Proof of Burnside’s Theorem

1 Introduction

In 1904, Burnside proved the following result.
Theorem 1.1. Let G be a group of size p*q®, where p and q are primes. Then G is solvable.

The original proof uses representation theory of finite groups. Here, we prove the above theorem in the
case where p and ¢ are odd primes. The proof is purely group-theoretic.

2 Preliminaries

We first set up some necessary notations. All groups to be considered here are finite. Given a subset X C G,
we denote the centralizer and normalizer of X (with respect to G) respectively by

Co(X)={9€G:Vre X, gr=ug},

Ne(X)={geG:g9Xg ' =X}

Note that we always have Cg(X) C Ng(X). The center of G is Z(G) := Cg(G).

Given a subgroup H of G, we say that H is a characteristic subgroup of G, denoted by H char G, if H is
invariant under any automorphism ¢ of G. By invariant, we mean ¢(H) C H; in the case where G is finite,
this is the same as ¢(H) = H. In particular, since the conjugation action x + gzg~! is an automorphism
for any g € G, any characteristic subgroup of G is normal. An example of a characteristic subgroup of G is
Z(@G). Here are some properties of characteristic subgroup:

e Given K char H char G, we have K char G.
e Given K char H < G, we have K < G.

Given z,y € G, the commutator of x and y is [z,y] = v~y tay. Given X,Y C G, we denote by [X,Y]
the subgroup generated by [z, y] across all x € X and y € Y. Define the sequence

LI(G) = Ga LQ(G) = [Ga G]a L3(G) = [LQ(G)7G]a AR

where L;11(G) = [Li(G),G] for all i > 1. A group G is said to be nilpotent if L,,(G) = 1 for some m > 1.
Here, we mainly use the following facts about nilpotent groups.

e The direct product of nilpotent groups is nilpotent.
e Every p-group is nilpotent.
e If G is nilpotent and H C G, then H C Ng(H).

e If H and K are normal nilpotent subgroups of GG, then so is HK.



The last fact implies that there is a normal nilpotent subgroup of G that contains all other normal
nilpotent subgroups. This subgroup is called the Fitting subgroup of G, and is denoted F(G). It is easy to
see that F(G) is a characteristic subgroup of G. We take as a fact that:

Lemma 2.1. If G is finite solvable, then F(G) is non-trivial and Cq(F(G)) C F(G).

Given a finite group G and a prime p, we denote by Syl (G) the set of all Sylow p-subgroups of G. Next,
for any finite group G and a prime p, we define

0,(G)= () H

HesSyl, (G)

The important property of O,(G) is that it is the unique maximal normal p-subgroup of G. That is, it is a
normal p-subgroup, and every normal p-subgroup of G is contained in O,(G). Normality follows since any
conjugate of a Sylow p-subgroup is another Sylow p-subgroup. Maximality follows from the fact that all
Sylow p-subgroups are conjugates of each other.

Lemma 2.2. A finite group is nilpotent if and only if it is the direct product of its Sylow subgroups.

Lemma 2.3. Let G be a solvable group of order p®q®, where p and q are primes. Let H be a p-subgroup of
G. Then Oq(Ng(H)) C O4(G).

Finally, for any prime p and positive integer n, we denote by 1,(n) the p-adic valuation of n.

3 Proof of Theorem [1.1] for odd case

We now prove Theorem when p and g are odd. We proceed by contradiction.

Let G be a minimal counterexample to Theorem Write |G| = p®¢®, where p and ¢ are odd primes
and a,b > 0. It is known that p-groups are solvable for any p prime, so a and b are positive. Here are some
properties of G.

e All proper subgroups of GG are solvable.

This follows from minimality of G since the size of a proper subgroup divides p%q®.

e (G is simple.

Indeed, otherwise we can find a non-trivial normal subgroup N <t G. Then N and G/N are solvable,
and thus G is solvable; a contradiction.

o 0,(G) = 04(G) = {1}.

Indeed, they are normal subgroups of G' and are not equal to G.

Here is a less straightforward fact about G. Given subgroups H, K < GG, we say that H normalizes K if
H C Ng(K). That is, hKh™! = K for any h € H.

Lemma 3.1. Let P € Syl (G) and Q' be a q-subgroup of G. If P normalizes Q', then Q" = {1}.

Proof. Fix P € Syl,(G) and a g-subgroup Q" < G. Let @ be a Sylow g-subgroup of G containing Q'. Since
P normalizes Q’, we have Q' = zQ'z~! C zQxz~! for any x € P.

