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In this essay, I would want to give a computational technique to prove that two abstract vector spaces
are isomorphic. Why is isomorphism very important? Well, it provides a deep understanding of the
structural properties of these spaces and allow us to establish meaningful connections between seemingly
different vector spaces.

But, what does isomorphism even mean? A vector space V is said to be isomorphic to a vector space
W, if there exists a bijective linear mapping, L : V → W. L is called an isomorphism from V to W and V
is said to be isomorphic to W, denoted as V ∼= W.

Let V and W be abstract vector spaces over a field F, our goal is to prove that V ∼= W.

proof idea. To prove the V ∼= W, we need to prove that L is an isomorphism. So, we will stick to the
following three steps, which is comparatively trivial. At an overview, we just need to create a bijective
linear mapping, L : V → W.

Step 1. We define a mapping, L : V → W, where the function is, v 7→ w, v ∈ V and w ∈ W. We just
need to prove that L is a linear mapping, ie., for all u, v ∈ V and s, t ∈ F, L is linear if and only if
L(su+ tv) = sL(u) + tL(v). Which in the computational point of view, is trivial.

Step 2. We need to prove that the linear map, L is injective. So to show injectivity, we need to prove that,
for all u, v ∈ V, if L(u) = L(v) then u = v.

Step 3. Finally, we need to prove that the linear map, L is surjective. So to show surjectivity, we need to
prove that, if for all w ∈ W, there exists v ∈ V such that L(v) = w.

Which kinda provides us with the process to prove that L is an isomorphism from V toW, hence V ∼= W.

Since, we are on the topic of isomorphsims, I would like to mention some important theorems on this
topic.

Lemma 1. Let L : V → W be a linear mapping. L is injective if and only if ker(L) = {0}.

Proof. We will prove both the implications.
(=⇒) : Assume that L is injective. If x ∈ ker(L), then L(x) = 0 = L(0) which implies that x = 0, since L
is injective. Hence ker(L) = {0}.
(⇐=) : Assume that ker(L) = {0}. Let u, v ∈ V, if L(u) = L(v), then

0 = L(u)− L(v) = L(u− v)

Hence, u− v ∈ ker(L) which implies that u− v = 0. Therefore, u = v and so L is injective.

Theorem 2. Let V and W be finite dimensional vector spaces. V ∼= W if and only if dim V = dim W.
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Proof. We will prove both the implications.
(⇐=) : Assume that dim V = dim W = n. Let B = {v1, . . . , vn} be a basis for V, and C = {w1, . . . , wn}
be a basis for W. We define a mapping, L : V → W which maps the basis vectors in B to the basis vectors
in C. So, we define

L(t1v1 + · · ·+ tnvn) = t1w1 + · · ·+ tnwn

To prove the that V ∼= W, we first need to prove that L is a linear map. So, let x = a1v1 + · · · + anvn,
y = b1v1 + · · ·+ bnvn ∈ V and s, t ∈ R. We have,

L(sx+ ty) = L
(
(sa1 + tb1)v1 + · · ·+ (san + tbn)vn

)
= (sa1 + tb1)w1 + · · ·+ (san + tbn)wn

= s(a1w1 + · · ·+ anwn) + t(b1w1 + · · ·+ bnwn)

= sL(x) + tL(y)

Therefore, L is a linear mapping. We will now prove that L is an injective mapping. If v = ker(L), then

0 = L(v) = L(c1v1 + · · ·+ cnvn)

= c1L(v1) + · · ·+ cnL(vn) [L is linear]

= c1w1 + · · ·+ cnwn

C is linearly independent so we get c1 = · · · = cn = 0. Therefore, ker(L) = {0} and by Lemma 1, L is
injective. Finally, we just need to prove that L is a surjective mapping. Since, we know L is injective, we
have ker(L) = {0}. By rank-nullity theorem, we have rank(L) = dim V− 0 = n. Consequently, range(L)
is an n-dimensional subspace of W which implies that range(L) = W, hence L is surjective. Thus, L is an
isomorphism from V to W and so V ∼= W.
(=⇒) : Assume that V ∼= W. Then, there exists an isomorphism L from V to W. Since, L is an bijective,
we get range(L) = W and ker(L) = {0}. Thus, the Rank-nullity Theorem gives,

dim W = dim(range(L)) = rank(L) = dim V− nullity(L) = dim V

Hence proved.

