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Abstract

In the field of algebraic geometry, elliptic curves are deeply studied rich structures
with far-fetching computational applications to algebraic number theory (mainly arith-
metic geometry) and contemporary cryptography. It is a fundamental tool in Wiles’
proof of Fermat’s last theorem (which relates elliptic curves to an automorphic form
called an modular form), as well as the main object of discussion in the Birch and
Swinnerton-Dyer conjecture, an open problem in number theory deemed worthy of
being called one of the Millennium Prize Problems by the Clay Mathematics Insti-
tute. In this project, three of the four most fundamental theorems in the arithmetic
of elliptic curves, namely the Hasse-Weil theorem, the Nagell-Lutz theorem, and the
Mordell-Weil theorem, are proven in their respective special forms. Schoof’s algorithm
for counting rational points over Galois fields will also be briefly discussed, allowing
for an application to integer factorisation and primality testing.
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Preface
The aimof this project is to provide a gentle introduction to the deep theory of elliptic curves.
My approach for the report is to deliver information in the form of general propositions
and fundamental theorems, providing adequate proofs whenever possible.

As the theory of elliptic curves requires some technical background in algebraic ge-
ometry, which in turn requires prerequisites in commutative algebra, the report is rather
superficial and may not provide as good of an insight to deeper theory. The preliminary
section in the beginning will provide all the required background to understand Chapter 2.

Chapter 2 introduces elliptic curves while hiding away the definitions and results taken
from algebraic geometry. For instance, the use of explicit Weierstrass equations and
formulae for the group law is an active attempt to avoid bringing in the Riemann-Roch
theorem in algebraic geometry to prove that they are related. As such, many proofs in this
section are omitted, but are all given a direct reference.

Chapter 3 discusses elliptic curves over finite fields, which hinges onHasse’s theorem
to explain Schoof’s algorithm for counting rational points. This in turn paves the path for
applications in the last section, as well as an alternative method of counting rational points
in the following section. Proofs are mostly given in full, except for an overly lengthy but
elementary proof based on induction.

Chapter 4 discusses elliptic curves over the rationals, which can be split into two parts
due to the fundamental theorem of finitely generated abelian groups. The Nagell-
Lutz theorem and reduction modulo prime are two related ways to compute the torsion
subgroup, whileMordell’s theorem proves that the fundamental theorem indeed holds
and provides a semi-workable method to compute the rank. Again, proofs are mostly
given in full, except for an assumption made in the last part of Mordell’s theorem. There
was originally an intention to cover complex elliptic curves in here also, leading to a brief
exposition of Fermat’s last theorem, but was omitted due to lack of time.

The last chapter discusses elliptic curves in terms of a Riemann surface, as it is known
that the Weierstrass map between a complex tori and an elliptic curve over ℂ is biholomor-
phic (i.e., analytically isomorphic). We will discuss the analytic structure of elliptic curves
and behaviour of elliptic functions.

In terms of notation, I mostly followed the modern standards (i.e., Bourbaki Notations),
such as 𝔽𝑝, ℤ, orℚ, and should be unambiguous. For context 𝑓, 𝑔, ℎ being used for general
functions, while homomorphisms are always denoted 𝜙, 𝜓, 𝜒 or their variants. In examples
like the following,

𝑓 (𝑥, 𝑦) = 𝑥𝑔 (𝑦) + 𝑦ℎ (𝑥) , 𝑔 ∈ 𝐹 [𝑦] , ℎ ∈ 𝐹 [𝑥]

𝑔 and ℎ are always existentially quantified, while 𝑓 and 𝐹 are initially fixed or explicitly
universally quantified. A function 𝑓′ will always be distinct, but possibly related, to the
function 𝑓, while differentiation with respect to a variable 𝑥 will always be denoted 𝑑∕𝑑𝑥
or 𝜕∕𝜕𝑥. No distinction will be made between sums and formal sums, or derivatives and
formal derivatives, as they are clear from the context of this report.
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1 Preliminaries

a. Rings and fields
Let 𝑅 be a commutative unital ring and 𝐹 ⊆ 𝐾 ⊆ 𝐿 be fields.

Definition 1.1 (Automorphism). An automorphism of 𝑅 is an isomorphism from
𝑅 to itself, which are elements of the automorphism group 𝐴𝑢𝑡 (𝑅) with respect to
composition.

Example 1.2. 𝑖𝑑𝑅 is an automorphism of 𝑅.

Definition 1.3 (Prime ideal). An ideal 𝐼 ⊂ 𝑅 is prime iff 𝑎𝑏 ∈ 𝐼 implies 𝑎 ∈ 𝐼 or 𝑏 ∈ 𝐼
for any two elements 𝑎, 𝑏 ∈ 𝐼.