Now, we can check that PQ) = G using size constraint. Thus, any g € G can be written as xy for some
x € Pandy € Q. Then Qg = 2yQy 'z~! = xQx~!. This means that every Sylow g-subgroup of G is of
form zQx ! for any x € P. The previous paragraph implies that @’ is contained in all Sylow g-subgroups
of G. Thus, Q' C O,(G) = {1}, as desired. O

For the next big result, we need a few lemmas.



Lemma 3.2. Let P < G be a p-group. Let Q < Ng(P) be a non-cyclic abelian q-group. Then

p= ]| Cr

zeQ\{1}
Lemma 3.3. Let P < G be an abelian p-group. Let Q < Ng(P) be a g-group. Then P = Cp(Q) X [P, Q).
Lemma 3.4. A p-group has a unique subgroup of order p if and only if it is cyclic.

A mazimal subgroup of G is a proper subgroup M such that the only subgroups of G containing M are
G and M itself. Every proper subgroup of G is contained in a maximal subgroup.

Lemma 3.5. Let M be a mazimal subgroup of G. Then F(M) = F(M), x F(M),, where F(M), and
F(M), are the unique Sylow p-subgroup and q-subgroup of F (M), respectively. Furthermore, both F (M),
and F(M), are characteristic subgroups of F(M).

Proof. Recall by definition that F'(M) is nilpotent. By Lemma we have F'(M) = F, x Fy;, where F, is the
Sylow r-subgroup of F(M) for r € {p,q}. Since F,, and Fj has coprime sizes, they must be a characteristic
subgroup of F(M). O

Theorem 3.6. Let M be a mazimal subgroup of G. Then the Fitting subgroup F(M) of M is a p-group or
q-group.

Proof. For convenience, write F' = F(M), F, = F(M), and F; = F(M),. Lemma 3.5 gives us F = F, x Fy,.
We proceed by contradiction, assuming that M is neither a p-group nor a g-group. That is, both F, and F,
are non-trivial. We prove a series of results and arrive at a contradiction.

First, we prove that M is the unique maximal subgroup of G containing Z(F). In particular, any proper
subgroup of G containing Z(F) is contained in M. Let M’ be an arbitrary maximal subgroup of G containing
Z(F'). Notice that since F' = F,, x Fy, we have

Z(F,) C Z(F) C F C M.

We also have Z(F,) C Cq(Z(Fy)), using the fact that A C Caxp(B) for any groups A and B. Thus we get
Z(F,) € Cm, (Z (F ) € NMl(Z(F )-

Now notice that Z(F),) char F}, char F char M, so Z(F,) < M. Similarly, Z(F,) < M, so M normalizes
Z(F,). Since G is simple and Z(F,) < G, we get Ng(Z(F )) = M. In particular, Ny, (Z(Fy)) < M.
Combining with Z(F,) C NMI(Z(F )) yields Z(F,) < Ny (Z(F,)). Since Z(F,) is a p-group, we get
Z(F,) € Op(Nu, (Z(F;))). Lemma 2.3 then yields Z(F,) € Op(My), and similarly Z(F,) C Og(My).

By Lemma we can write F(My) = F(M), x F(My)y. Recalling that O,(M;) is normal nilpotent,
we have

Z(Fp) - Op(Ml) - F(Ml)p c CM1 (F(Ml)q) - CG(F(Ml)q)‘

This implies
F(My)y, C Ce(Z(F,)) C Na(Z(F,)) = M.

Similarly F(M), € M, so F(M;) C M. In particular, Z(F(M;)) C M. We can repeat the same argument
toget F'=F C M;.

Now one sees that F,, <Ng(Fy). Since F, C M, this yields Fj, <Ny, (Fy). Thus F, € O, (N, (Fy)), and
Lemma [2.3] - yields F,, C O »(Mi). Then F' is a normal nilpotent Subgroup of My, Wthh implies F' C F(Ml)
Similarly, we also get F(Ml) C F, s0 F = F(M;). Thus we get M1 = Ng(F(My)) = Ng(F) = M, as
desired.

Next, we show that F' is not cyclic. Here we use the assumption that F}, and F; are non-trivial. Suppose
for the sake of contradiction that F is cyclic. Then for r € {p,q}, F, is cyclic. Thus it contains a unique
subgroup of order r, say U,, by Lemma [3.:4 For this proof, WLOG let p < q.



Since U, char M, U,Q is a subgroup of M and so @ € Syl (U,Q). Let n, be the number of conjugates of
Q over U,Q. By Sylow’s theorem, n, =1 (mod ¢) and n, | [U,Q : Q] = p. But p < ¢, so this forces n, = 1;
that is, @ < UpQ. In particular, U, normalizes @, so [Q,U,] C U, N @, which is trivial since |Up,| = p and
|Q| are coprime. That is, @ and U, commutes; in particular, U,Q = U, x @ and U, C CF,(Q).