The proof not only proves the theorem, but it demonstrates a few additional facts.

1. It shows the intuitively obvious fact that if V ∼= W, then W ∼= V. Typically we can just say that V
and W is isomorphic.

2. It confirms that we can make an isomorphism from V to W by mapping basis vectors of V to basis
vectors of W.

3. Finally, observe that once we had proven that L is injective, we could exploit the Rank-Nullity
Theorem and that dim V = dim W to immediately get that the mapping is surjective. In particular,
it shows us how to prove the following theorem.

Theorem 3. If V and W are n-dimensional vector spaces and L : V → W is linear, then L is injective if
and only if L is surjective.

We saw that we can make an isomorphism by mapping basis vectors to basis vectors. The following
theorem shows that this property actually characterizes isomorphisms.

Theorem 4. Let V and W be isomorphic vector spaces and let {v1, . . . , vn} be a basis for V. A lin-
ear mapping L : V → W is an isomorphism if and only if {L(v1), . . . , L(vn)} is a basis for W.
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Main Theorem. There exists a basis for the vector space L of all linear operators L : V → V on a
n-dimensional real vector space V.

Proof. To prove our main theorem, we will first need to prove the following claims. Let L = {L1, . . . , Ln}
be a set of linear operators.
Claim 1. There exists a linear bijective map, ie., isomorphism, T : L → Mn(R), such that L ∼= Mn(R).
We will prove this claim, since the given mapping is from L to Mn(R), we define its function as

L ∈ L 7→

a11 · · · an1
...

. . .
...

a1n · · · ann

 ∈ Mn(R)

Where L1 is a linear mapping from n-dimensional real vector space, V → V. We will now show that T is
a linear mapping. Let L1, L2 ∈ L, also let s, t ∈ R. So, by definition

T (sL1 + tL2) =


sa11 + tb11 · · · san1 + tbn1

...
. . .

...
sa1n + tb1n · · · sann + tbnn




=


sa11 · · · san1

...
. . .

...
sa1n · · · sann

+

tb11 · · · tbn1
...

. . .
...

tb1n · · · tbnn




= s


a11 · · · an1

...
. . .

...
a1n · · · ann


+ t


b11 · · · bn1

...
. . .

...
b1n · · · bnn




= sT (L1) + tT (L2)

Hence, T is a linear mapping. Finally, to prove that L ∼= Mn(R), we just need to show that T is bijective.
To show injectivity, we just need to prove that if T (L1) = T (L2), then L1 = L2, for all L1, L2 ∈ L.

T (L1) = T (L2) =⇒

α11 · · · αn1
...

. . .
...

α1n · · · αnn

 =

β11 · · · βn1
...

. . .
...

β1n · · · βnn


so, we have αij = βij, where 1 ≤ i, j ≤ n. Since, both the matrices are equal, the mapping that produces
them are also equal, so we get

T (L1) = T (L2) =⇒ L1 = L2

Hence, we proved that T is a injective mapping. Finally, we just have to prove that T is surjective.
We will now prove that for all A ∈ Mn(R), there exists L ∈ L such that T (L) = A. We will pick,

A =

a11 · · · an1
...

. . .
...

a1n · · · ann

 ∈ Mn(R). Then, T (L) =

a11 · · · an1
...

. . .
...

a1n · · · ann

. Therefore, we proved that T is surjective.

Since, we proved that T is a bijective linear mapping, it is a isomorphism from L to Mn(R). Hence,
L ∼= Mn(R).
Claim 2. There exists a basis for L.
Proving this is pretty trivial. By Claim 1, we proved that there exists a bijective linear mapping, T , so by
classic definition of bijection, we know that there exists a linear mapping T−1 from Mn(R) to L. Now, to
prove that T−1 is bijective, we use the result we proved earlier. We know that L ∼= Mn(R), so by definition
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of isomorphism, we can claim that it is equivalent to Mn(R) ∼= L which forms an isomorphism, T−1 from
Mn(R) to L. Now, Let {e1, . . . , en} denote the set of standard basis vectors for Mn(R). Then by Theorem
4, we know that there exists T−1(e1), . . . , T

−1(en) that form a basis for L, which by definition means, that
it is linearly independent and spans L.
Hence proved our main theorem as desired.
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