Example 1.4. An irreducible element 𝑟 ∈ 𝑅 in a unique factorisation domain 𝑅 generates
a prime ideal ab𝑟.

Definition 1.5 (Chain). A chain of subsets in 𝑅 of length 𝑛 ∈ ℤ≥0 is a sequence of
distinct subsets 𝑆0 ⊂ ⋯ ⊂ 𝑆𝑛 ⊂ 𝑅.

Example 1.6. ab0 ⊂ ab𝑥1 ⊂ ⋯ ⊂ ab𝑥1, … , 𝑥𝑛 ⊂ 𝐹 [𝑥1, … , 𝑥𝑛] is a chain of prime ideals of
length 𝑛.

Definition 1.7 (Characteristic). The characteristic 𝑐ℎ𝑎𝑟 (𝐹) of 𝐹 is the smallest 𝑛 ∈
ℤ>0, if it exists, such that 𝑛 ⋅ 1 = 1 +⋯+ 1 = 0. Otherwise 𝑐ℎ𝑎𝑟 (𝐹) is 0.

Example 1.8. 𝑐ℎ𝑎𝑟 (ℂ) = 𝑐ℎ𝑎𝑟 (ℝ) = 𝑐ℎ𝑎𝑟 (ℚ) = 0 while 𝑐ℎ𝑎𝑟
(
𝔽𝑝𝑒

)
= 𝑝 for prime

𝑝 ∈ ℤ>0 and 𝑒 ∈ ℤ≥0.

Definition 1.9 (Field extension). 𝐾 is a field extension of 𝐹, denoted by 𝐾∕𝐹, iff 𝐹
is a subfield of 𝐾.

Example 1.10. ℂ∕ℝ, ℝ∕ℚ, ℂ∕ℚ, and 𝔽𝑝𝑒∕𝔽𝑝𝑒′ for prime 𝑝 ∈ ℤ>0 and 𝑒 ∣ 𝑒′ are field
extensions.

Definition 1.11 (𝐹-homomorphism). An𝐹-homomorphism from𝐾∕𝐹 to another field
extension𝐾′∕𝐹 is a field homomorphism 𝜙 ∶ 𝐾 → 𝐾′ such that 𝜙|||𝐹 = 𝑖𝑑|𝐹. The definitions
of 𝐹-isomorphism and 𝐹-automorphism extend naturally, with 𝐴𝑢𝑡𝐹 (𝐾) denoting the
𝐹-automorphism group of 𝐾.

Example 1.12. Complex conjugation is an ℝ-automorphism of ℂ.

Definition 1.13 (Finite extension). 𝐾∕𝐹 is finite iff the dimension 𝑑𝑖𝑚𝐹𝐾 of 𝐾 as a
vector space over 𝐹 is finite.

Example 1.14. ℂ∕ℝ is a finite extension with [ℂ ∶ ℝ] = 2 since {1, 𝑖} is a basis of ℂ over
ℝ.
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Definition 1.15 (Finitely generated). 𝐹 (𝑠1, … , 𝑠𝑛) isfinitely generated by 𝑠1, … , 𝑠𝑛 ∈
𝐾 over 𝐹 iff 𝐹 (𝑆) is the smallest subfield of 𝐾 containing 𝑠1, … , 𝑠𝑛 and the elements of 𝐹.

Example 1.16. ℚ
(√

2,
√
3
)
is finitely generated by

{√
2,
√
3
}
overℚ, by

{√
2
}
overℚ

(√
3
)
,

and by
{√
3
}
over ℚ

(√
2
)
.

Definition 1.17 (Number field). 𝐾 is a number field iff 𝐾∕𝐹 is finite and 𝐹 = ℚ.

Example 1.18. ℚ
(√

𝑑
)
for square-free 𝑑 ∈ ℤ are number fields with

[
ℚ
(√

𝑑
)
∶ ℚ

]
= 2.

Definition 1.19 (Algebraic element). 𝛼 ∈ 𝐾 is algebraic over 𝐹 iff it is a root of some
non-zero polynomial in 𝐹 [𝑥]. Otherwise 𝛼 is transcendental over 𝐹.

Example 1.20. 𝜋 is transcendental overℚ but algebraic overℝ since it is the root of 𝑥 −𝜋.

Definition 1.21 (Minimal polynomial). Theminimal polynomial𝑚𝛼 of 𝛼 over 𝐹 is
the unique monic irreducible polynomial in 𝐹 [𝑥] with 𝛼 as a root.

Example 1.22. The minimal polynomial of
√
2 is 𝑥2 − 2 over ℚ and is 𝑥 −

√
2 over ℝ.