Since F), char F char M, we have F, < M, so Ny (F,) = M. Then Q C Npy(F,) and F), is abelian,
so Lemma yields F,, = Cp,(Q) x [F},,Q]. But F}, is cyclic and both factors Cr,(Q) and [F,, Q] are
p-groups. Since U, C Cp,(Q), this forces [F),,Q] = {1}. So @ and F, commutes, i.e. Q@ C Cg(F,). Then
Z(Q) CCym(F) C F, and thus {1} # Z(Q) C F,. This implies U, char Z(Q) char Q.

Now pick some Q" € Syl (G) containing Q). Then @ ¢ Ng/(Q). Choose an arbitrary P € Syl,(M). Then
|P||Ng/(Q)] > |P||Q] = |M|, and so (P, Ng/(Q)) 2 M. By maximality, we have (P, Ng/(Q)) = G. On the
other hand, {1} # F, < (P, Ng/(Q)) = G. A contradiction, since Fj is a proper subgroup of G.

We are now at the final step. Suppose for the sake of contradiction that Fj, and F, are both non-trivial.
Since F' is not cyclic, F, does not contain a unique subgroup of order p. That means F}, contains a non-cyclic
subgroup V' isomorphic to Z/pZ x Z/pZ, where one of the component is Z(F,).

For each x € V' \ {1}, we have Z(F) C Cg(z) # G. Thus, maximality of M yields Cg(x) C M for all
r € V\ {1}. Fix some P € Syl,(M) containing V.

Let Qo be any g-subgroup of G normalized by P. By Lemma we have

Qo = H CQO(JZ) C M.

zeV\{1}

Now let Q be a Sylow g-subgroup of M containing Q. Let Q3! = Uzenr 7 'Qox. Since a Sylow p-subgroup
normalizes Q¢ (namely P), we have
Q' =] 2 'Qur C Q.
zEQ

Clearly, Q)" <t M, so we get that Q) is a normal nilpotent g-subgroup of M. Thus, Qo C Q) C F,. That is,
any g-subgroup of G normalized by P is contained in Fj,. Note that F} is normalized by P, so this means Fj,
is the (unique) maximal g-subgroup of G normalized by P. Since Fy, is non-trivial by assumption, Lemma
yields P ¢ Syl,(G).

Now pick an arbitrary P" € Syl (G) containing P. Then P C Np/(P), but also Np/(P) is a p-subgroup.
Then Np/(P) € M and thus Ng(P) € M = Ng(Fy). On the other hand, for any « € Ng(P), we have

P=2"'Pr Ca Mz =2""Ng(F,)z = No(z ' F,x).

Since * € Ng(P), one can check that z7!'F,z is also normalized by P. Then maximality of F, yields
x71F,x C F,, and thus equality occurs. That is, z € Ng(F,) = M; a contradiction. O

For the next big result, for any p-group P, let J(P) the subgroup of P generated by all abelian subgroups
of P with maximal order. Clearly, any automorphism of P maps an abelian subgroup to another abelian
subgroup of the same order. From this, one can see that J(P)char P. Also, note that J(P) is a non-trivial
p-group, so Z(J(P)) is non-trivial as well.

Lemma 3.7. Let M be a solvable group of order p®q®. Suppose that O,(M) # {1} but O,(M) = {1}. Then,
for any P € Syl,(M), we have Z(J(P)) < M. That is, M normalizes Z(J(P)).

Corollary 3.8. Let M be a mazimal subgroup of G. By Theorem F(M) is an r-group for some
r € {p,q}. Then for any P € Syl.(M), we have Ng(Z(J(P))) = M. That is, M is exactly the normalizer

of Z(J(P)).

Proof. WLOG let » = p. Since O4(M) normal nilpotent, we have O4(M) C F(M). But Oy (M) is a ¢-
group and F(M) is a p-group, so Oq(M) = {1}. On the other hand, by Lemma F(M) is non-trivial
normal, so Op(M) is non-trivial. Lemma yields M C Ng(Z(J(P))). But Z(J(P)) is non-trivial and
Z(J(P)) < P < G. Since G is simple, maximality of M yields Ng(Z(J(P))) = M. O



Lemma 3.9. Let M be a mazimal subgroup of G. By Theorem F(M) is an r-group for somer € {p,q}.
Then M contains a Sylow r-subgroup of G.

Proof. Fix a maximal subgroup M < G, and WLOG let F(M) be a p-group. By Corollary M is exactly
the normalizer of Z(J(P)).
Now pick a Sylow p-subgroup P’ of G containing P. Then we have

Z(J(P))char J(P)char P < Np/(P) = Z(J(P)) < Np/(P).

