Euler characteristics in Iwasawa theory and their congruences

Sachin Kumar University of Waterloo, Faculty of Mathematics

June 2023

Let p be a prime and \mathbb{Z}_p denote the p-adic integers. Iwasawa theory is concerned with the structure of certain Galois modules arising from arithmetic. These modules are defined over certain infinite Galois extensions of \mathbb{Q} .

0.1 The Cyclotomic \mathbb{Z}_p -extensions

Let \mathbb{Q}_n be the subfield of $\mathbb{Q}(\mu_{p^{n+1}})$ such that $\operatorname{Gal}(\mathbb{Q}_n/\mathbb{Q}) \simeq \mathbb{Z}/p^n$ as depicted (**Add commutative diagram**). The tower of number fields, $\mathbb{Q} = \mathbb{Q}_1 \subset \mathbb{Q}_2 \subset \cdots \subset \mathbb{Q}_n \subset \cdots$ is called the cyclotomic tower. The field \mathbb{Q}_{cyc} is taken to be the union,

$$\mathbb{Q}_{ ext{cyc}} = igcup_{n\geq 1} \mathbb{Q}_n$$

The Galois group is isomorphic to the *p*-adics, $\operatorname{Gal}(\mathbb{Q}_{\operatorname{cyc}}/\mathbb{Q}) \simeq \mathbb{Z}_p$.

0.2 Early Investigations and Iwasawa's Approach

Iwasawa's early investigations led him to study the variation for *p*-class groups of \mathbb{Q}_n as $n \to \infty$. For $n \geq 1$, set \mathcal{A}_n to denotes the *p*-primary part of the class group of \mathbb{Q}_n , $\mathcal{A}_n = \operatorname{Cl}(\mathbb{Q}_n)[p^{\infty}]$ Iwasaw proved that there are invariants μ , λ , $\nu \geq 0$ such that, $\#\mathcal{A}_n = p^{\mu p^n + \lambda n + \nu}$ for large values of n.

There are natural maps $\mathcal{A}_{n+1} \to \mathcal{A}_n$ and the inverse limit $A_{\infty} = \lim_{\leftarrow} \mathcal{A}_n$ is a module over $\Gamma = \operatorname{Gal}(\mathbb{Q}_{\operatorname{cyc}}/\mathbb{Q})$. Iwasawa introduced the completed algebra, $\Lambda = \lim_{\leftarrow} \mathbb{Z}_p[\operatorname{Gal}(\mathbb{Q}_n/\mathbb{Q})] \simeq \mathbb{Z}_p[[x]]$. He proved that \mathcal{A}_{∞} is a finitely generated torsion $\mathbb{Z}_p[[x]]$ -module and his theorem is a consequence of the structure theory of such modules.

0.3 Iwasawa Theory of Elliptic Curves

Greenberg and Mazur initiated the Iwasawa theory of elliptic curves over \mathbb{Q} . Throughout, we let E be the elliptic curves over \mathbb{Q} , denoted as E/\mathbb{Q} with good ordinary reduction at p. They studied the variation of Selmer groups as one goes up the tower. For any abelian group M, set $M[p^n] = \ker(M \xrightarrow{p^n} M)$ and $M[p^{\infty}] = \bigcup_{n\geq 1} M[p^n]$. The group, $E[p^{\infty}] \simeq (\mathbb{Q}_p/\mathbb{Z}_p)^2$ equipped with an action of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. What are Selmer groups? For each number field extension F of \mathbb{Q} , the selmer group $\operatorname{Sel}_{p^{\infty}}(E/F)$ consists of Galois cohomology classes, $f \in H^1(\overline{F}/F, E[p^{\infty}])$ satisfying suitable local conditions. It fits into a short exact sequence,

$$0 \to E(F) \otimes \mathbb{Q}_p / \mathbb{Z}_p \to \operatorname{Sel}_{p^{\infty}}(E/F) \to \operatorname{III}(E/F)[p^{\infty}] \to 0$$

The Selmer group over \mathbb{Q}_{cyc} is taken to be the direct limit, $\operatorname{Sel}_{p^{\infty}}(E/\mathbb{Q}_{cyc}) = \lim_{\to n} \operatorname{Sel}_{p^{\infty}}(E/\mathbb{Q}_n)$. The Pontryagin dual, $\mathfrak{M} = \operatorname{Hom}_{cnts}(\operatorname{Sel}_{p^{\infty}}(E/\mathbb{Q}_{cyc}), \mathbb{Q}_p/\mathbb{Z}_p)$ is a finitely generated and torsion $\Lambda \simeq \mathbb{Z}_p[[x]]$ module. Now, we will discuss about Iwasawa Invariants. By the structure theory of $\mathbb{Z}_p[[x]]$ modules, up to a pseudoisomorphism, \mathfrak{M}_{∞} decomposes into cyclic-modules:

$$\left(\bigoplus_{j} \mathbb{Z}_p[[x]]/(p^{\mu_j})\right) \oplus \left(\bigoplus_{j} \mathbb{Z}_p[[x]]/(f_j(x))\right)$$