Definition 1.23 (Algebraic extension). 𝐾∕𝐹 is algebraic iff any element in 𝐾 is al-
gebraic over 𝐹. Otherwise 𝐾∕𝐹 is transcendental.

Example 1.24. ℂ∕ℚ is not an algebraic extension since 𝜋 is transcendental over ℚ.

Definition 1.25 (Algebraically closed). 𝐹 is algebraically closed iff anynon-constant
polynomial in 𝐹 [𝑥] has a root in 𝐹.

Example 1.26. ℝ is not algebraically closed since 𝑥2 + 1 ∈ ℝ [𝑥] has no roots in ℝ.

Definition 1.27 (Algebraic closure). An algebraic closure of 𝐹 is an algebraically
closed algebraic extension of 𝐹 that is unique up to 𝐹-isomorphism.

Example 1.28. ℝ = ℂ while ℚ is the field of algebraic numbers.

The existence and uniqueness of algebraic closures can be proven from Zorn’s lemma,
which is equivalent to the Axiom of choice.

Proposition 1.29. An algebraic closure 𝐹 of 𝐹 exists and is unique up to 𝐹-isomorphism.

Definition 1.30 (Splits). A polynomial 𝑓 (𝑥) ∈ 𝐹 [𝑥] of degree 𝑛 > 0 splits over 𝐾 iff
𝑓 (𝑥) = 𝑐∏𝑛

𝑖=0 (𝑥 − 𝑎𝑘) for some 𝑐 ∈ 𝐹 and 𝑎𝑘 ∈ 𝐾.

Example 1.31. 𝑥2−2 splits overℚ
(√

2
)
but not overℚ since 𝑥2−2 =

(
𝑥 −

√
2
) (
𝑥 +

√
2
)

in ℚ
(√

2
)
.

Definition 1.32 (Normal extension). 𝐾∕𝐹 is normal iff 𝐾∕𝐹 is algebraic and any ir-
reducible polynomial in 𝐹 [𝑥] with a root in 𝐾 splits over 𝐹.
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Example 1.33. ℚ
(√

2
)
∕ℚ is a normal extension, while ℚ

(
3
√
2
)
∕ℚ is not a normal exten-

sion since 𝑓 (𝑥) = 𝑥3 − 2 =
(
𝑥 − 3

√
2
) (
𝑥2 + 3

√
2𝑥 + 3

√
4
)
has a root 𝑥 = 3

√
2 but does not

split over ℚ
(

3
√
2
)
.

Definition 1.34 (Separable polynomial). An polynomial 𝑓 ∈ 𝐹 [𝑥] is separable iff
𝑑𝑓∕𝑑𝑥 ≠ 0.

Example 1.35. 𝑥2 − 2 ∈ ℚ [𝑥] is a separable polynomial since 𝑑
(
𝑥2 − 2

)
∕𝑑𝑥 = 2𝑥 ≠ 0,

while 𝑥2 − 𝑦2 ∈ 𝔽2
(
𝑦2
)
is an inseparable polynomial since 𝑑

(
𝑥2 − 𝑦2

)
∕𝑑

(
𝑦2
)
= 0.

Definition 1.36 (Separable extension). 𝐾∕𝐹 is separable iff𝐾∕𝐹 is algebraic and the
minimal polynomial of any 𝛼 ∈ 𝐾 is separable.

Example 1.37. ℚ
(√

2
)
∕ℚ is a separable extension, while 𝔽2 (𝑦) ∕𝔽2

(
𝑦2
)
is an inseparable

extension since the minimal polynomial of 𝑦 over 𝐹2
(
𝑦2
)
is 𝑥2 − 𝑦2, which is inseparable.

Definition 1.38 (Galois extension). 𝐾∕𝐹 is Galois iff 𝐾∕𝐹 is normal and separable.

Example 1.39. ℂ∕ℝ and ℚ
(√

2
)
∕ℚ are Galois extensions.

Definition 1.40 (Galois group). 𝐴𝑢𝑡𝐹 (𝐾) is the Galois group 𝐺𝑎𝑙𝐹 (𝐾) of 𝐾 over 𝐹 iff
𝐾∕𝐹 is Galois.

Example 1.41. 𝐺𝑎𝑙ℝ (ℂ) = {𝑖𝑑ℝ, 𝜙}where 𝜙 is complex conjugation, while𝐺𝑎𝑙ℚ
(
ℚ
√
2
)
=

{
𝑖𝑑ℚ, 𝜙

}
where 𝜙 is the ℚ-automorphism that swaps

√
2 and −

√
2.

Definition 1.42 (Perfect field). 𝐹 is perfect iff the algebraic closure of 𝐹 is Galois.

