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Elliptic Curves and Isogenies

Definition 0.1. An elliptic curve over a field F is a non-singular curve E of the form,

E : y2 = x3 + ax+ b

for fixed constants a, b ∈ F.

The set of projective points on an elliptic curve forms a group, with identity ∞ = [0 : 1 : 0].

Definition 0.2. An isogeny is a morphism ϕ of algebraic varieties between two elliptic curves, such that ϕ is a group
homomorphism.

ϕ : E → E′

ϕ(x, y) = (ϕx(x, y), ϕy(x, y))

ϕx(x, y) =
f1(x, y)

f2(x, y)

ϕy(x, y) =
g1(x, y)

g2(x, y)

where f1, f2, g1 and g2 are all polynomials. The degree of an isogeny is its degree as an algebraic map.

Development of isogeny-based cryptography

Hash functions

• CGL : Charles, Goren, Lauter

Public-Key Cryptosystems

• CRS: Couveignes, Restovstev and Stolbunov

• SIDH: Supersingular Isogeny Diffie-Hellman (Jao and De Feo)

• CSIDH: Commutative SIDH (Castryck, Lange, Martindale, Panny and Renes)

CRS uses complex multiplication, SIDH uses supersingular algebraic curves and CSIDH uses both the complex mul-
tiplication and supersingular algebraic curves.
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Constructing isogenies

Every isogeny is a group homomorphism and thus has a kernel,

kerϕ = {P ∈ E : ϕ(P ) = ∞}

Give an elliptic curve E and a finite subgroup K of E, one can show that there exists a unique (up to isomorphism)
separable isogeny ϕk : E → K such that kerϕK = K and deg ϕK = |K|.

Vélu’s formulas (1971) give an explicit construction of ϕK .
Let H be any finite subgroup of E. Then the map given by P 7→ (X,Y ) where,

X = x(P ) +
∑

Q∈H\{∞}

(x(P +Q)− x(Q))

Y = y(P ) +
∑

Q∈H\{∞}

(y(P +Q)− y(Q))

is an isogeny ϕ with domain E and kernel H. E/G denote the co-domain of ϕ. This co-domain is unique upto
isomorphism. The computational cost of evaluating Vélu’s formula is O(

√
|H|) = O(

√
deg ϕ) ≤ 3.

Isogenies of degree 2

Let E : y2 = x3 + ax+ b. Suppose K = {∞, P}. Then P + P = ∞, so P = (xP , 0) with x3P + axP + b = 0. We have,

E/K : y2 = x3 + (a− 5(3x2P + a))x+ (b− 7xP (3x
2
P + a))

ϕK(x, y) =

(
x+

3x2P + a

x− xP
, y −

y(3x2P + a)

(x− xP )2

)
Isogenies of degree 3

Let E : y2 = x3 + ax + b. Suppose K = {∞, P,−P}. Then P = (xP , yP ) with x4P + 6ax2P − a2 + 12bxP = 0 and
y2P = x3P + axP + b. We have,

E/K : y2 = x3 + (a− 10(3x2P + a))x+ (b− 28y2P − 14xP (3x
2
P + a))

ϕK(x, y) =

(
x+

2(3x2P + a)

x− xP
+

4y2P
(x− xP )2

, y −
8yy2P

(x− xP )3
− 2y(3xP + a)

(x− xP )2

)
Isogenies of degree 2e in SIDH

Evaluating an isogeny of degree d using Vélu’s formulas directly takes O(d3) operations, too slow when d is large.
Instead, we use isogenies of prime power degree, and evaluate them step-by-step.

Suppose K ∼= Z/2eZ. Then the subgroup tower,

0 ⊂ Z/2Z ⊂ Z/4Z ⊂ · · · ⊂ Z/2eZ

allow us to factor ϕK : E → E/K into the composition of isogenies,

E → E/(Z/2Z) → E/(Z/4Z) → · · · → E/(Z/2eZ)

Each individual isogeny has degree 2 and is easy to compute. The composition of all the isogenies is ϕK , of degree 2e.
A similar trick works for any prime power ℓe where ℓ is small.
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SIDH overview

Public parameters: Supersingular elliptic curve E over Fp2 . Alice chooses a kernel A ⊂ E(Fp2) of size 2e and sends
E/A. Bob chooses a kernel B ⊂ E(Fp2) of size 3f and sends E/B. The shared secret is,

E/⟨A,B⟩ = (E/A)/ϕA(B) = (E/B)/ϕB(A)

Commutative diagram of Diffie-Hellman (DH) and Supersingular Isogeny DH (SIDH),

g gx

gy gxy

E E/A

E/B E/⟨A,B⟩

ϕA

ϕB ϕB′

ϕA′

Here ϕA (respectively ϕB) denotes the isogeny with kernel A (respectively B)

Detailed description of SIDH

Public parameters:

• Prime p = ℓeAA ℓeBB − 1.

