Solving quadratic equation without a formula!

Sachin Kumar University of Waterloo, Faculty of Mathematics

June 2023

This essay will discuss about an ancient Babylonian method to solve the quadratic equation, which got buried after the introduction of the quadratic formula. But why is this a better method? In trivial equations, this method may look tedious but for non-trivial equations, this method is extremely effective and requires basic calculations.

Traditional method: Quadratic formula

Let f(x) be a quadratic equation of the form,

$$\alpha x^2 + \beta x + \gamma = 0$$

with $\alpha, \beta, \gamma \in \mathbb{R} \setminus 0$. Then,

$$x = \frac{-\beta \pm \sqrt{d}}{2\alpha}$$

where $d = \beta^2 - 4\alpha\gamma$, is called the discriminant.

- When d > 0, there exists $x_1, x_2 \in \mathbb{R}$, where $x_1 \neq x_2$.
- When d = 0, there exists $x_1, x_2 \in \mathbb{R}$, where $x_1 = x_2$.
- When d < 0, there exists $x_1, x_2 \in \mathbb{C}$, where $x_1 \neq x_2$ and are complex conjugates of each other.

As a typical mathematician, let's derive the quadratic formula! Let's start with $\alpha x^2 + \beta x + \gamma = 0$, then dividing by α , we get

$$x^{2} + \frac{\beta}{\alpha}x + \frac{\gamma}{\alpha} = 0$$
$$x^{2} + \frac{\beta}{\alpha}x = -\frac{\gamma}{\alpha}$$
$$x^{2} + \frac{\beta}{\alpha}x + \left(\frac{\beta}{2\alpha}\right)^{2} = -\frac{\gamma}{\alpha} + \left(\frac{\beta}{2\alpha}\right)^{2}$$
$$\left(x + \frac{\beta}{2\alpha}\right)^{2} = -\frac{\gamma}{\alpha} + \left(\frac{\beta}{2\alpha}\right)^{2}$$

Now, we will solve for x,

$$\left(x + \frac{\beta}{2\alpha}\right)^2 = -\frac{\gamma}{\alpha} + \left(\frac{\beta}{2\alpha}\right)^2$$
$$x + \frac{\beta}{2\alpha} = \pm \sqrt{-\frac{\gamma}{\alpha} + \left(\frac{\beta}{2\alpha}\right)^2}$$
$$x = -\frac{\beta}{2\alpha} \pm \sqrt{-\frac{\gamma}{\alpha} + \left(\frac{\beta}{2\alpha}\right)^2}$$

This is actually solved! Let's just simplify it further,

$$x = \frac{-\beta \pm \sqrt{-\frac{\gamma}{\alpha}(2\alpha)^2 + \left(\frac{\beta}{2\alpha}\right)^2 (2\alpha)^2}}{\frac{2\alpha}{-\beta \pm \sqrt{\beta^2 - 4\alpha\gamma}}}$$

We are done!

Using quadratic formula for non-trivial equation may involve complicated computations, so we will discuss a more elegant method to solve the quadratics.

Elegant method: The Babylonians

Let f(x) be a quadratic equation of the form,

$$\alpha x^{2} + \beta x + \gamma = 0$$
$$x^{2} + \frac{\beta}{\alpha} x + \frac{\gamma}{\alpha} = 0$$

with $\alpha, \beta, \gamma \in \mathbb{R} \setminus 0$. Then,

$$x^{2} + \frac{\beta}{\alpha}x + \frac{\gamma}{\alpha} = (x + x_{1})(x + x_{2})$$
$$= x^{2} + (x_{1} + x_{2})x + x_{1}x_{2}$$

We get,

Sum:
$$x_1 + x_2 = \frac{\beta}{\alpha}$$

Product: $x_1 x_2 = \frac{\gamma}{\alpha}$

We will now find the midpoint,

$$\frac{x_1 + x_2}{2} = \frac{\beta}{2\alpha}$$

Now, we know that the constant, $\frac{\beta}{2\alpha}$ is equidistant between the roots x_1 and x_2 . Let's denote the equidistant as u, so we get

$$x_1 = \frac{\beta}{2\alpha} - u \tag{0.1}$$

$$x_2 = \frac{\beta}{2\alpha} + u \tag{0.2}$$

and we know that $x_1 x_2 = \frac{\gamma}{\alpha}$, substituting with what we got,

$$\left(\frac{\beta}{2\alpha} - u\right) \left(\frac{\beta}{2\alpha} + u\right) = \frac{\gamma}{\alpha}$$
$$\left(\frac{\beta}{2\alpha}\right)^2 - u^2 = \frac{\gamma}{\alpha}$$
$$u^2 = \left(\frac{\beta}{2\alpha}\right)^2 - \frac{\gamma}{\alpha}$$
$$u = \sqrt{\left(\frac{\beta}{2\alpha}\right)^2 - \frac{\gamma}{\alpha}}$$

Now, the computation is trivial, by substituting u in (0.1) and (0.2).