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Abstract

Why should a number theorist be interested in algebraic geometry? In this essay we hope
to demonstrate one very good reason, by showing essentially geometric reasons why certain
Diophantine equations fail to have solutions. But we will begin by placing the study of Dio-
phantine equations into the context of algebraic geometry, to see how techniques from many
different realms of mathematics can be useful in their study.

1 Why algebraic geometry for a number theorist?

Suppose that we are interested in studying the integer or rational solutions to a polynomial equation
f ∈ Z[X0, X1, . . . , Xn]. We assume f to be homogeneous, so that the sets of rational and integer
solutions concide: more precisely, any integer solution may be turned into a rational one by clearing
denominators. We wish to define a geometric object X as

X = {f = 0} ⊂ Pn (1)

so that X is the zero-set of the polynomial f in projective space. This is, as it stands, not a
definition at all. What we really mean is, for example,

X(Q) = {[X0 : · · · : . . . , Xn] ∈ Pn(Q) | f(X0, . . . , Xn) = 0} (2)

where Pn(Q) is the set of (n+1)-tuples of rational numbers, modulo multiplying them all through
by a common factor. Given that f has integer coefficients, we can take any (n+1)-tuple of elements
of any ring R and substitute it into f , and so define X(R) in exactly the same way, replacing Q
by R in the definition (2) above. In this way we can consider the sets X(R), X(C), X(Fp) and so
on. There are obvious maps between some of these sets: for example, Q is contained in R and so
X(Q) is contained in X(R).

Remark 1.1 What we have defined here is a mapping R 7→ X(R) which is actually a functor
from the category of commutative rings to that of sets. This functor is the functor of points of the
scheme X defined in (1). This way of looking at schemes can be very profitable: see [2, Chapter
VI] for an explanation.

In Figure 1, several of these point sets are shown. The one which really interests us is X(Q),
the set of rational solutions to our polynomial equation. Unfortunately, this is also the point set
we know least about. The object of studying the algebraic geometry of X is to use techniques
available over the various fields other than Q to deduce facts about X(Q). For example:

• On X(R), we can use real analysis. For example, if X is smooth then X(R) is a real manifold.
In particular, it is easy to check whether X(R) = ∅, and if X(R) = ∅, then X(Q) is certainly
empty too!
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• On X(C), we have all the tools available to study complex analytic varieties. For example,
X(C) has cohomology groups which give much information about its geometry, and these
come with Hodge decompositions.

• It may not be obvious that much can be said about X(Q̄) However, a general idea known
as the Lefschetz principle says that any algebraic fact which can be proved about X(C),
whether or not the proof uses methods outside algebra, also applies to X(Q̄) and indeed to
X(K) where K is any algebraically closed field of characteristic zero. In particular, in this
paper we will use the fact that the Picard groups of X over Q̄ and over C are the same, and
will often identify them.

• Given that X is defined over Q, many objects associated to X over Q̄ come equipped with
an action of the Galois group Gal(Q̄/Q). In particular, the point set X(Q) and the Picard
group Pic (XQ̄) have Galois actions, and we can use Galois theory to deduce results about
the corresponding objects over Q.

• In the same way that X(Q) embeds into X(R), it also embeds into X(Qp) for any prime p.
Again, X(Qp) can be studied by analytic methods, and in particular it is straightforward to
decide whether X(Qp) is empty for any given p.

• Given that X is a projective variety, any point in X(Qp) can be represented as [x0 : · · · : xn]
where the xi all lie in Zp and are not all divisible by p. This point then has a well-defined
reduction modulo p, and so we get a map from X(Qp) → X(Fp). Often, the study of X(Qp)
actually comes down to the study of X(Fp), especially when p is a prime of good reduction
for X. Varieties over finite fields have many advantages - in particular, they have only finitely
many points which can therefore be listed!

• Finally, a rather more deep and complicated link exists between the geometry of X(F̄p) and
that of X(C), given by the Weil conjectures. We will not discuss this link at all in this course,
but mention it as a powerful example of the application of algebraic geometry to arithmetic.

