
Classification of Finitely Generated Abelian Groups

Theorem 1. Let A be a finitely generated abelian group. Then there is an isomorphism:

A ∼= Zr × Zpa11 × . . .× Zpa``
where the ai are positive integers, r is a non-negative integer, and the pi are positive primes,
not necessarily distinct.

Proof: Note that in this entire proof, we will be dealing exclusively with abelian groups, so
we will always write the group operation additively.

We need some setup before we start. Let T be the subset of A consisting of all the elements
of finite order. It’s called the torsion subgroup of A, a name justified by the following
lemma:

Lemma 2. The torsion subgroup of an abelian group A is a subgroup of A.

Proof: We just need to show that T contains 0, and is closed under + and −. It’s obvious
that T contains 0, so let x and y be elements of T . Then there are integers n and m such
that nx = my = 0. If we let N be the least common multiple of n and m, then Nx±Ny = 0.
This means that T is closed under addition and subtraction, so we win. ♣

If the theorem is true (which of course it is, or it wouldn’t be a theorem), then T had
better end up being the product of all those cyclic groups. So throughout this proof, think
about T as being the object that will eventually end up being the product of those cyclic
groups. It will be convenient to talk about the subgroups T (pi) of T : T (pi) is defined to be
the subgroup of elements of T whose finite order is a power of pi.

Better yet, A is abelian, so T is a normal subgroup. This means we can talk about
the quotient group F = A/T . Again, if the theorem is true, F had better end up being
isomorphic to Zr for some integer r. So for the rest of this proof, think of F as being
isomorphic to Zr.

One important thing to note is that F is finitely generated, because generators of A reduce
modulo T to generators of F .

The proof is pretty long, so we’ll need a plan. Here’s the plan:

(1) Show that F is isomorphic to a subgroup of Zk for some integer k.
(2) Show that every subgroup of Zk is isomorphic to Zr for some r.
(3) Show that A is isomorphic to F × T .
(4) Show that T is isomorphic to the product T (p1)× . . .× T (p`).
(5) Show that T (pi) is isomorphic to the product of cyclic groups in a unique way.
(6) Finish the proof of the theorem.

Step 1: Show that F is isomorphic to a subgroup of Zk for some integer k.

First, we make a quick definition:

Definition 1. Let v1, . . . , vk be elements of an abelian group A. We say that v1, . . . , vk are
linearly independent if the only integers a1, . . . , ak satisfying a1v1 + . . .+akvk = 0 are the
integers a1 = . . . = ak = 0. Note that this is just like the definition of linearly independence
in linear algebra, except that the coefficients are integers.

1



2

First, note that F contains no elements of finite order, because if na ≡ 0 (mod T ), then
na has finite order m, meaning that mna = 0, so a ∈ T and therefore a = 0 in F = A/T .

Let v1, . . . , vk be a maximal linearly independent subset of F . By this I mean that there are
no linearly independent sets containing v1, . . . , vk as a proper subset. It might happen that
v1, . . . , vk generate F , but just in case they don’t, let’s choose finitely many more generators
vk+1, . . . , vm so that v1, . . . , vm are generators of F .

By the maximality of v1, . . . , vk, we know that for every i greater than k, there are integers
αi, ai1, . . . , aik, not all zero, such that αivi = ai1v1 + . . . + aikvk. Moreover, αi in particular
can’t be zero, because otherwise we’d have a nontrivial linear dependence relation between
v1, . . . , vk. The magic step is now to choose α to be the least common multiple of all the
αi. Then for every vj (j from 1 to m!), the element αvj is a linear combination of v1, . . . , vk.
Define a homomorphism f : F →< v1, . . . , vk >∼= Zk by f(x) = αx. Since F contains no
elements of finite order, this is an injective homomorphism, so F is isomorphic to imf . Step
1 is done!

Step 2: Show that every subgroup of Zk is isomorphic to Zr for some r.

