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Unlike, classic texts on abstract algebra that get right into the axioms of groups. I would like to initially
develop an inituition on why group theory exists and the concept that motivates its existence. And that
concept is called a symmetry (exactly the one in high/middle school math curriculum). Firstly, I will
elevate this concept of symmetry, to an abstract sense and later generalize it, which creates an important
field in abstract algebra called group theory.

Symmetry

Ideally speaking, group theory is nothing but a mathematical description of symmetry, the structure of the
Rubiks cube, simple solutions to otherwise difficult combinatorics problems, the definition of a determinant
of a matrix, cryptosystem, distinguishing topological shapes from each other, and much more. Here are
some ”fancy” jargons on different symmetries.

A rigid transformation of an equilateral triangle is a map that maps to the same equilateral triangle.
A identity transformation is the transformation defined by not changing the position of the triangle ver-
tices at all.

Question 1. How many rigid transformations does an equilateral triangle (do not count transformations
seperately if they are equivalent)?

Solution. There are three rotations 120◦, 240◦ and 0◦. The last of these is the identity transformation,
the one that does nothing. We sometimes think of it as a trivial rotation. Also there are three rotations,
counter-clockwise by 120◦, 240◦ and 0◦. These match up with the other three rotations: clockwise 120◦

which is same as counter-clockwise 240◦, and clockwise 240◦ which is same as counter-clockwise 120◦. All
that matters is where the points end up, not how they get there. There are also three reflections: the one
described above, and the other two corresponding to the other two sides of the triangle.

That’s 6 rigid transformations of an equilateral triangle.
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We will define a symmetry of an object to be a rigid transformation from that object to itself. So,
from the last problem, we will say an equilateral triangle has six symmetries: three rotations and three
reflections. Since symmetries are rigid transformations, they are really functions. We only care about
where the points end up, not how they got there. In the example of the triangle, rotating clockwise by
120◦ is considered the same symmetry as rotating clockwise by 360◦+120◦ = 480◦, and the same symmetry
as rotating counter-clockwise by 360◦ − 120◦ = 240◦. Also, we will always count the “identity symmetry,”
corresponding to picking up the triangle, not changing it, and putting it right back down. This corresponds
to the identity rigid transformation f(x) = x.

Question 2. How many rotation and reflection symmetries are there in a square?

Solution. The symmetries are rotations and reflections. There are four rotations: 90◦, 180◦, 270◦ and I,
which is the identity. Below shows on the far left a square with vertices labeled A, B, C, and D as well as
the arrow. The second, third and fourth images correspond to clockwise rotations of the square and the
arrow by 90◦, 180◦, 270◦ respectively. There are also four reflections. There are two kinds of reflections:

There are horizontal and vertical reflections; these reflect across axes that bisect opposite edges, and there
are reflections across axes that connect the corners of the square.

The R in each figure stands for reflection, and the lines represent the axes of symmetry.

So, there are 4 rotations and 4 reflections, which concludes that there are 8 symmetries.
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Question 3. Consider a square modified, S ′, with lines extending past each of its corners in one direction.

How many symmetries does S ′ have?

Solution. S ′ has exactly 4 symmetries, because the four rotations still work, but the four reflections no
longer work. The reflections don’t work because the external line segments are part of the shape, and
reflections don’t map this shape to itself. For instance, reflecting across a vertical line maps the original
shape.

to

So, we are cleared.
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Every shape has the identity transformation for a symmetry. The most asymmetric a shape can be is
to have no other symmetries, like the letter R.

Question 4. How many of the capital letters shown have only the identity symmetry?

Solution. I will only discuss about F, G, J, K, L, N, P, Q, R, S and Z, since all the other letters are trivial
explanations. S, N, and Z are examples where there is 180◦ rotational symmetry. If you rotate them 180◦,
you’ll get the original letter again. The non-symmetric letters are F, G, J, K, L, P, Q, and R. The case
of K is somewhat subtle: if the two legs had emerged from the same point, then it would have a vertical
reflection symmetry. But the way this K is drawn, with the lower leg emerging from the upper, it does
not.

To recap, every object has a set of symmetries, which are the rigid transformations sending the object
to itself. Now, the more symmetries an object has, the more “symmetric” we think it is. But there’s more
to an object’s symmetry than just the number of its symmetries. This is why we can’t just use a number to
fully describe how symmetric the object is. We will need a more complicated object to measure symmetry:
the group.

Question 5. Which of these two objects has more symmetries?