2 The Picard group

Given a set of polynomial equations defined over Q, we aim to study their rational solutions by
considering the geometry of the variety X which they define. One geometric invariant which has
a great effect on the arithmetic is the Picard group of X, and we will devote some time to the
general definition of the Picard group and to understanding its structure for some specific surfaces.

2.1 Definition of the Picard group

One way to see the construction of the Picard group is to try to mimic the construction of the
homology groups of a manifold. In that case, we form a free group of “cycles” and take the quotient
by a subgroup of “boundaries”. In the case of algebraic varieties, it is reasonable to replace the
cycles by algebraic subvarieties. However, there is nothing immediately obvious to replace the
boundaries, since a subvariety does not have a boundary. Many ways have been devised to solve
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this problem in arbitrary codimension, but in codimension one there is one which is particularly
straightforward to define.

In what follows, X will be a smooth irreducible variety over a field k.
Definition 2.1. A prime divisor on a smooth variety X over a field k is an irreducible closed
subvariety Z ⊂ X of codimension one, also defined over k. A divisor is a finite formal linear
combination D =

∑
i niZi with ni ∈ Z of prime divisors. The group of divisors on X, which is the

free group on the prime divisors, is denoted Div X.
Remark 2.2. A prime divisor is not required to be nonsingular.
Remark 2.3. If X is a variety over a field k which is not algebraically closed, then a prime divisor
may not be geometrically irreducible. For example, the 0-dimensional variety {x2 = 2} ⊂ A1

Q is

irreducible as a variety over Q and is therefore a prime divisor on A1
Q.

Definition 2.4. A divisor D =
∑

i niZi is effective if ni ≥ 0 for all i.
Definition 2.5. The support of a divisor D, written supp D, is the closed subset of X given by

supp

(∑
i

niZi

)
=
⋃
ni ̸=0

Zi

To define an equivalence relation on divisors, we use the rational functions on X. For any prime
divisor Z on X, we would like to define the valuation of a function f along that divisor. Since X
is smooth, the local ring OX,Z is a discrete valuation ring and so defines a discrete valuation vZ
on its field of fractions. This is simply the function field κ(X) of X, so we get a discrete valuation
vZ : κ(X) → Z for each prime divisor D.

If vZ(f) = d > 0, then we say that f has a zero of order d along Z (and, indeed this happens
if and only if f vanishes at almost all points of Z). If vZ(f) = −d < 0, then we say that f has a
pole of order d along Z. If vZ(f) ≥ 0 then f is regular at Z.

Using the valuations, we can associate a divisor to any rational function f .
Definition 2.6. Let f ∈ κ(X) be a rational function on X. We define the divisor of f to be

div f = (f) =
∑
Z

vZ(f)Z

where the sum is taken over all prime divisors Z ⊂ X.
Remark 2.7. This sum is finite - that is, vZ(f) = 0 for all but finitely many prime divisors Z. To
see this, write f as a quotient of two polynomials; they are each zero only on a closed subset of
codimension one in X, which is therefore the union of finitely many prime divisors.
Definition 2.8. A divisor which is of the form (f) for some f ∈ κ(X) is called a principal divisor.
The subgroup of Div X consisting of the principal divisors is denoted by Princ X.
Definition 2.9. Two divisors D,D′ ∈ Div X are linearly equivalent, written D ∼ D′, if their
difference D −D′ is principal.
Example 2.10. Suppose that D and D′ are two effective divisors, with disjoint supports, which
are linearly equivalent. Then, by definition, there is a function f ∈ κ(X) such that (f) = D −D′.
Now the function f defines a rational map from X → P1

k, such that f−1(0) = D and f−1(∞) = D′.
The other fibres of this rational map are all effective divisors which are also linearly equivalent to
D, so give a “family” of effective divisors “moving” from D to D′.
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We can now define the Picard group of a smooth variety.
Definition 2.11. Let X be a smooth variety. The Picard group of X is the quotient group

