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Elliptic Curves and Isogenies
Definition 0.1. An elliptic curve over a field F is a non-singular curve E of the form,
E:y?=a3+ar+b
for fized constants a,b € F.
The set of projective points on an elliptic curve forms a group, with identity oo = [0: 1 : 0].

Definition 0.2. An isogeny is a morphism ¢ of algebraic varieties between two elliptic curves, such that ¢ is a group
homomorphism.

¢:E—E
O(x,y) = (¢(2,9), dy(2,y))
Jilz,y)
¢I(x’y) - (az,y)
91(z,y)
¢y(33’y) 92(37,2/)

where f1, f2,91 and go are all polynomials. The degree of an isogeny is its degree as an algebraic map.

Development of isogeny-based cryptography
Hash functions

e CGL : Charles, Goren, Lauter

Public-Key Cryptosystems

e CRS: Couveignes, Restovstev and Stolbunov
e SIDH: Supersingular Isogeny Diffie-Hellman (Jao and De Feo)

e CSIDH: Commutative SIDH (Castryck, Lange, Martindale, Panny and Renes)

CRS uses complex multiplication, SIDH uses supersingular algebraic curves and CSIDH uses both the complex mul-
tiplication and supersingular algebraic curves.



Constructing isogenies
Every isogeny is a group homomorphism and thus has a kernel,
ker¢p ={P € E: ¢(P) = o0}
Give an elliptic curve E and a finite subgroup K of E, one can show that there exists a unique (up to isomorphism)

separable isogeny ¢y, : E — K such that ker ¢ = K and deg ¢ = | K].

Vélu’s formulas (1971) give an explicit construction of ¢y
Let H be any finite subgroup of E. Then the map given by P — (X,Y’) where,

X=z(P)+ Y (@P+Q) Q)
QeH\{o0}

Y=yP)+ > @P+Q) -yQ)
QeH\{c}

is an isogeny ¢ with domain E and kernel H. FE/G denote the co-domain of ¢. This co-domain is unique upto

isomorphism. The computational cost of evaluating Vélu’s formula is O(y/|H|) = O(y/deg¢) < 3.

Isogenies of degree 2

Let E : y? = 2% 4 ax +b. Suppose K = {oo, P}. Then P+ P = o0, so P = (zp,0) with % + azp +b = 0. We have,
E/K :y* = 2%+ (a — 5(32% + a))z + (b — Tzp(32% + a))

373 +a y(3z% + a)
onlo) = (a+ ZELE WL S

Isogenies of degree 3

Let E : y? = 23 + ax + b. Suppose K = {oo, P,—P}. Then P = (zp,yp) with 2} + 6az% — a® + 12bxp = 0 and
yl% = x% + axp + b. We have,

E/K :y* = 2® + (a — 10(32% + a))z + (b — 28y% — 14z p(32% + a))
2(32% + a) 4y, Syy% _ 2y(3zp + a))

¢K(a:,y):<:v+ T —xp +(I—$P)27y_(x_$P)3 (x —zp)?

Isogenies of degree 2°¢ in SIDH

Evaluating an isogeny of degree d using Vélu’s formulas directly takes O(d?) operations, too slow when d is large.
Instead, we use isogenies of prime power degree, and evaluate them step-by-step.

Suppose K = Z/2¢7. Then the subgroup tower,
0CZ/2ZCZ/AZC --- CZLJ2°Z
allow us to factor ¢ : £ — E/K into the composition of isogenies,
E - E/(Z]2Z) — E/(Z]AZ) — --- — E/(Z/2°Z)

Each individual isogeny has degree 2 and is easy to compute. The composition of all the isogenies is ¢x, of degree 2°.
A similar trick works for any prime power £¢ where £ is small.



