
Proof of Burnside’s Theorem

1 Introduction

In 1904, Burnside proved the following result.

Theorem 1.1. Let G be a group of size paqb, where p and q are primes. Then G is solvable.

The original proof uses representation theory of finite groups. Here, we prove the above theorem in the
case where p and q are odd primes. The proof is purely group-theoretic.

2 Preliminaries

We first set up some necessary notations. All groups to be considered here are finite. Given a subset X ⊆ G,
we denote the centralizer and normalizer of X (with respect to G) respectively by

CG(X) = {g ∈ G : ∀x ∈ X, gx = xg},

NG(X) = {g ∈ G : gXg−1 = X}.

Note that we always have CG(X) ⊆ NG(X). The center of G is Z(G) := CG(G).
Given a subgroup H of G, we say that H is a characteristic subgroup of G, denoted by H charG, if H is

invariant under any automorphism ϕ of G. By invariant, we mean ϕ(H) ⊆ H; in the case where G is finite,
this is the same as ϕ(H) = H. In particular, since the conjugation action x 7→ gxg−1 is an automorphism
for any g ∈ G, any characteristic subgroup of G is normal. An example of a characteristic subgroup of G is
Z(G). Here are some properties of characteristic subgroup:

• Given K charH charG, we have K charG.

• Given K charH ◁G, we have K ◁G.

Given x, y ∈ G, the commutator of x and y is [x, y] = x−1y−1xy. Given X,Y ⊆ G, we denote by [X,Y ]
the subgroup generated by [x, y] across all x ∈ X and y ∈ Y . Define the sequence

L1(G) = G, L2(G) = [G,G], L3(G) = [L2(G), G], . . . ,

where Li+1(G) = [Li(G), G] for all i ≥ 1. A group G is said to be nilpotent if Lm(G) = 1 for some m ≥ 1.
Here, we mainly use the following facts about nilpotent groups.

• The direct product of nilpotent groups is nilpotent.

• Every p-group is nilpotent.

• If G is nilpotent and H ⊆ G, then H ⊆ NG(H).

• If H and K are normal nilpotent subgroups of G, then so is HK.
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The last fact implies that there is a normal nilpotent subgroup of G that contains all other normal
nilpotent subgroups. This subgroup is called the Fitting subgroup of G, and is denoted F (G). It is easy to
see that F (G) is a characteristic subgroup of G. We take as a fact that:

Lemma 2.1. If G is finite solvable, then F (G) is non-trivial and CG(F (G)) ⊆ F (G).

Given a finite group G and a prime p, we denote by Sylp(G) the set of all Sylow p-subgroups of G. Next,
for any finite group G and a prime p, we define

Op(G) =
⋂

H∈Sylp(G)

H.

The important property of Op(G) is that it is the unique maximal normal p-subgroup of G. That is, it is a
normal p-subgroup, and every normal p-subgroup of G is contained in Op(G). Normality follows since any
conjugate of a Sylow p-subgroup is another Sylow p-subgroup. Maximality follows from the fact that all
Sylow p-subgroups are conjugates of each other.

Lemma 2.2. A finite group is nilpotent if and only if it is the direct product of its Sylow subgroups.

Lemma 2.3. Let G be a solvable group of order paqb, where p and q are primes. Let H be a p-subgroup of
G. Then Oq(NG(H)) ⊆ Oq(G).

Finally, for any prime p and positive integer n, we denote by νp(n) the p-adic valuation of n.

3 Proof of Theorem 1.1 for odd case

We now prove Theorem 1.1 when p and q are odd. We proceed by contradiction.
Let G be a minimal counterexample to Theorem 1.1. Write |G| = paqb, where p and q are odd primes

and a, b ≥ 0. It is known that p-groups are solvable for any p prime, so a and b are positive. Here are some
properties of G.

• All proper subgroups of G are solvable.

This follows from minimality of G since the size of a proper subgroup divides paqb.

• G is simple.

Indeed, otherwise we can find a non-trivial normal subgroup N ◁ G. Then N and G/N are solvable,
and thus G is solvable; a contradiction.

• Op(G) = Oq(G) = {1}.
Indeed, they are normal subgroups of G and are not equal to G.