Pic X = Div X/Princ X

Remark 2.12. For a general (not necessarily smooth) variety X, what we have defined is not
the Picard group, but the Weil divisor class group. The Picard group in general is the group of
isomorphism classes of line bundles on X. If X is normal, we can define a Cartier divisor to be
a divisor Z which is locally principal: that is, each point of supp Z has a neighbourhood is which
Z is principal. For an irreducible normal variety, the Picard group is isomorphic to the group of
Cartier divisors modulo linear equivalence. This is equal to the Weil divisor class group if X is
locally factorial and, in particular, if X is smooth. For a thorough treatment of these ideas, see
Section II.6 of [3].
Example 2.13. Pic An = 0 for any n ≥ 1. To prove this, we must show that any irreducible
subvariety of codimension one in An may be defined by a single polynomial. This reduces to the
algebraic fact that, in a unique factorisation domain, any prime ideal of height one is principal.
For a proof, see [1, Corollary 10.6].
Example 2.14. Let D be a divisor on a smooth variety X and let P be a point of X. Then
D is linearly equivalent to a divisor D′ with P ̸∈ supp D′. For the local ring OX,P is a unique
factorisation domain, and so by using the same result as the previous example we can find a
neighbourhood U of P and a function f such that, after restricting to U , (f) = D. Therefore
D′ = D − (f) is a divisor linearly equivalent to D and with support avoiding P .
Example 2.15. Given a surfaceX ⊂ P3, a plane section is the divisor onX defined by intersecting
X with a plane (and, if necessary, counting the components with the correct multiplicities). Any
two plane sections of X are linearly equivalent. For let D1 and D2 be the intersections of X with
distinct planes defined by linear forms l1 and l2 respectively. Then the quotient l1/l2 defines a
rational function on X, with divisor (l1/l2) = D1 −D2.

More generally, let X ⊆ Pn be any projective variety. For the same reason, any two hyperplane
sections of X are linearly equivalent. We will often talk of “the” hyperplane section to mean the
class in Pic X of a hyperplane section.
Remark 2.16. Bertini’s Theorem [3, Chapter II, Theorem 8.8] shows that, if X is smooth and k
algebraically closed, then almost all hyperplane sections of X are nonsingular. Generalisations of
this result can give many consequences of the form “Any divisor D is equivalent to a difference
A−B with A,B effective and nice”, where nice can mean, for example: smooth; avoiding a given
finite set of points; transverse to a given finite set of subvarieties; and so on.
Claim 1. Let Z be a prime divisor in a smooth variety X, and let U denote the complement X \Z.
Then the following sequence holds:

Z → Pic X → Pic U → 0

where the first map is 1 7→ Z and the second D 7→ D ∩ U , is exact. Using the sequence, we can
show that Pic Pn ∼= Z for any n ≥ 1.
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2.2 Different ground fields

If the ground field k of the variety X is not algebraically closed, then the above definitions are still
valid. We have

Pic X =
Div X

Princ X
=

Divisors defined over k

Divisors of functions defined over k

On the other hand, we can also consider the base extension X̄ of X to k̄, and its Picard group.
This is

Pic X̄ =
Div X̄

Princ X̄
=

Divisors defined over k̄

Divisors of functions defined over k̄

There is a natural homomorphism i : Pic X → Pic X̄, given by the inclusion Div X ⊆ Div X̄.
The Galois group Gal(k̄/k) acts on Pic X̄, and the image of i lies in the Galois-fixed subgroup
(Pic X̄)Gal(k̄/k). We state a few facts about the map i.

• Div X = (Div X̄)Gal(k̄/k) that is, a divisor is defined over k if and only if it is fixed by the
Galois action. This is a restatement of Remark ??.

• If X is a projective variety, then i is injective. This comes down to saying that if a divisor D
is defined over k and is the divisor of a function defined over k̄, then it is in fact the divisor of
a function defined over k. This is an easy consequence of Hilbert’s Theorem 90 (Proposition
??).

• If k is a number field and X has points everywhere locally - that is, X(kv) ̸= ∅ for all places v
of k - then i is an isomorphism. This is a consequence of the Hasse principle for Severi-Brauer
varieties.

