (345)$ and $\sigma' = \tau \sigma \tau'$. Then $\sigma(1) = 2$, $\sigma'(1) = 2$, $\sigma(2) = 3$ and $\sigma'(2) = 4$. Thus, $\sigma' \ne \sigma$ and both take the same value at q.

If r = 2, then σ is a product of disjoint transpositions. If there are at least 3 disjoint transpositions involved, then $n \ge 6$ and we can write $\sigma = (12)(34)(56)(...)$ after relabeling. Let $\tau = (12)(35)$ and $\sigma' = \tau \sigma \tau'$. Then $\sigma(1) = 2$, $\sigma'(1) = 2$, $\sigma(3) = 4$ and $\sigma'(3) = 6$. Again, we see $\sigma' \ne \sigma$ and σ and σ' have the same value at 1.

If r = 2 and σ is a product of 2 disjoint transpositions, write $\sigma = (12)(34)$ after relabeling. Let $\tau = (132)$ and $\sigma' = \tau \sigma \tau' = (13)(24)$. Then $\sigma' \neq \sigma$ and they both fix at 5. \Box

Now, we will prove that A_n is a simple group for $n \ge 5$. Let's consider the case, where n = 5. We want to show the only normal subgroups of A_5 are $\{(1)\}$ and A_5 . Let $N \triangleleft A_5$ with |N| > 1. We will show N contains a 3-cycle. It follows that $N = A_n$ by Claim 1 and Claim 2. Pick $\sigma \in N$ with $\sigma \neq (1)$. The cycle structure of σ is (abc), (ab)(cd), or (abcde), where different letters represent different numbers. Since, we want to show N contains a 3-cycles, we may suppose σ has the second and third cycle type. In the second case, N contains

$$((abe)(ab)(cd)(abe)^{-1})(ab)(cd) = (be)(cd)(ab)(cd) = (aeb)$$

In the third case, N contains,

$$((abc)(abcde)(abc)^{-1})(abcde)^{-1} = (adebc)(aedcb) = (abd)$$

Therefore, N contains a 3-cycle, so $N = A_5$.

Now, lets consider the case, where n > 5. For $1 \le i \le n$, let A_n act in the natural way on $\{1, 2, \ldots, n\}$ and let $H_i \subset A_n$ be the subgroup fixing i, so $H_i \cong A_{n-1}$. By induction, each H_i is simple. Note each H_i contains a 3-cycle, i.e., build out of 3 numbers other than i. Let $N \triangleleft A_n$ be a non-trivial normal subgroup. We want to show that $N = A_n$. Pick $\sigma \in N$ with $\sigma \neq \{(1)\}$. By *Claim 3.*, there is a conjugate σ' of σ such that $\sigma' \neq \sigma$ and $\sigma(i) = \sigma'(i)$ for some i. Since, N is normal in A_n , $\sigma' \in N$. Then, $\sigma^{-1}\sigma'$ is a non-identity element of N that fixes i. so $N \cap H_i$ is a non-trivial subgroup of H_i . It is also a normal subgroup of H_i , since $N \triangleleft A_n$. Since, H_i is simple,

 $N \cap H_i = H_i$. Therefore, $H_i \subset N$. Since, H_i contains a 3-cycle, N contains a 3-cycle and we are done! Alternatively, we can show $N = A_n$ when $N \cap H_i$ is non-trivial for some i as follows. As before, since $N \cap H_i$ is a non-trivial normal subgroup of H_i , $H_i \subset N$. Without referring to 3-cycles, we instead note that the different H_i 's are conjugate subgroups of A_n : $\sigma H_i \sigma^{-1} = H_{\sigma(i)}$ for $\sigma \in A_n$. Since, $N \triangleleft A_n$ and N contains H_i , N contains every $H_{\sigma(i)}$ for all $\sigma \in A_n$. Since, $\sigma(i)$ can be an arbitrary element of A_n as σ varies in A_n , N contains every H_i . Every permutation of type (2,2) is in some H_i since $n \ge 5$, so N contains all permutations of type (2,2). Every permutation in A_n is a product of permutations of type (2,2), so $N \supset A_n$. Therefore, $N = A_n$.