• E is a supersingular over Fp2 , #E(Fp2) = (p+ 1)2 = (ℓeAA ℓeBB )2

• Z-basis {PA, QA} of E[ℓeAA ] and {PB, QB} of E[ℓeBB ],

Alice:

• Choose skA ∈ Z and compute A = ⟨PA + skAQA⟩ of order ℓeAA .

• Compute ϕA : E → EA.

• Send pkA = (EA, ϕA(PB), ϕA(QB)) to Bob.

Bob:

• Same as Alice, replacing A with B and vice-versa.

The shared secret is derived from,

E/⟨A,B⟩ = (EA)/⟨ϕA(PB) + skBϕA(QB)⟩
= (EB)/⟨ϕB(PA) + skAϕB(QA)⟩

Attacks

Hard problem: Given E and E/A, find A.

Fastest known (passive attack) is meet-in-the-middle collision search or claw search on a search space of size deg(ϕ).

• Classical:
√
deg ϕ

• Quantum: 3
√
deg ϕ
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Complex Multiplication action

For an ordinary elliptic curve E/Fp, there is a free and transitive group action,

∗ : CI(End(E))× ELL(Fp) → ELL(Fp)

where,

• End(E) is the ring of endomorphisms of E.

• CI(End(E)) denotes the ideal class group of End(E).

• ELL(Fp) is the set of isomorphism classes of elliptic curves over Fp with endomorphisms ring isomorphic to
End(E).

defined by,

[a] ∗ E = E/ ker a = E/{P ∈ E : ∀ ϕ ∈ a, ϕ(P ) = ∞}

= E/
⋂
ϕ∈a

kerϕ

Couveignes, Restovstev and Stolbunov (CRS)

Public parameters: Ordinary elliptic curve E/Fp and complex multiplication action ∗ : CI(End(E)) × ELL(Fp) →
ELL(Fp). Alice chooses a group element a ∈ G and send a ∗ E. Bob chooses a group element b ∈ G and sends b ∗ E.
The shared secret is (ab) ∗E = a ∗ (b ∗E) = b ∗ (a ∗E). CSIDH uses the same group action, but over a supersingular
algebraic curve.

E a ∗ E

b ∗ E (ab) ∗ E

ϕa

ϕb

From isogenies to hidden subgroups

The hard problem in CRS and CSIDH is to compute group action inverses: Given G × X → X and x0, x1 ∈ X,
find γ ∈ G such that γx1 = x0. Let ϕ : Z/2Z → Aut(G) be given by ϕ(b)(g) = g(−1)b . Consider the function
f : G⋊ϕ Z/2Z → X, f(g, b) = gxb. Since the group action is free, we have

f(g1, b1) = f(g2, b2) ⇐⇒ b1 = 0, b2 = 1, and g−1
1 g2 = γ

or b1 = 1, b2 = 0, and g−1
2 g1 = γ

or b1 = b2 and g1 = g2

hence f hides the subgroup {(0, 0), (γ, 1)} ⊂ G⋊ϕ Z/2Z. If we solve the hidden subgroup problem for f , then we will
have found γ.

Dihedral hidden subgroup problem

For simplicity, suppose G = Z/N and DN = Z/N ⋊ Z/2Z. Suppose f hides the subgroup H = {(0, 0), (γ, 1)} ⊂ DN .
Form the state,

1√
|DN |

=
∑

d∈DN

|d⟩|f(d)⟩
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Measure the second register and discard the result to obtain,

1√
|(z, 0)H|

∑
d∈(z,0)H

|d⟩ = 1√
2
(|(z, 0)⟩+ |(z + γ, 1)⟩

in the first register, for some random coset (z, 0)H. By abuse of notation, denote this coset state by |(z, 0)H⟩. We
can generate lots of these coset states, for random cosets. (We have no control over which cosets we obtain).

Here is a table with some commonly used cryptosystem and their hard problems (reason, why they are used in
cryptography).

5