Here is a less straightforward fact about G. Given subgroups H,K ≤ G, we say that H normalizes K if
H ⊆ NG(K). That is, hKh−1 = K for any h ∈ H.

Lemma 3.1. Let P ∈ Sylp(G) and Q′ be a q-subgroup of G. If P normalizes Q′, then Q′ = {1}.

Proof. Fix P ∈ Sylp(G) and a q-subgroup Q′ ≤ G. Let Q be a Sylow q-subgroup of G containing Q′. Since
P normalizes Q′, we have Q′ = xQ′x−1 ⊆ xQx−1 for any x ∈ P .

Now, we can check that PQ = G using size constraint. Thus, any g ∈ G can be written as xy for some
x ∈ P and y ∈ Q. Then gQg−1 = xyQy−1x−1 = xQx−1. This means that every Sylow q-subgroup of G is of
form xQx−1 for any x ∈ P . The previous paragraph implies that Q′ is contained in all Sylow q-subgroups
of G. Thus, Q′ ⊆ Oq(G) = {1}, as desired.

For the next big result, we need a few lemmas.
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Lemma 3.2. Let P ≤ G be a p-group. Let Q ≤ NG(P ) be a non-cyclic abelian q-group. Then

P =
∏

x∈Q\{1}

CP (x).

Lemma 3.3. Let P ≤ G be an abelian p-group. Let Q ≤ NG(P ) be a q-group. Then P = CP (Q)× [P,Q].

Lemma 3.4. A p-group has a unique subgroup of order p if and only if it is cyclic.

A maximal subgroup of G is a proper subgroup M such that the only subgroups of G containing M are
G and M itself. Every proper subgroup of G is contained in a maximal subgroup.

Lemma 3.5. Let M be a maximal subgroup of G. Then F (M) = F (M)p × F (M)q, where F (M)p and
F (M)q are the unique Sylow p-subgroup and q-subgroup of F (M), respectively. Furthermore, both F (M)p
and F (M)q are characteristic subgroups of F (M).

Proof. Recall by definition that F (M) is nilpotent. By Lemma 2.2, we have F (M) ∼= Fp×Fq, where Fr is the
Sylow r-subgroup of F (M) for r ∈ {p, q}. Since Fp and Fq has coprime sizes, they must be a characteristic
subgroup of F (M).

Theorem 3.6. Let M be a maximal subgroup of G. Then the Fitting subgroup F (M) of M is a p-group or
q-group.

Proof. For convenience, write F = F (M), Fp = F (M)p and Fq = F (M)q. Lemma 3.5 gives us F = Fp ×Fq.
We proceed by contradiction, assuming that M is neither a p-group nor a q-group. That is, both Fp and Fq

are non-trivial. We prove a series of results and arrive at a contradiction.

First, we prove that M is the unique maximal subgroup of G containing Z(F ). In particular, any proper
subgroup of G containing Z(F ) is contained in M . Let M ′ be an arbitrary maximal subgroup of G containing
Z(F ). Notice that since F = Fp × Fq, we have

Z(Fp) ⊆ Z(F ) ⊆ F ⊆ M1.

We also have Z(Fp) ⊆ CG(Z(Fq)), using the fact that A ⊆ CA×B(B) for any groups A and B. Thus we get
Z(Fp) ⊆ CM1

(Z(Fq)) ⊆ NM1
(Z(Fq)).

Now notice that Z(Fp) charFp charF charM , so Z(Fp) ◁ M . Similarly, Z(Fq) ◁ M , so M normalizes
Z(Fq). Since G is simple and Z(Fq) < G, we get NG(Z(Fq)) = M . In particular, NM1

(Z(Fq)) ≤ M .
Combining with Z(Fp) ⊆ NM1(Z(Fq)) yields Z(Fp) ◁ NM1(Z(Fq)). Since Z(Fp) is a p-group, we get
Z(Fp) ⊆ Op(NM1(Z(Fq))). Lemma 2.3 then yields Z(Fp) ⊆ Op(M1), and similarly Z(Fq) ⊆ Oq(M1).

By Lemma 3.5, we can write F (M1) = F (M1)p × F (M1)q. Recalling that Op(M1) is normal nilpotent,
we have

Z(Fp) ⊆ Op(M1) ⊆ F (M1)p ⊆ CM1
(F (M1)q) ⊆ CG(F (M1)q).