Proof. Solution Actually, they have the same number of symmetries. We already know that the triangle
has 6 symmetries (3 rotations and 3 reflections). There are 6 rotations of the hexagon figure: 60◦, 120◦,
etc. And that’s it. If the external line segments hadn’t been there, we would also have reflections. (Six of
them, in fact.) But, similarly to the modified square from a couple problems ago, because of those external
segments, reflections will map this shape into a different shape, so they are not symmetries.

The two objects from the last problem each have six symmetries specific to their respective shapes
(assuming the vertices are labeled); despite their superficial similarities, there’s something fundamentally
different about the two collections of symmetries.

The difference will involve the idea of doing a transformation multiple times in a row. Notice that if
you do a reflection twice in a row, you get back to where you started. We might say that when you do it
twice, you get the identity transformation. Similarly, if you rotate the triangle by 120◦ three times, you
get the identity transformation.

Group theory is an area of algebra, which means that we will be studying how combining objects can
make new objects. That’s what started to happen in the last problem, when we combined symmetries with
themselves.

Remark 0.1. The hexagon has a symmetry with the property that when you apply it less than six times,
you don’t get the identity transformation, but when you apply it six times you do, whereas the triangle has
no such symmetry. In group theory, only the hexagon has a symmetry S with the property that S ̸= I,
S2 ̸= I, S3 ̸= I, S4 ̸= I and S5 ̸= I, but S6 = I, where I is the identity transformation.
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Combining Symmetries

We saw that we could combine symmetries by doing one after the other, and thus form a kind of “multi-
plication” on the symmetries. Now, we’ll explore this idea further, and in the next lesson, this will lead to
the definition of a group.

Question 6. Consider the equilateral triangle. Let R be a clockwise rotation by 120◦, and let R1 be a
reflection about the line segment AF .

What symmetry do you get when you apply R1, followed by R?

Solution. Let’s apply R1 and then R to each vertex individually.

Vertex A: R1 sends vertex A to itself, and then R sends A to B. So the whole process sends A to B.
Vertex B : R1 sends B to C, and then R rotates C to A. So the whole process takes B to A (via the
intermediary vertex C).
Vertex C : R1 sends it to B, and then R rotates B to C. So the whole process takes C to C.
So, it’s reflection is about the line segment CE.
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Now let’s combine two reflections. Let R1 be reflection about the line segment AF , and let R2 be
reflection about the line segment CE. Note that after the lines of reflection are defined they do not change
position, even when the points of that line segment change position.

Question 7 (Try it yourself!). What symmetry do you get by applying first R1 and then R2?

In fact, we can combine any two symmetries of a shape by doing one after the other, and obtain a
third symmetry of the shape. If A and B are symmetries of a shape, A ∗ B, or sometimes just AB or
A ◦ B, denoting the composition symmetry. If we let ϕ1 denote the reflection about denote the reflection
about AF , let ϕ2 denote the reflection about CE, and let R denote clockwise rotation by 120◦, then we
can write the equation ϕ2 ∗ ϕ1 = R. To really understand the symmetries of an object, we should know
not only how many symmetries there are, but what the rules are for how they combine with each other.
For the equilateral triangle, we could make a 6× 6 “multiplication table” that tells you, for any two of the
six symmetries of the triangle, what their product is. In the next problems, we will do exactly that for a
slightly simpler object. We will work out the symmetry multiplication table for the letter I.

Question 8. How many symmetries, including the identity symmetry, does the letter I have?

Solution. The letter I has 4 symmetries; horizontal reflection H, vertical reflection V , rotation by 180◦,
and the identity transformation I.

Question 9 (Try it yourself!). What are H ∗H, V ∗ V , and R ∗R?

So far, our multiplication/group table for the symmetries of the letter I looks like this,

This table completely describes all products of the four symmetries of the letter I. Suppose we only have
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two numbers, 0 and 1, and suppose we consider mod 2 addition on these numbers such that,

0 + 0 = 0

0 + 1 = 1

1 + 1 = 0

The table for this operation is,

Now, for ordered pairs of 0’s and 1’s, and mod 2 addition,

(0, 1) + (1, 0) = (1, 1)

(1, 1) + (1, 1) = (0, 0)

Group table for odered pairs is,

Notice the connection between the addition table of ordered pairs and the multiplication table for the letter
I. To make the connection more evident, we will rename the four ordered pairs, let’s denote i = (0, 0),
a = (1, 0), b = (0, 1) and c = (1, 1). Then the addition group table becomes,

This is the same table as the symmetries for the letter I, just with different variable names. The algebraic
structure of the symmetries of the letter I is the same as the algebraic structure of ordered pairs of 0’s and
1’s under mod 2 addition. There is some underlying mathematical object that represents this structure
called a group. This particular table will be represented by something called the Klein four-group.

7