Thus P C Np:(P) C PN M. But P'N M is a p-subgroup and P is a Sylow p-subgroup (of M). Thus, the
above subset relation is an equality; P = Np/(P) = PN M. Since P C P’ are p-groups, this forces P = P’.
Thus P is a Sylow p-subgroup of G. O

Lemma 3.10. Fiz an arbitrary P € Syl (G). Then there is evactly one mazimal subgroup of G containing
Z(P). In particular, there is also exactly one mazximal subgroup of G containing P. (The same statement
holds for Q € Syl (G).)

Proof. Let M be a maximal subgroup of G containing P. We first prove that it is the only one containing
P, and then prove that it is also the only one containing Z(P).

First note that P normalizes O, (M) since P C M. Lemma [3.1] yields O,(M) = {1}, which forces F(M)
to be a p-group. Then Corollary [3.8| yields M = Ng(Z(J(P))). That is, M := Ng(Z(J(P))) is the unique
maximal subgroup of G containing P.

Now we show that M is the only maximal subgroup of G containing Z(P). Suppose for the sake
of contradiction that Z(P) is contained in a maximal subgroup M’ # M. Choose M’ that maximizes
vp(|M’ N M]|). Let P’ be a Sylow p-subgroup of M’ N M containing Z(P). By the previous paragraph, we
know that P’ ¢ Syl (G). We can choose some x € M such that x~'P’z C P. The containment is strict
since P’ ¢ Syl (G). Thus we get 2~ 'P'x C Np(x~'P'z).

We first claim that Ng(P') C M'. Otherwise, choose a maximal sub group My # M’ containing Ng(P’).
Then Z(P) C P’ C My and thus

vp(IMo 0V M]) = (NG (P'y 1 M) = v (INp(P')]) > (1P']) = (M7 0 M),

where the last equality holds since P’ € Syl,,(M’ N M). A contradiction to the choice of M’.

Next, we claim that x~'P'z € Syl (M’). Let P, be a Sylow p-subgroup of M’ containing x~'P'x. If
x~ 1P’z # Py, then

v 'P'a C Np,(x 'P'z) C PoN M C M'N M,

and also Np, (2~ P'z) is a p-group. Then 2~ ' P’z ¢ Syl (M’ N M), but P" € Syl,(M'NM); a contradiction.

By Lemma since M contains a Sylow p-subgroup (namely P), F(M) is a p-group. Recall that
x'P'z C P and P’ C Syl,(M). Then the Sylow p-subgroups of M’ are not Sylow p-subgroups of G. Thus,
F(M') is a g-group and Syl (M") C Syl (G). By the first step, M’ contains a Sylow g-subgroup of G. This
implies G = PM’. We assumed that Z(P) C M’, and so

Z(P)=(2'Z(P)xC [z ' Mz C (|2~ Mz 2 G.
z€EP z€EP zeG

But the last intersection is smaller than G and Z(P) is non-trivial. This contradicts the fact that G is
simple. [

Finally, we prove the following lemma.

Lemma 3.11. There exists Py, Py € Syl,(G) such that Py N Py = {1}. (Similarly, there exists Q1,Q2 €
Syl,(G) such that Q1 N Q2 = {1}.)



Proof. We first there is a Sylow p-subgroup of G not contained in M. Indeed, they are all conjugates of Py,
i.e. of form xPyz~! for some x € G. Note that Mz ! is a maximal subgroup of G, and it contains Pz ~".
So, if xPyz~" C M for all € G, then uniqueness in Lemma imply eMxz~! = M for all x € G. That
is, M <1 G; a contradiction, since G is simple.

Now fix some P, € Syl,(G) such that P» £ M. Suppose for the sake of contradiction that P, N M is
non-trivial. Note that P, N M is a p-group contained in M. Thus, there exists x € M such that

Y (P,n M)z C P,

and so we get
Z(P)) C Ng(z ™Y (PN M)z) = 2 ' Ng(Py N M)x.

Since G is simple and P> N M is a non-trivial subgroup, it is not normal. Thus Ng(P. N M) # G, and the
above relation and uniqueness of M from Lemma yields

x 'Ng(Py N M)z C M.
Since x € M, this implies Ng(P> N M) C M. Also, it is clear that P, N M C Ng(P2 N M), so we get
Np,(Po,NM)=P,NNg(P,NM)=P,NM.
But P, N M is a proper subgroup of the p-group P,. This equality cannot hold; contradiction. O

Now we can obtain contradiction using Lemma Without loss of generality, let p® > ¢*. Then there
exists Py, P» € Syl,(G) such that Py N P, = {1}. But then we get

2 [P P p** 5,
> |G| > |PPy| = 2L = T — p2a
p G = [P | Py N Pyl 1 p

a contradiction! This concludes the proof of Theorem [1.1
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