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Abstract

In this essay, we will see what transcendental numbers are and provide the required back-
ground to prove that π is transcendental. We will use some analytic theories in our proof (trust
me it will be more intuitive!).

What is transce... number?

Definition. A transcendental number, α is in R or C that is not algebraic,i.e., there does
not exist f(x) ∈ Q[x] with deg(f) = n < ∞ such that f(α) = 0. The best-known transcendental
numbers are π and e (which we will show!).

We will review some required background before jumping into the proof.
Let,

I(t) =

∫ t

0
et−uf(u) du

where t ∈ C and f(x) ∈ C[x]. Using integration by parts, we get

I(t) = et
∞∑
j=0

f (j)(0)−
∞∑
j=0

f (j)(t) = et
n∑

j=0

f (j)(0)−
n∑

j=0

f (j)(t) (1)

where n = deg f . If f(x) =
n∑

j=0

ajx
j , then we define

f̄(x) =
n∑

j=0

|aj |xj

Then, we get upper bound,

|I(t)| ≤
∣∣∣∣∫ t

0
et−uf(u) du

∣∣∣∣ ≤ |t|max{|et−u|}max{|f(u)|} ≤ |t|e|t|f̄(|t|)

Definition (Argument and Symmetric Polynomials). An argument of a function is a
value provided to obtain the function’s result. A function f(x1, x2) of two arguments is a symmetric
function if and only if f(x1, x2) = f(x2, x1), for all x1 and x2 such that (x1, x2) and (x2, x1) are
in the domain of f . If the symmetric functions are polynomial functions, then we call them as
symmetric polynomials.

Theorem (Fundamental Theorem of Symmetric Functions). Any symmetric polyno-
mial (respectively, symmetric rational function) can be expressed as a polynomial (respectively,
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rational function) in the elementary symmetric polynomials on those variables.

Lemma 1. If α is an algebraic integer with minimal integer polynomial f(x) ∈ Z[x] and if a is
the leading coefficient of f(x), then aα is an algebraic integer

Lemma 2. If α is an algebraic integer and α ∈ Q, then α is an rational integers.

The proof of the fundamental Theorem of Symmetric Functions and other lemmas is left to
the reader (it is pretty fun to prove!)

Finally, we will begin our proof.

Theorem. π is a transcendental number.

Proof. We will prove by contradiction. Suppose for the sake of contradiction assume that π is
algebraic. Then we can claim that iπ is also algebraic, since suppose f(x) ∈ Z[x] and f(π) = 0,
then g(x) = f(ix)f(−ix) ∈ Z[x] and g(iπ) = 0. Therefore, it suffices to prove our following claim,

Main Claim. θ = iπ is transcendental.
Suppse θ is algebraic. Let deg g(x) = r, where g(x) is a minimal polynomial for θ and let

θ1 = θ, θ2, . . . , θr denote the conjugates of θ. Let b denote denote the leading coefficient of g(x).
In particular, bθj is an algebraic integer, by Lemma 1.

By Euler formula (most beautiful equation), i.e, eπi = −1, we deduce that

(1 + eθ1)(1 + eθ2) · · · (1 + eθr) = 0

Multiplying the expression on the left out, we get a sum of 2r term of the form eϕ, where ϕ
is the linear combination of conjugates of θ, i.e., ϕ = e1θ1 + · · · + erθr where ej ∈ {0, 1} for
all j ∈ {1, . . . , r}. Let ϕ1, . . . , ϕn denote the non-zero expressions of this form so that(since the
remaining 2r − n values of ϕ are 0).

q + eϕ1 + · · ·+ eϕr = 0

where q = 2r − n. Let p be a large prime, and let

f(x) = bnpxp−1(x− ϕ1)
p · · · (x− ϕn)

p

By the fundamental theorem of elementary symmetric functions and Lemma 1 and Lemma 2,
f(x) ∈ Z[x], to see this more accurately, consider ϕ1, . . . , ϕ2r as the complete set of ϕ’s as above
(so the first n are still the non-zero ones) and use that,

2r∏
j=1

(x− ϕj) = x2
r−n

n∏
j=1

(x− ϕj)

is symmetric in θ1, . . . , θr. Define,

J =

n∑
i=1

I(ϕi)
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From (1), we deduce that

J = −q

m∑
j=0

f (j)(0)−
m∑
j=0

n∑
k=1

f (j)(ϕk)

wherem = (n+1)p−1. Observe that the sum over k is a symmetric polynomial in bϕ1, . . . , bϕn with
integer coefficients and thus a symmetric polynomial with integer coefficients in the 2r-numbers
bϕ = b(e1θ1 + · · ·+ erθr). Hence, by the fundamental theorem of elementary symmetric functions,
we obtain that this sum is a rational number. Observe that Lemma 1 and Lemma 2, imply that
the sum is further more a rational integer. Since f (j)(ϕk) = 0 for j < p, we deduce that the double
sum in the expression for J above is a rational integer divisible by p!. Observe that f (j)(0) = 0 for
j < p− 1 and p! | f (j)(0), for j ≥ p. Also,

f (p−1)(0) = bnp(−1)np(p− 1)!(ϕ1 · · ·ϕn)
p

From the fundamental theorem of symmetric functions and Lemma 1 and Lemma 2, we deduce
that f (p−1)(0) is a rational integer divisible by (p− 1)!. Furthermore, if p is sufficiently large, then
f (p−1)(0) is not divisible by p. If also, p > q, we deduce that

|J | ≥ (p− 1)!

On the other hand, using the upper bound we obtained for |I(t)|, we have

|J | ≤
n∑

k=1

|ϕk|e|ϕk|f̄(|ϕk|) ≤ c1c
p
2

for some constants c1 and c2. We get a contradiction, completing the proof.
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