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Let p be a prime and Zp denote the p-adic integers. Iwasawa theory is concerned with the structure
of certain Galois modules arising from arithmetic. These modules are defined over certain infinite Galois
extensions of Q.

0.1 The Cyclotomic Zp-extensions

Let Qn be the subfield of Q(µpn+1) such that Gal(Qn/Q) ≃ Z/pn as depicted (Add commutative diagram).
The tower of number fields, Q = Q1 ⊂ Q2 ⊂ · · · ⊂ Qn ⊂ · · · is called the cyclotomic tower. The field Qcyc

is taken to be the union,

Qcyc =
⋃
n≥1

Qn

The Galois group is isomorphic to the p-adics, Gal(Qcyc/Q) ≃ Zp.

0.2 Early Investigations and Iwasawa’s Approach

Iwasawa’s early investigations led him to study the variation for p-class groups of Qn as n → ∞. For
n ≥ 1, set An to denotes the p-primary part of the class group of Qn, An = Cl(Qn)[p

∞] Iwasaw proved
that there are invariants µ, λ, ν ≥ 0 such that, #An = pµp

n+λn+ν for large values of n.

There are natural maps An+1 → An and the inverse limit A∞ = lim←−An is a module over Γ =
Gal(Qcyc/Q). Iwasawa introduced the completed algebra, Λ = lim←− Zp[Gal(Qn/Q)] ≃ Zp[[x]]. He proved
that A∞ is a finitely generated torsion Zp[[x]]-module and his theorem is a consequence of the structure
theory of such modules.

0.3 Iwasawa Theory of Elliptic Curves

Greenberg and Mazur initiated the Iwasawa theory of elliptic curves over Q. Throughout, we let E be
the elliptic curves over Q, denoted as E/Q with good ordinary reduction at p. They studied the variation

of Selmer groups as one goes up the tower. For any abelian group M , set M [pn] = ker(M
pn−→ M) and

M [p∞] =
⋃

n≥1M [pn]. The group, E[p∞] ≃ (Qp/Zp)
2 equipped with an action of Gal(Q/Q). What are

Selmer groups? For each number field extension F of Q, the selmer group Selp∞(E/F ) consists of Galois
cohomology classes, f ∈ H1(F/F,E[p∞]) satisfying suitable local conditions. It fits into a short exact
sequence,

0 → E(F )⊗Qp/Zp → Selp∞(E/F ) → X(E/F )[p∞] → 0
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The Selmer group over Qcyc is taken to be the direct limit, Selp∞(E/Qcyc) = lim→n Selp∞(E/Qn). The
Pontryagin dual, M = Homcnts(Selp∞(E/Qcyc),Qp/Zp) is a finitely generated and torsion Λ ≃ Zp[[x]]
module. Now, we will discuss about Iwasawa Invariants. By the structure theory of Zp[[x]] modules, up to
a pseudoisomorphism, M∞ decomposes into cyclic-modules:(⊕

j

Zp[[x]]/(p
µj)

)
⊕

(⊕
j

Zp[[x]]/(fj(x))

)

The µ and λ invariants are as follows,

µE =
∑
j

µj

λE =
∑
j

deg fj(x)

0.4 The generalized Euler characteristic

If E(Q) is finite, the cohomology groups H i(Γ, Selp∞(E/Qcyc)) are finite. In this case, the Euler character-
istic is as follows:

χ(Γ, E) =
∏
i≥0

(#H i(Γ, Selp∞(E/Qcyc)))
(−1)i

When E(Q) is infinite, there is a generalization of the above definition and this generalized Euler charac-
teristic is denoted by χt(Γ, E). We will now see the Euler characteristic formula. Let a, b ∈ Q×p , we write
a ∼ b if a = ub for a unit u ∈ Z×p . Perrin-Riou and Schneider proved the following p-adic analgoue of the
Birch-Swinnerton Dyer formula:

χt(Γ, E) ∼ Rp(E/Q)×#(X(E/Q[p]))

#(E(Q)[p])2
× τ(E)

Here, Rp(E/Q) is the p-adic regulator and τ(E) =
∏

ci is the Tamagawa product. Let E1 and E2 be elliptic
curves over Q and p a prime. We say that E1 and E2 are p-congruent if as Galois modules, Ei[p] ≃ E2[p].
Greenberg and Vatsal proved that if E1 and E2 are p-congruent, then the Iwasawa invariants µ and λ for
E1 can be related to the Iwasawa invariants µ and λ for E2. Let E1 and E2 be p-ordinary and p-congruent.
One may ask if the following congruence does hold χt(Γ, E1) ≡ χt(Γ, E2) (mod p)? This is not true, for
instance, E1 = 37a1, E2 = 1406g1 are both rank 1 elliptic curves and congruent mod 5. However, compu-
tations show that, χt(Γ, E) = 1 and χt(Γ, E2) = 52. One must account for certain local L-factors. There
is an explicit set of primes Σ0 at which either E1 or E2 has bad reduction. Set ΦΣ0(Ei) to be the product
of local L-factors,

∏
I∈Σ0

Li(Ei, 1)
−1.

Theorem (R.Sujatha). Suppose that p is an odd primes and E1 and E2 are p-congruent elliptic curves over
Q with good ordinary reduction at p. Suppose that rankE1(Q) = rankE2(Q). Then, we have the following
congruence:

ΦΣ0(E1)× χt(Γ, E1) ≡ ΦΣ0(E2)× χt(Γ, E2) (mod p)

Suppose that rankE1(Q) < rankE2(Q). Then, we have that

ΦΣ0(E1)× χt(Γ, E1) ≡ 0 (mod p)
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Proof. We will provide an idea of the proof. The Euler characteristic χt(Γ, Ei) modulo p is detected by the
p-torsion, Sel(Ei/Qcyc)[p] ⊂ Sel(Ei/Qcyc). One proves that, Sel(Ei/Qcyc)[p] ≃ Sel(Ei[p]/Qcyc). It follows
that,

Sel(E1/Qcyc)[p] ≃ Sel(E1[p]/Qcyc)

≃ Sel(E1[p]/Qcyc)

≃ Sel(E2[p]/Qcyc)

≃ Sel(E2/Qcyc)[p]

Except, Sel(Ei/Qcyc)[p] ≃ Sel(Ei[p]/Qcyc) is not true on the nose. One needs to modify the Selmer groups
to account for the auxilary primes Σ0: Sel

Σ0(Ei/Qcyc)[p] ≃ SelΣ0(Ei[p]/Qcyc) and this is where the auxilary
factors

∏
I∈Σ0

LI(Ei, 1)
−1 come from.
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