This implies
F (M1)q ⊆ CG(Z(Fp)) ⊆ NG(Z(Fp)) = M.

Similarly F (M1)p ⊆ M , so F (M1) ⊆ M . In particular, Z(F (M1)) ⊆ M . We can repeat the same argument
to get F = F ⊆ M1.

Now one sees that Fp◁NG(Fq). Since Fp ⊆ M1, this yields Fp◁NM1
(Fq). Thus Fp ⊆ Op(NM1

(Fq)), and
Lemma 2.3 yields Fp ⊆ Op(M1). Then F is a normal nilpotent subgroup of M1, which implies F ⊆ F (M1).
Similarly, we also get F (M1) ⊆ F , so F = F (M1). Thus we get M1 = NG(F (M1)) = NG(F ) = M , as
desired.

Next, we show that F is not cyclic. Here we use the assumption that Fp and Fq are non-trivial. Suppose
for the sake of contradiction that F is cyclic. Then for r ∈ {p, q}, Fr is cyclic. Thus it contains a unique
subgroup of order r, say Ur, by Lemma 3.4. For this proof, WLOG let p < q.
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Since Up charM , UpQ is a subgroup of M and so Q ∈ Sylq(UpQ). Let nq be the number of conjugates of
Q over UpQ. By Sylow’s theorem, nq ≡ 1 (mod q) and nq | [UpQ : Q] = p. But p < q, so this forces nq = 1;
that is, Q ◁ UpQ. In particular, Up normalizes Q, so [Q,Up] ⊆ Up ∩ Q, which is trivial since |Up| = p and
|Q| are coprime. That is, Q and Up commutes; in particular, UpQ = Up ×Q and Up ⊆ CFp

(Q).
Since Fp charF charM , we have Fp ◁ M , so NM (Fp) = M . Then Q ⊆ NM (Fp) and Fp is abelian,

so Lemma 3.3 yields Fp = CFp(Q) × [Fp, Q]. But Fp is cyclic and both factors CFp(Q) and [Fp, Q] are
p-groups. Since Up ⊆ CFp(Q), this forces [Fp, Q] = {1}. So Q and Fp commutes, i.e. Q ⊆ CG(Fp). Then
Z(Q) ⊆ CM (F ) ⊆ F , and thus {1} ≠ Z(Q) ⊆ Fq. This implies Uq charZ(Q) charQ.

Now pick some Q′ ∈ Sylq(G) containing Q. Then Q ⊊ NQ′(Q). Choose an arbitrary P ∈ Sylp(M). Then
|P ||NQ′(Q)| > |P ||Q| = |M |, and so ⟨P,NQ′(Q)⟩ ⊋ M . By maximality, we have ⟨P,NQ′(Q)⟩ = G. On the
other hand, {1} ≠ Fq ◁ ⟨P,NQ′(Q)⟩ = G. A contradiction, since Fq is a proper subgroup of G.

We are now at the final step. Suppose for the sake of contradiction that Fp and Fq are both non-trivial.
Since F is not cyclic, Fp does not contain a unique subgroup of order p. That means Fp contains a non-cyclic
subgroup V isomorphic to Z/pZ× Z/pZ, where one of the component is Z(Fp).

For each x ∈ V \ {1}, we have Z(F ) ⊆ CG(x) ̸= G. Thus, maximality of M yields CG(x) ⊆ M for all
x ∈ V \ {1}. Fix some P ∈ Sylp(M) containing V .

Let Q0 be any q-subgroup of G normalized by P . By Lemma 3.2, we have

Q0 =
∏

x∈V \{1}

CQ0(x) ⊆ M.

Now let Q be a Sylow q-subgroup of M containing Q0. Let Q
M
0 =

⋃
x∈M x−1Q0x. Since a Sylow p-subgroup

normalizes Q0 (namely P ), we have

QM
0 =

⋃
x∈Q

x−1Q0x ⊆ Q.

Clearly, QM
0 ◁M , so we get that QM

0 is a normal nilpotent q-subgroup of M . Thus, Q0 ⊆ QM
0 ⊆ Fq. That is,

any q-subgroup of G normalized by P is contained in Fq. Note that Fq is normalized by P , so this means Fq

is the (unique) maximal q-subgroup of G normalized by P . Since Fq is non-trivial by assumption, Lemma 3.1
yields P /∈ Sylp(G).