Before we get to the guts of Step 2, we need a couple of extremely interesting and useful
lemmas.

Lemma 3. Let A be an abelian group, and let φ : A→ Zn be an onto homomorphism. Then
there is a homomorphism ψ : Zn → A such that φ ◦ φ = id.

Definition 2. If φ : A → B is an onto homomorphism, then a homomorphism ψ : B → A
satisfying φ ◦ ψ = id is called a section of φ.

I think of onto homomorphisms (and, indeed, onto functions in general) as being vertical,
with the domain being dropped on the range. A section of such a vertical map is a function
aimed straight up: each element of B is mapped to an element of A that is directly above it,
so that when you plug the raised element back into φ, it falls right back down where it came
from. This is, for any b ∈ B, we have φ(ψ(b)) = b.

This, in a weird way, is what inspires the name “section” for such homomorphisms. If
the “lifting” of ψ is somehow uniform, then the image of ψ is a sort of cross section of A.

Proof: Let ei be the ith standard unit basis vector in Zn – that is, let ei be the vector with
all zeroes, except a 1 in the ith coordinate. Because φ is onto, there is at least one element
ai such that φ(ai) = ei. (There may be more than one choice of ai – pick any one.) Define
ψ(x1, . . . , xn) = x1a1 + . . .+ xnan. It’s easy to check that this a well defined homomorphism
that satisfies all the criteria of the lemma, so we’re done. ♣

Lemma 4. Let φ : A→ B be an onto homomorphism of abelian groups, and let ψ : B → A
be a section of φ. Then A ∼= ker(φ)× im(ψ).

Proof: Define f : A → ker(φ) × im(ψ) by f(a) = (a − ψ(φ(a)), ψ(φ(a))), and define
h : ker(φ) × im(ψ) → A by h(x, y) = x + y. It’s straightforward to check that f and h
are mutually inverse homomorphisms (so do it!), which means they’re the isomorphisms
we’re looking for. ♣

We’re ready to attack Step 2 now. It is precisely the following lemma:

Lemma 5. Let F ⊆ Zn be any subgroup. Then F ∼= Zr for some r ≤ n.
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Proof of Lemma: We proceed by induction on n. We start the induction with n = 1. Let F
be a subgroup of Z. If F = {0}, then we’re already done, because {0} ∼= Z0. Otherwise, F
must contain at least one nonzero element, which might as well be positive because if x ∈ F
then −x ∈ F . Let k be the smallest positive element of F . Then the subgroup < k > is
contained in F , and if x ∈ F , then the greatest common divisor g of k and x is also in F ,
since there are integers a and b such that g = ax+ bk ∈ F . But g is positive, and it’s in F ,
and it can’t be smaller than k, so it must be equal to k! This means that g is in < k >, so
F =< k >∼= Z1.

Now assume that the lemma is true form < n. Let π : Zn → Z be defined by π(a1, . . . , an) =
a1. Then kerπ ∼= Zn−1, so by induction kerπ ∩ F ∼= Zm for some m ≤ n − 1. We
now have an onto homomorphism π : F → H for some subgroup H of Z. By induction,
H ∼= Zi for some i. By Lemma 3, there is a section ψ of π, which by Lemma 4 means that
F ∼= kerπ × imψ ∼= Zm × Zi ∼= Zr for some integer r, as desired. So long, Step 2.

Step 3: Show that A is isomorphic to F × T .

This is easy. The quotient homomorphism q : A → F ∼= Zr has a section ψ : F → A, by
Lemma 3. By Lemma 4, this means that A ∼= ker(q)× imψ ∼= T × F .

Note that this also means that T is finitely generated, since T ∼= A/F , and reducing
generators of A modulo F will give generators for T .

Step 4: Show that T is isomorphic to the product T (p1)× . . .× T (p`).

