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This essay will discuss about an ancient Babylonian method to solve the quadratic equation, which
got buried after the introduction of the quadratic formula. But why is this a better method? In trivial
equations, this method may look tedious but for non-trivial equations, this method is extremely effective
and requires basic calculations.

Traditional method: Quadratic formula
Let f(x) be a quadratic equation of the form,

αx2 + βx+ γ = 0

with α, β, γ ∈ R \ 0. Then,

x =
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where d = β2 − 4αγ, is called the discriminant.

• When d > 0, there exists x1, x2 ∈ R, where x1 ̸= x2.

• When d = 0, there exists x1, x2 ∈ R, where x1 = x2.

• When d < 0, there exists x1, x2 ∈ C, where x1 ̸= x2 and are complex conjugates of each other.

As a typical mathematician, let’s derive the quadratic formula!
Let’s start with αx2 + βx+ γ = 0, then dividing by α, we get
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Now, we will solve for x, (
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This is actually solved! Let’s just simplify it further,
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We are done!
Using quadratic formula for non-trivial equation may involve complicated computations, so we will discuss
a more elegant method to solve the quadratics.

Elegant method: The Babylonians
Let f(x) be a quadratic equation of the form,

αx2 + βx+ γ = 0
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with α, β, γ ∈ R \ 0. Then,
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= x2 + (x1 + x2)x+ x1x2

We get,
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We will now find the midpoint,
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Now, we know that the constant, β
2α

is equidistant between the roots x1 and x2. Let’s denote the equidistant
as u, so we get
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and we know that x1x2 =
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Now, the computation is trivial, by substituting u in (0.1) and (0.2).
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