The μ and λ invariants are as follows,

$$\mu_E = \sum_j \mu_j$$
$$\lambda_E = \sum_j \deg f_j(x)$$

0.4 The generalized Euler characteristic

If $E(\mathbb{Q})$ is finite, the cohomology groups $H^i(\Gamma, \operatorname{Sel}_{p^{\infty}}(E/\mathbb{Q}_{cyc}))$ are finite. In this case, the Euler characteristic is as follows:

$$\chi(\Gamma, E) = \prod_{i \ge 0} (\#H^i(\Gamma, \operatorname{Sel}_{p^{\infty}}(E/\mathbb{Q}_{\operatorname{cyc}})))^{(-1)^i}$$

When $E(\mathbb{Q})$ is infinite, there is a generalization of the above definition and this generalized Euler characteristic is denoted by $\chi_t(\Gamma, E)$. We will now see the Euler characteristic formula. Let $a, b \in \mathbb{Q}_p^{\times}$, we write $a \sim b$ if a = ub for a unit $u \in \mathbb{Z}_p^{\times}$. Perrin-Riou and Schneider proved the following *p*-adic analgoue of the Birch-Swinnerton Dyer formula:

$$\chi_t(\Gamma, E) \sim \frac{R_p(E/\mathbb{Q}) \times \#(\mathrm{III}(E/\mathbb{Q}[p]))}{\#(E(\mathbb{Q})[p])^2} \times \tau(E)$$

Here, $R_p(E/\mathbb{Q})$ is the *p*-adic regulator and $\tau(E) = \prod c_i$ is the Tamagawa product. Let E_1 and E_2 be elliptic curves over \mathbb{Q} and *p* a prime. We say that E_1 and E_2 are *p*-congruent if as Galois modules, $E_i[p] \simeq E_2[p]$. Greenberg and Vatsal proved that if E_1 and E_2 are *p*-congruent, then the Iwasawa invariants μ and λ for E_1 can be related to the Iwasawa invariants μ and λ for E_2 . Let E_1 and E_2 be *p*-ordinary and *p*-congruent. One may ask if the following congruence does hold $\chi_t(\Gamma, E_1) \equiv \chi_t(\Gamma, E_2) \pmod{p}$? This is not true, for instance, $E_1 = 37a_1$, $E_2 = 1406g_1$ are both rank 1 elliptic curves and congruent mod 5. However, computations show that, $\chi_t(\Gamma, E) = 1$ and $\chi_t(\Gamma, E_2) = 5^2$. One must account for certain local *L*-factors. There is an explicit set of primes Σ_0 at which either E_1 or E_2 has bad reduction. Set $\Phi_{\Sigma_0}(E_i)$ to be the product of local *L*-factors, $\prod_{I \in \Sigma_0} L_i(E_i, 1)^{-1}$.

Theorem (R.Sujatha). Suppose that p is an odd primes and E_1 and E_2 are p-congruent elliptic curves over \mathbb{Q} with good ordinary reduction at p. Suppose that $\operatorname{rank} E_1(\mathbb{Q}) = \operatorname{rank} E_2(\mathbb{Q})$. Then, we have the following congruence:

$$\Phi_{\Sigma_0}(E_1) \times \chi_t(\Gamma, E_1) \equiv \Phi_{\Sigma_0}(E_2) \times \chi_t(\Gamma, E_2) \pmod{p}$$

Suppose that $\operatorname{rank} E_1(\mathbb{Q}) < \operatorname{rank} E_2(\mathbb{Q})$. Then, we have that

$$\Phi_{\Sigma_0}(E_1) \times \chi_t(\Gamma, E_1) \equiv 0 \pmod{p}$$

Proof. We will provide an idea of the proof. The Euler characteristic $\chi_t(\Gamma, E_i)$ modulo p is detected by the p-torsion, $\operatorname{Sel}(E_i/\mathbb{Q}_{\operatorname{cyc}})[p] \subset \operatorname{Sel}(E_i/\mathbb{Q}_{\operatorname{cyc}})$. One proves that, $\operatorname{Sel}(E_i/\mathbb{Q}_{\operatorname{cyc}})[p] \simeq \operatorname{Sel}(E_i[p]/\mathbb{Q}_{\operatorname{cyc}})$. It follows that,

$$\operatorname{Sel}(E_1/\mathbb{Q}_{\operatorname{cyc}})[p] \simeq \operatorname{Sel}(E_1[p]/\mathbb{Q}_{\operatorname{cyc}})$$
$$\simeq \operatorname{Sel}(E_1[p]/\mathbb{Q}_{\operatorname{cyc}})$$
$$\simeq \operatorname{Sel}(E_2[p]/\mathbb{Q}_{\operatorname{cyc}})$$
$$\simeq \operatorname{Sel}(E_2/\mathbb{Q}_{\operatorname{cyc}})[p]$$

Except, $\operatorname{Sel}(E_i/\mathbb{Q}_{\operatorname{cyc}})[p] \simeq \operatorname{Sel}(E_i[p]/\mathbb{Q}_{\operatorname{cyc}})$ is not true on the nose. One needs to modify the Selmer groups to account for the auxilary primes Σ_0 : $\operatorname{Sel}^{\Sigma_0}(E_i/\mathbb{Q}_{\operatorname{cyc}})[p] \simeq \operatorname{Sel}^{\Sigma_0}(E_i[p]/\mathbb{Q}_{\operatorname{cyc}})$ and this is where the auxilary factors $\prod_{I \in \Sigma_0} L_I(E_i, 1)^{-1}$ come from.