Since T is finitely generated, and all its elements have finite order, and since it’s abelian,
it follows that T is finite. This is because if t1, . . . , tk are generators of T , then any element
of T can be written as a1t1 + . . . aktk for integers a1, . . . , ak. Since each of the ti have finite
order, we can assume that the coefficients ai can all be reduced modulo the order ni of ti.
We conclude that there are only finitely many elements of T .

Thus, say T has m elements, and factor m = pn1
1 . . . pn`

` . For each i, define the subgroup
T (pi) to be the set of elements of order pαi for some nonnegative integer α. It’s easy to check
that T (pi) is a group, and that pni

i g = 0 for all g ∈ T (pi). We will now deal with Step 4.

First, define integers α1, . . . , α` by the Chinese Remainder Theorem so that αi ≡ 0 mod p
nj

j

for i 6= j, but αi ≡ 1 mod pni
i . Then define h : T → T (p1)× . . .× T (p`) by:

h(g) = (α1g, . . . , α`g)

Further, define f : T (p1)× . . .× T (p`)→ T by:

f(g1, . . . , g`) = g1 + . . .+ g`

It’s clear that both f and h are homomorphisms, since pni
i (αi) is a multiple of m, and

therefore pni
i (αig) = 0 (remember that the order of g will divide the order m of the group

T ), and so αig ∈ T (pi) and h is well defined. We will now show that f and h are mutually
inverse, and therefore that they are isomorphisms.

We have f(h(g)) = f(α1g, . . . , α`g) = α1g + . . . + α`g = (α1 + . . . + α`)g. But for each
i, we know that α1 + . . . α` ≡ 1 mod pni

i , so by the Chinese Remainder Theorem, it follows
that α1 + . . . + α` ≡ 1 mod m. Therefore, we find that (α1 + . . . + α`)g = (1 + Nm)g = g,
and f(h(g)) = g, as desired.

Conversely, we have h(f(g1, . . . , g`)) = (α1g1, . . . , α`g`), so to finish the claim we need
only prove that αigi = gi for all i. To do this, note that since gi ∈ T (pi), we know that the
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order of gi will divide m, and so since gi ∈ T (pi), it follows that pni
i gi = 0. Thus, we get

αigi = (1 +Npni
i )gi = gi, as desired.

Step 5: Show that T (pi) is isomorphic to the product of cyclic groups in a unique way.

Step 5 is precisely the following lemma.

Lemma 6. Let p be a prime, and let G be a finite abelian group with the property that every
element of G has order equal to some power of p. Then G is isomorphic to Zpm1 × . . .×Zpmt

for some positive integers mi, and moreover this product representation is unique up to
permutation of the factors.

Proof of Lemma: Let d be the order of G. If d is relatively prime to p, then d = 1 (since if
G is nontrivial it will contain some element of order p), in which case the lemma is trivially
true. We now proceed by induction on d.

Let g ∈ G be the element of maximal order, say pa, and letH be the subgroup 〈g〉 generated
by g. Consider the group G/H. It has d/pa < d elements, and clearly every element of G/H
has order equal to some power of p, so by induction we can write G/H ∼= Zpa1 × . . .× Zpas ,
where ai ≤ a for each i (since g has maximal order in G).

Claim 7. G ∼= H × (G/H).

Proof of Claim: Let g1 + H, . . . , gs + H be the elements of G/H which correspond, re-
spectively, to the vectors (1, 0, . . . , 0), . . . , (0, 0, . . . , 1) in Zpa1 × . . . × Zpas . Then we have
G/H ∼= 〈g1 +H〉 × . . .× 〈gs +H〉. Moreover, we know that (gi +H) has order pai in G/H,
so that paigi = rg for some integer r. We wish to show that we can take r = 0.

If not, then write r = pur′ for some integer r′ which is relatively prime to p. Then rg has
order pa−u: certainly pa−urg = par′g = 0, and if nrg = 0 for some n, then pa|nr, so pa−u|n.
Therefore, gi has order pa−u+ai in G. But g has maximal order amongst all elements of G,
so a ≥ a− u+ ai and hence u ≥ ai.

