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Abstract

In this essay, we will provide the required background (in form of claims) to prove that the
alternating group An is simple for n ≥ 5.

Theorem. The alternating group An is a simple group for n ≥ 5.

Proof. We will prove our following claims (which build a background for our proof):

Claim 1. For n ≥ 3, An is generated by 3-cycles. For n ≥ 5, An is generated by the permutations
of type (2, 2).

Proof of Claim 1. The identity (1) is (123)(132), which is a product of 3-cycles. Now pick an
non-identity element of An, say σ and write it as a product of transpositions in Sn:

σ = τ1τ2 · · · τr
The left side has sign 1 and the right side has sign (−1)r, so r is even. Therefore, we can collect
the products of the right into successive transpositions τiτi+1, where i = 1, 3, . . . is odd . We will
now show every product of two transpositions in Sn is a product of two 3-cycles, so σ is a product
of 3-cycles.

Case 1: τi and τi+1 are equal. Then τiτi+1 = (1) = (123)(132), so we can replace τiτi+1 with a
product of two 3-cycles.

Case 2: τi and τi+1 have exactly one element in common. Let the common element be a, so we
can write τi = (ab) and τi+1 = (ac), where b ̸= c. Then,

τiτi+1 = (ab)(ac) = (acb) = (abc)(abc)

so we can replace τiτi+1 with a product of two 3-cycles.
Case 3: τi and τi+1 have no element in common. This means τi and τi+1 are disjoint, so we can

write τi = (ab) and τi+1 = (cd) where a, b, c, d are distinct, so n ≥ 4. Then

τiτi+1 = (ab)(cd) = (ab)(bc)(bc)(cd) = (bca)(adb) = (abc)(bcd)

so we can replace τiτi+1 with a product of two 3-cycles.
To show for n ≥ 5 that An is generated by permutations of type (2, 2), it suffices to write each

3-cycle (abc) in terms of such permutations. Pick d, e ̸∈ {a, b, c}, we can do this since n ≥ 5. Then
note

(abc) = (ab)(de)(de)(bc)

and the permutations (ab)(de) and (de)(bc) have type (2, 2), since a, b, c, d, e are distinct.

Claim 2. For n ≥ 5, all 3-cycles in An are conjugate in An.

Proof of Claim 2. We show every 3-cycle in An is conjugate within An to (123). Let σ be a
3-cycle in An. It can be conjugated to (123) in Sn:

(123) = πσπ−1
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for some π ∈ Sn. If π ∈ An, we’re done! Otherwise, let π′ = (45)π, so π′ ∈ An and

π′σπ′−1 = (45)πσπ−1(45) = (45)(123)(45) = (123)

Hence proved.

Claim 3. When n ≥ 5, each non-trivial σ in An has a conjugate σ′ ̸= σ such that σ(i) = σ′(i)
for some i.

Proof of Claim 3. Let r be the longest length of a disjoint cycle in σ. By replacing σ with a
conjugate permutation, which is also in An and has the effect of just relabeling the numbers form
1 to n when σ permutes in them, so we can assume the disjoint r-cycle in σ is (12 . . . r) and then
we can write

σ = (12 . . . r)π

where (12 . . . r) and π are disjoint.
If r ≥ 3, let τ = (345) and σ′ = τστ ′. Then σ(1) = 2, σ′(1) = 2, σ(2) = 3 and σ′(2) = 4. Thus,

σ′ ̸= σ and both take the same value at q.
If r = 2, then σ is a product of disjoint transpositions. If there are at least 3 disjoint trans-

positions involved, then n ≥ 6 and we can write σ = (12)(34)(56)(. . . ) after relabeling. Let
τ = (12)(35) and σ′ = τστ ′. Then σ(1) = 2, σ′(1) = 2, σ(3) = 4 and σ′(3) = 6. Again, we see
σ′ ̸= σ and σ and σ′ have the same value at 1.

If r = 2 and σ is a product of 2 disjoint transpositions, write σ = (12)(34) after relabeling. Let
τ = (132) and σ′ = τστ ′ = (13)(24). Then σ′ ̸= σ and they both fix at 5.

Now, we will prove that An is a simple group for n ≥ 5. Let’s consider the case, where n = 5.
We want to show the only normal subgroups of A5 are {(1)} and A5. Let N◁A5 with |N | > 1. We
will show N contains a 3-cycle. It follows that N = An by Claim 1 and Claim 2. Pick σ ∈ N with
σ ̸= (1). The cycle structure of σ is (abc), (ab)(cd), or (abcde), where different letters represent
different numbers. Since, we want to show N contains a 3-cycles, we may suppose σ has the second
and third cycle type. In the second case, N contains

((abe)(ab)(cd)(abe)−1)(ab)(cd) = (be)(cd)(ab)(cd) = (aeb)

In the third case, N contains,

((abc)(abcde)(abc)−1)(abcde)−1 = (adebc)(aedcb) = (abd)

Therefore, N contains a 3-cycle, so N = A5.
Now, lets consider the case, where n > 5. For 1 ≤ i ≤ n, let An act in the natural way on

{1, 2, . . . , n} and let Hi ⊂ An be the subgroup fixing i, so Hi
∼= An−1. By induction, each Hi is

simple. Note each Hi contains a 3-cycle, i.e., build out of 3 numbers other than i. Let N ◁ An

be a non-trivial normal subgroup. We want to show that N = An. Pick σ ∈ N with σ ̸= {(1)}.
By Claim 3., there is a conjugate σ′ of σ such that σ′ ̸= σ and σ(i) = σ′(i) for some i. Since, N
is normal in An, σ

′ ∈ N . Then, σ−1σ′ is a non-identity element of N that fixes i. so N ∩Hi is a
non-trivial subgroup of Hi. It is also a normal subgroup of Hi, since N ◁An. Since, Hi is simple,
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N ∩Hi = Hi. Therefore, Hi ⊂ N . Since, Hi contains a 3-cycle, N contains a 3-cycle and we are
done! Alternatively, we can show N = An when N ∩ Hi is non-trivial for some i as follows. As
before, since N ∩Hi is a non-trivial normal subgroup of Hi, Hi ⊂ N . Without referring to 3-cycles,
we instead note that the different Hi’s are conjugate subgroups of An: σHiσ

−1 = Hσ(i) for σ ∈ An.
Since, N ◁ An and N contains Hi, N contains every Hσ(i) for all σ ∈ An. Since, σ(i) can be an
arbitrary element of An as σ varies in An, N contains every Hi. Every permutation of type (2, 2)
is in some Hi since n ≥ 5, so N contains all permutations of type (2, 2). Every permutation in An

is a product of permutations of type (2, 2), so N ⊃ An. Therefore, N = An.
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