Now pick an arbitrary P ′ ∈ Sylp(G) containing P . Then P ⊊ NP ′(P ), but also NP ′(P ) is a p-subgroup.
Then NP ′(P ) ̸⊆ M and thus NG(P ) ̸⊆ M = NG(Fq). On the other hand, for any x ∈ NG(P ), we have

P = x−1Px ⊆ x−1Mx = x−1NG(Fq)x = NG(x
−1Fqx).

Since x ∈ NG(P ), one can check that x−1Fqx is also normalized by P . Then maximality of Fq yields
x−1Fqx ⊆ Fq, and thus equality occurs. That is, x ∈ NG(Fq) = M ; a contradiction.

For the next big result, for any p-group P , let J(P ) the subgroup of P generated by all abelian subgroups
of P with maximal order. Clearly, any automorphism of P maps an abelian subgroup to another abelian
subgroup of the same order. From this, one can see that J(P ) charP . Also, note that J(P ) is a non-trivial
p-group, so Z(J(P )) is non-trivial as well.

Lemma 3.7. Let M be a solvable group of order paqb. Suppose that Op(M) ̸= {1} but Oq(M) = {1}. Then,
for any P ∈ Sylp(M), we have Z(J(P ))◁M . That is, M normalizes Z(J(P )).

Corollary 3.8. Let M be a maximal subgroup of G. By Theorem 3.6, F (M) is an r-group for some
r ∈ {p, q}. Then for any P ∈ Sylr(M), we have NG(Z(J(P ))) = M . That is, M is exactly the normalizer
of Z(J(P )).

Proof. WLOG let r = p. Since Oq(M) normal nilpotent, we have Oq(M) ⊆ F (M). But Oq(M) is a q-
group and F (M) is a p-group, so Oq(M) = {1}. On the other hand, by Lemma 2.1, F (M) is non-trivial
normal, so Op(M) is non-trivial. Lemma 3.7 yields M ⊆ NG(Z(J(P ))). But Z(J(P )) is non-trivial and
Z(J(P )) ≤ P < G. Since G is simple, maximality of M yields NG(Z(J(P ))) = M .
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Lemma 3.9. Let M be a maximal subgroup of G. By Theorem 3.6, F (M) is an r-group for some r ∈ {p, q}.
Then M contains a Sylow r-subgroup of G.

Proof. Fix a maximal subgroup M ≤ G, and WLOG let F (M) be a p-group. By Corollary 3.8, M is exactly
the normalizer of Z(J(P )).

Now pick a Sylow p-subgroup P ′ of G containing P . Then we have

Z(J(P )) char J(P ) charP ◁NP ′(P ) =⇒ Z(J(P ))◁NP ′(P ).

Thus P ⊆ NP ′(P ) ⊆ P ′ ∩M . But P ′ ∩M is a p-subgroup and P is a Sylow p-subgroup (of M). Thus, the
above subset relation is an equality; P = NP ′(P ) = P ′ ∩M . Since P ⊆ P ′ are p-groups, this forces P = P ′.
Thus P is a Sylow p-subgroup of G.

Lemma 3.10. Fix an arbitrary P ∈ Sylp(G). Then there is exactly one maximal subgroup of G containing
Z(P ). In particular, there is also exactly one maximal subgroup of G containing P . (The same statement
holds for Q ∈ Sylq(G).)

Proof. Let M be a maximal subgroup of G containing P . We first prove that it is the only one containing
P , and then prove that it is also the only one containing Z(P ).

First note that P normalizes Oq(M) since P ⊆ M . Lemma 3.1 yields Oq(M) = {1}, which forces F (M)
to be a p-group. Then Corollary 3.8 yields M = NG(Z(J(P ))). That is, M := NG(Z(J(P ))) is the unique
maximal subgroup of G containing P .

Now we show that M is the only maximal subgroup of G containing Z(P ). Suppose for the sake
of contradiction that Z(P ) is contained in a maximal subgroup M ′ ̸= M . Choose M ′ that maximizes
νp(|M ′ ∩M |). Let P ′ be a Sylow p-subgroup of M ′ ∩M containing Z(P ). By the previous paragraph, we
know that P ′ /∈ Sylp(G). We can choose some x ∈ M such that x−1P ′x ⊆ P . The containment is strict
since P ′ /∈ Sylp(G). Thus we get x−1P ′x ⊊ NP (x

−1P ′x).
We first claim that NG(P

′) ⊆ M ′. Otherwise, choose a maximal sub group M0 ̸= M ′ containing NG(P
′).