But this means we can write paigi = rg = pur′g, so that:

pai(gi − pu−air′g) = 0

Since pu−air′g ∈ H, if we replace gi with gi − pu−air′g, then we may assume that r = 0
and that gi has order exactly pai in G. In particular, notice that for any integer n, that if
ngi ∈ H, then ngi = 0.

Let N be the subgroup of G generated by the gi. Then N is isomorphic to G/H via the
quotient map q: it certainly maps onto G/H, and if q(

∑
zigi) = 0 for some integers zi, then∑

zigi ∈ H, so by the structure of G/H, this means that zigi ∈ H for each i. (Remember
that gi + H corresponds to the vector (0, 0, . . . , 1, . . . , 0) ∈ Zpa1 × . . . × Zpas .) But we just
proved that zigi ∈ H if and only if zigi = 0 in G, so we conclude that

∑
zigi ∈ N reduces

to 0 modulo H if and only if
∑
zigi = 0 in G, and hence that reduction modulo H maps N

isomorphically onto G/H.

Thus, to prove the claim, we just need to show that H + N = G and H ∩N = {0}. The
former claim is easy: if x ∈ G, then we can write x ∼= y mod H for some y ∈ N , so x = y+h
for some y ∈ N , h ∈ H. Now assume that x ∈ H ∩N . Then q(x) = 0 and x ∈ N , which by
the previous paragraph means that x = 0 in G. So we’re done. ♣

Since H ∼= Zpa , this means that G ∼= Zpa×Zpa1 × . . .×Zpas , so we’ve proven the existence
part of the Lemma.
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To prove uniqueness, assume that G ∼= Zpa1 × . . . × Zpas ∼= Zpb1 × . . . × Zpbt . For any
positive integer A, it’s clear that if m ≤ A, then there are exactly pm elements g of ZpA such
that pmg = 0; otherwise, there are pA.

For any positive integer A, let kA be the number of integers i such that ai = A, and let
`A be the number of integers i such that bi = A. If we can show that kA = `A for all A,
then it will follow that the two product representations are the same. By considering the
two product representations of G, we can compute that in Zpa1 × . . .× Zpas , the number of
elements g satisfying pAg = 0 is:

(pA)
∑

B≥A kB
∏
B<A

(pB)kB

and in Zpb1 × . . .× Zpbt , the number of elements g satisfying pAg = 0 is:

(pA)
∑

B≥A `B
∏
B<A

(pB)`B

Since these two numbers must be the same, we can equate exponents of p:∑
B≥A

AkB +
∑
B<A

BkB =
∑
B≥A

A`B +
∑
B<A

B`B

This is true for all positive integers A, so it’s true for A+ 1 as well:∑
B>A

(A+ 1)kB +
∑
B≤A

BkB =
∑
B>A

(A+ 1)`B +
∑
B≤A

B`B

By subtracting the first equation from the second, we find:∑
B>A

kB =
∑
B>A

`B

for any positive integer A. So this too must be true for A− 1:∑
B≥A

kB =
∑
B≥A

`B

By subtracting the further two equations, we find that kA = `A. But this means that the
two product representations are equal! So we’re done. ♣

Step 6: Finish the proof of the theorem.

This is now routine. We know that A ∼= F × T ∼= Zr × T (p1) × . . . × T (p`) ∼= Zr ×
Zpa11 × . . .×Zpa`` , so all that’s left is to prove the uniqueness of the decomposition. Well, r is

uniquely determined because it’s the size of the maximal linearly independent subset of A.
The primes pi are uniquely determined because they’re precisely the prime divisors of the
order of T , and the groups T (pi) are uniquely determined up to isomorphism because they’re
defined solely in terms of the group operation of A, which is preserved by isomorphisms. And
finally, the uniqueness of the decomposition of T (pi) is proven by Step 5. Ta da!