2.3 Intersection numbers

In this section, we let X be a smooth surface over a field k. Given two curves in X, they will
generally intersect in a finite number of points. The number of points is called their intersection
number, and it gives us a very useful bilinear form on the Picard group.

We say that two curves C1, C2 on X intersect transversely at a point P ∈ C1 ∩ C2 if, in the
local ring OX,P , there are functions f1, f2 which generate the unique maximal ideal and are such
that (fi) = Ci on a neighbourhood of P . This definition corresponds to the intuitive notion that
the curves are nonsingular at P and have distinct tangent directions.
Definition 2.17. Let X be a smooth surface over a field k, and let D and D′ be two prime
divisors on X which intersect transversely. We define the intersection number of D and D′ to be
D ·D′ = |D∩D′| where the cardinality of the intersection D∩D′ is taken over the algebraic closure
of k.
Theorem 2.18. Let X be a smooth surface. The intersection number extends to a symmetric
bilinear pairing Div X ×Div X → Z which respects linear equivalence, and hence to a symmetric
bilinear pairing Pic X × Pic X → Z.

Proof. See [3, Chapter V, Theorem 1.1].
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Definition 2.19. Let X be a smooth surface and D a divisor in X. The self-intersection
number of D is the intersection number D2 = D ·D.
Example 2.20. Any two distinct lines in P2 intersect in precisely one point, so have intersection
number 1. Moreover, any line is linearly equivalent to any other line. We deduce that the self-
intersection number of a line in P2 is 1.
Example 2.21. Let X ⊆ Pn be a projective surface, and let H be a hyperplane section of X.
Then H2 is the degree of X, defined to be the number of points of intersection of X with any
sufficiently general linear subspace of dimension n− 2. To see this, use the fact that H2 = H1 ·H2

where H1 and H2 are any two sufficiently general hyperplane sections of X.
Claim 2. Suppose that X is a smooth hypersurface in P3 defined by a single equation of degree d,
then degX = d.
Example 2.22. Let X ⊆ Pn be a projective surface, and let C be an irreducible curve on X.
Then H · C is the degree of C, defined to be the number of points of intersection of C with a
sufficiently general hyperplane.
Claim 3. Let X be the projective quadric surface xy = zw, and let U be the open subset defined
by w ̸= 0. Then U ∼= A2 and deduce that Pic U = 0. X \ U consists of two straight lines. Using
the exact sequence (from Claim 1.), we have Pic X ∼= Z2, generated by the classes of these two
straight lines.

Proof idea. To proof that the two lines are not equivalent, we may use intersection numbers.

The intersection number defines a new equivalence relation on divisors on a surface.
Definition 2.23. Let X be a smooth surface. Two divisors D and D′ on X are said to be
numerically equivalent if D · E = D′ · E for all divisors E on X.

Given that intersection numbers respect linear equivalence, this gives an equivalence relation
coarser than linear equivalence. The subgroup of classes in Pic X which are numerically equivalent
to 0 is denoted by Pic nX.

2.4 Structure of Picard Group over C

When X is a smooth projective variety over the complex numbers C, one can use methods from
the theory of analytic varieties to deduce results about the Picard group of X. Here we mention
briefly some useful facts arising from this.

There is an exact sequence of analytic sheaves on X known as the exponential sequence, which
gives rise to an exact sequence of cohomology groups:

H1(X(C),Z) → H1(X,OX) → Pic X → H2(X(C),Z)

We state several interesting facts about this sequence.

• Since X is a smooth projective variety, X(C) is a compact manifold. Its integral cohomology
groups H i(X(C),Z) are therefore finitely generated abelian groups.

• The group H1(X,OX) is a finite-dimensional complex vector space, and it turns out that
H1(X(C),Z) is a lattice in this vector space. The image of H1(X,OX) in Pic X is therefore
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a complex torus, and in fact is an Abelian variety. It is denoted Pic 0X, and lies inside the
kernel Pic nX of the intersection pairing.

• The image of Pic X in H2(X(C),Z) is isomorphic to Pic X/Pic 0X, and this is therefore a
finitely generated abelian group, called the Néron-Severi group of X.

For more background to these results, see Appendix B of [3].
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