Then Z(P ) ⊆ P ′ ⊆ M0 and thus

νp(|M0 ∩M |) ≥ νp(|NG(P
′) ∩M |) ≥ νp(|NP (P

′)|) > νp(|P ′|) = νp(|M ′ ∩M |),

where the last equality holds since P ′ ∈ Sylp(M
′ ∩M). A contradiction to the choice of M ′.

Next, we claim that x−1P ′x ∈ Sylp(M
′). Let P0 be a Sylow p-subgroup of M ′ containing x−1P ′x. If

x−1P ′x ̸= P0, then
x−1P ′x ⊊ NP0

(x−1P ′x) ⊆ P0 ∩M ⊆ M ′ ∩M,

and also NP0
(x−1P ′x) is a p-group. Then x−1P ′x /∈ Sylp(M

′ ∩M), but P ′ ∈ Sylp(M
′ ∩M); a contradiction.

By Lemma 3.9, since M contains a Sylow p-subgroup (namely P ), F (M) is a p-group. Recall that
x−1P ′x ⊊ P and P ′ ⊆ Sylp(M). Then the Sylow p-subgroups of M ′ are not Sylow p-subgroups of G. Thus,
F (M ′) is a q-group and Sylq(M

′) ⊆ Sylq(G). By the first step, M ′ contains a Sylow q-subgroup of G. This
implies G = PM ′. We assumed that Z(P ) ⊆ M ′, and so

Z(P ) =
⋂
x∈P

x−1Z(P )x ⊆
⋂
x∈P

x−1M1x ⊆
⋂
x∈G

x−1M1x◁G.

But the last intersection is smaller than G and Z(P ) is non-trivial. This contradicts the fact that G is
simple.

Finally, we prove the following lemma.

Lemma 3.11. There exists P1, P2 ∈ Sylp(G) such that P1 ∩ P2 = {1}. (Similarly, there exists Q1, Q2 ∈
Sylq(G) such that Q1 ∩Q2 = {1}.)
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Proof. We first there is a Sylow p-subgroup of G not contained in M . Indeed, they are all conjugates of P1,
i.e. of form xP1x

−1 for some x ∈ G. Note that xMx−1 is a maximal subgroup of G, and it contains xP1x
−1.

So, if xP1x
−1 ⊆ M for all x ∈ G, then uniqueness in Lemma 3.10 imply xMx−1 = M for all x ∈ G. That

is, M ◁G; a contradiction, since G is simple.
Now fix some P2 ∈ Sylp(G) such that P2 ̸⊆ M . Suppose for the sake of contradiction that P2 ∩ M is

non-trivial. Note that P2 ∩M is a p-group contained in M . Thus, there exists x ∈ M such that

x−1(P2 ∩M)x ⊆ P1,

and so we get
Z(P1) ⊆ NG(x

−1(P2 ∩M)x) = x−1NG(P2 ∩M)x.

Since G is simple and P2 ∩M is a non-trivial subgroup, it is not normal. Thus NG(P2 ∩M) ̸= G, and the
above relation and uniqueness of M from Lemma 3.10 yields

x−1NG(P2 ∩M)x ⊆ M.

Since x ∈ M , this implies NG(P2 ∩M) ⊆ M . Also, it is clear that P2 ∩M ⊆ NG(P2 ∩M), so we get

NP2(P2 ∩M) = P2 ∩NG(P2 ∩M) = P2 ∩M.

But P2 ∩M is a proper subgroup of the p-group P2. This equality cannot hold; contradiction.

Now we can obtain contradiction using Lemma 3.11. Without loss of generality, let pa > qb. Then there
exists P1, P2 ∈ Sylp(G) such that P1 ∩ P2 = {1}. But then we get

p2a > |G| ≥ |P1P2| =
|P1||P2|
|P1 ∩ P2|

=
p2a

1
= p2a,

a contradiction! This concludes the proof of Theorem 1.1.
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