SIDH overview

Public parameters: Supersingular elliptic curve E over F 2. Alice chooses a kernel A C E

P
E/A. Bob chooses a kernel B C E(F,2) of size 3/ and sends E/B. The shared secret is,

E/(A,B) = (E/A)/¢a(B) = (E/B)/¢5(A)

Commutative diagram of Diffie-Hellman (DH) and Supersingular Isogeny DH (SIDH),

g ——9°

L

g4 —— g*

chl l%,

E/B %2, E/(A,B)

Here ¢4 (respectively ¢p) denotes the isogeny with kernel A (respectively B)

Detailed description of SIDH
Public parameters:
e Prime p = (0% — 1.
e E is a supersingular over Fj2, #E(F,2) = (p+ 1)? = ({5 (5F)?
o Z-basis {Pa,Qa} of E[(5'] and {Pp,Qp} of E[(}],
Alice:
e Choose sk € Z and compute A = (P4 + skaQa) of order £5".
e Compute ¢p4: F — Ey.
e Send pky = (Ea,¢a(Pp),¢4(Qp)) to Bob.
Bob:
e Same as Alice, replacing A with B and vice-versa.

The shared secret is derived from,

E/(A,B) = (Ea)/{¢0a(PB) + skpoa(Qp))
= (EB)/(¢B(Pa) + skadp(Qa))

Attacks
Hard problem: Given E and E/A, find A.

(Fp2) of size 2° and sends

Fastest known (passive attack) is meet-in-the-middle collision search or claw search on a search space of size deg(¢).

e Classical: \/deg ¢
e Quantum: /deg¢



Complex Multiplication action
For an ordinary elliptic curve E/F,,, there is a free and transitive group action,
*: CI(End(E)) x ELL(F)) — ELL(F))
where,
e End(F) is the ring of endomorphisms of E.
e CI(End(F)) denotes the ideal class group of End(E).

o ELL(F,) is the set of isomorphism classes of elliptic curves over F, with endomorphisms ring isomorphic to

End(FE).
defined by,
[a)x E=FE/kera=E/{P € E:Y ¢ €a, ¢(P)=o0}
=B/ )ker¢
P€a

Couveignes, Restovstev and Stolbunov (CRS)

Public parameters: Ordinary elliptic curve E/IF,, and complex multiplication action * : CI(End(E)) x ELL(F),) —
ELL(F,). Alice chooses a group element a € G and send a * E. Bob chooses a group element b € G and sends b x E.
The shared secret is (ab) * E = ax (b* E) = b x (ax EY). CSIDH uses the same group action, but over a supersingular

algebraic curve.

E—% L axE

| |

bx E —— (ab)x E

From isogenies to hidden subgroups

The hard problem in CRS and CSIDH is to compute group action inverses: Given G x X — X and zg,z1 € X,
find v € G such that yz1 = 9. Let ¢ : Z/2Z — Aut(G) be given by ¢(b)(g) = g1’ Consider the function
[:GxpZ/2Z — X, f(g,b) = gxp. Since the group action is free, we have

f(g1,01) = f(g2,b2) <= b1 =0,bo =1, and g;'g> =7

or by =1,by =0, andg{lglz’y
or by =bg and g1 = g2

hence f hides the subgroup {(0,0), (v,1)} C G x4 Z/2Z. 1f we solve the hidden subgroup problem for f, then we will
have found ~.

Dihedral hidden subgroup problem

For simplicity, suppose G = Z/N and Dy = Z/N x Z/27. Suppose f hides the subgroup H = {(0,0),(v,1)} C Dy.

Form the state,

w;Tr: S l)£(d)
deDpn



Measure the second register and discard the result to obtain,

\/Tdez f (1(z,0)) +|(z +,1))

in the first register, for some random coset (z,0)H. By abuse of notation, denote this coset state by [(z,0)H). We
can generate lots of these coset states, for random cosets. (We have no control over which cosets we obtain).

Here is a table with some commonly used cryptosystem and their hard problems (reason, why they are used in
cryptography).

Cryptosystem Hard Problems
Diffie-Hellman (DH) Discrete Logarithm Problem (DLP)
Elliptic Curve Cryptography (ECC)
Pairing-based Cryptography |
Rivest-Shamir-Adleman (RSA) Factoring integers
Rabin
Composite Residues |
Code-based Cryptography Decoding Linear Codes
Lattice-based/NTRU Finding Short Lattice vectors
Isogeny-based/CRS
SIDH/SIKE | Computing Isogenies




