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Modules play a major part in modern mathematical research. It is a key character in the field of
representation theory, also in the major area of Langland’s program. A fun fact, a vector space is acually
a module over a field. I hope this gives a motivation to explore this amazing field. In this essay, I will
mostly try to talk above modules over Ring, (or you could say vector spaces over rings), which is kind of
restrictive and non-trivial, but more elegant than, over fields. I would request the reader to know, what a
group, ring and an ideal is, at a minimum!

Let R be a commutative ring. An R-module is a bunch of things, that you can add and subtract, and that
you can multiply by elements of R. OK, that’s obviously a terrible definition. But it captures very well
what a module is. We are pure mathematicians, though, so we will give a rigorous definition.

Definition. LetR be a commutative ring. AR-module is an Abelian groupM and a function · : R×M → M
satisfying the following axioms: For all r, r1, r2 ∈ R and m,m1,m2 ∈ M ,

1. r(m1 +m2) = rm1 + rm2

2. (r1 + r2)m = mr1 +mr2

3. r1(r2m) = (r1r2)m

4. 1m = m

So for a module to make sense, you need to have a ring and a group. This actual module is the group,
but you need to have the ring around to do the multiplying for you. For example, if R is a field, then an
R-module is a vector space.

If R = Z, notice that a Z-module is the same thing as an Abelian group. One direction is non-trivial, any
R-module is an Abelian group regardless of what R is, and to go the other way, notice that an Abelian
group is an Abelian group (yeh!), and you can multiply it by elements of Z (heck yeh!). I mean, to multiply
m by 5, just compute m+m+m+m+m.

If R is any ring, then any ideal I of R is a R-module. In fact, you can define an ideal to be an R-
submodule of R. (An R-submodule of M is exactly what you think it is: it’s a R-module whose elements
are contained in M , and whose operations are the restrictions of the operations of M). Better yet, R/I is
an R-module, for any commutative ring R and ideal I. Morally speaking, you can add and subtract the
elements of R/I, and you can multiply them by elements of R (by reducing them mod I). Technically,
speaking ..., it’s really boring and silly. Check it yourself, if you like. But bring a pillow! An example
that’s a little more directly related to this course, the Gaussian integers Z[i] are a Z-module. You can add
and subtract them, and multiply them by elements of Z. (Again, I leave it to the reader to check that all
the axioms of the technical definition are satisfied). More generally, if T is any ring containing R, then T is
an R-module. So, for example, Q is a Z-module, so is R. More generally, if ϕ : R → T is a homomorphism,
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then T is an R-module. This explains that R/I example too.

As in any part of mathematics, once you define the objects, you have to define the morphisms.

Definition. Let M and N be R-modules. An R-module homomorphism, M → N is a homomorphism
f : M → N of Abelian groups such that f(rm) = rf(m), for all r ∈ R and m ∈ M . An R-module
isomorphism is an R-module homomorphism thats admit a two-sided inverse that is also an R-module
homomorphism, a bijective one.

In other words, an R-module homomorphism is a function that plays nice (commutes) with the addition,
subtraction, and R-multiplication. Notice that because R-module homomorphisms are always homomor-
phisms of Abelian groups, it follows that an R-module homomorphism is an R-module isomorphism if and
only if it’s bijective:

f−1(rn) = f−1(rf(f−1(n))) = f−1(f(rf−1(n))) = rf−1(n)

For example, if R is a field, then an R-module homomorphism is the same thing as a linear transformation
of vector spaces. Proving this is trivial, just use some theories in linear algebra.

Complex conjugation defines a Z-module homomorphism, Z[i] → Z[i]. This is also a homomorphism of
rings. The function x 7→ 2x is a Z-module homomorphism from Z[i] → Z[i], but it’s not a ring homomor-
phism, because 1 doesn’t map to 1. And complex conjugation defines a ring homomorphism Q(i) → Q(i),
but this homomorphism of rings is not a homomorphism of Q(i)-modules. Notice, that the proof here is
very easy and that the image and pre-image of a submodule under a module homomorphism are again
submodules. But there is more work to do before we leave the warm embrace of the modules section.

Definition. Let M be a R-module, S ⊂ M . The submodule generated by S is the intersection of all
submodules containing S.

It’s easy to check that any intersection of R-modules is again an R-module, so this definition makes
sense. And this definition leads to a few more, but most especially, we say that an R-module M is finitely
generated if there is a finite set S that generates M . I guess we should actually prove some stuff.

Theorem. Let M be an R-module, N ⊂ M a submodule. If M is finitely generated, then so is M/N .

Proof. If you can write m ∈ M as a linear combination of generators {xi}, then that linear combination
still works after you reduce modulo N .
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Definition. A ring R is noetherian if and only if every ideal of R is finitely generated.

Theorem. Let M be a finitely generated module over a noetherian ring R. Then every submodule of
M is also finitely generated.

Proof. We’re going to start by proving the theorem in the case that,

M = Rn = R×R× · · · ×R︸ ︷︷ ︸
n times

We will then use a cunning trick to prove it for a general M .
Let N be a submodule of M = Rn. If n = 1, then a R-submodule of M is better known as an ideal of R,
and is therefore finitely generated by assumption. We will now induce on n. If n ≥ 2, then we can write
Rn = Rn−1×R. Let N1 = {(r1, . . . , rn) ∈ N | rn = 0}. Then N1 is isomorphic to an R-submodule of Rn−1,
ie., N1

∼= Rn−1, and so it is finitely generated.
Let N2 = πn(N) ⊂ R, where πn : Rn → R is the projection onto the n-th coordinate. In other words, let
N2 be the set of elements of R that appear as the n-th coordinate of some element of N . Since, it’s the
image of a submodule under a homomorphism, it’s a submodule of R, and therefore an ideal, and therefore
finitely generated.
Let x1, . . . xs be the generators for N1, and let y1, . . . , yt be elements of N whose n-th coordinates are
generators for N2. For any m ∈ N , we can find an R-linear combination of the yi whose n-th coordinate
is the same as that of m. In other words, we can find r1, . . . , rt ∈ R such that the n-th coordinate of the
following element of M is zero:

m− r1y1 − · · · − rtyt

But this means that this element is in M1, so it’s a linear combination of the xi:

m− r1y1 − · · · − rtyt = r′1x1 + · · ·+ r′sxs

Reorganizing this shows that m is in the R-linear span of the set {x1, . . . , xs, y1, . . . , yt}. So N is finitely
generated.
Now let’s do the general case. Since M is finitely generated, there is a surjective R-module homomorphism
ϕ : Rn → M , mapping the standard basis vectors to the n generators {x1, . . . , xn} of M :

ϕ(r1, . . . , rn) = r1x1 + · · ·+ rnxn

It’s easy to check that this is indeed a surjective homomorphism. This is, by the way, a standard trick in
algebra. Let N be a submodule of M . It’s preimage ϕ−1(N) is submodule of Rn, and is therefore finitely
generated. The images of these generators under ϕ therefore generate N , and so N is finitely generated.
Hence we are done!
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