Example 1.43. Examples of perfect fields include any field of characteristic zero including
ℚ, ℝ, and ℂ, any finite field 𝔽𝑝𝑒 , and any algebraically closed field including ℚ. Examples
of imperfect fields include the field of rational functions 𝔽𝑝 (𝑦) of any finite field 𝔽𝑝 since
𝑥𝑝 − 𝑦 ∈ 𝔽𝑝 (𝑦) is irreducible but inseparable.

b. Algebraic varieties
Let 𝐹 be a perfect field of 𝑐ℎ𝑎𝑟 (𝐹) ∉ {2, 3} with algebraic closure 𝐾 = 𝐹 and Galois group
𝐺𝑎𝑙𝐹 (𝐾).

Definition 1.44 (Affine space). An affine 𝑛-space over 𝐹 is 𝔸𝑛 = 𝐾𝑛.

Definition 1.45 (Projective space). Aprojective𝑛-space over𝐹 is𝒫𝑛 =
(
𝔸𝑛+1 ⧵ {(0, … , 0)}

)
∕ ∼,

the set of equivalence classes of homogeneous coordinates [𝑝0, … , 𝑝𝑛], where (𝑥0, … , 𝑥𝑛) ∼
(𝑦0, … , 𝑦𝑛) iff each 𝑥𝑖 = 𝜆𝑦𝑖 for some 𝜆 ∈ 𝐹∗.
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𝒫𝑛 can be considered a superset of 𝑛 + 1 copies of 𝔸𝑛 by the natural inclusions 𝜙𝑖 ∶
𝔸𝑛 → 𝒫𝑛 for each 𝑖 ∈ {0, … , 𝑛} defined by

𝜙𝑖 (𝑥1, … , 𝑥𝑛) = [𝑥1, … , 𝑥𝑖, 1, 𝑥𝑖+1, … , 𝑥𝑛] ,

so write 𝔸𝑛 ⊆ 𝒫𝑛. Now let 𝔸𝑛 be an affine 𝑛-space over 𝐹 and 𝒫𝑛 be a projective 𝑛-space
over 𝐹.

Definition 1.46 (Rational point). The set of 𝐹-rational points of 𝔸𝑛 is 𝔸𝑛 (𝐹) = 𝐹𝑛,
and of 𝒫𝑛 is

𝒫𝑛 (𝐹) =
{
[𝑝0, … , 𝑝𝑛] ∈ 𝒫𝑛 ∣ ∀𝑝𝑗 ≠ 0, ∀𝑝𝑖, 𝑝𝑖∕𝑝𝑗 ∈ 𝐹

}
.

𝔸𝑛 can be equippedwith𝐺𝑎𝑙𝐹 (𝐾), such that𝔸𝑛 (𝐹) = {𝑎 ∈ 𝔸𝑛 ∣ ∀𝜎 ∈ 𝐺𝑎𝑙𝐹 (𝐾) , 𝜎 (𝑎) = 𝑎}.
This holds similarly in 𝒫𝑛.

Example 1.47. ℂ𝑛 is an affine 𝑛-space overℝ, with ℂ𝑛 (ℝ) = ℝ. 𝔽
𝑛
is a projective 𝑛-space

over 𝔽𝑛, with 𝔽
𝑛
(𝔽𝑛) being the projective plane of order 𝑛.

Definition 1.48 (Homogeneous). A polynomial 𝑓 ∈ 𝐾 [𝑥0, … , 𝑥𝑛] is homogeneous
of degree 𝑑 ∈ ℤ≥0 iff for any 𝜆 ∈ 𝐾, it holds that 𝑓 (𝜆𝑥0, … , 𝜆𝑥𝑛) = 𝜆𝑑𝑓 (𝑥0, … , 𝑥𝑛). An
ideal 𝐼 ⊆ 𝐾 [𝑥0, … , 𝑥𝑛] is homogeneous iff 𝐼 is generated by homogeneous polynomials in
𝐾 [𝑥0, … , 𝑥𝑛].

A homogeneous polynomial 𝑓∗ ∈ 𝐾 [𝑥0, … , 𝑥𝑛] can be dehomogenised into 𝑓 ∈
𝐾 [𝑥1, … , 𝑥𝑛] by

𝑓 (𝑥1, … , 𝑥𝑛) = 𝑓∗ (1, 𝑥1, … , 𝑥𝑛) ,
while a non-homogeneous polynomial 𝑔 ∈ 𝐾 [𝑥1, … , 𝑥𝑛] can be homogenised into 𝑔∗ ∈
𝐾 [𝑥0, … , 𝑥𝑛] by

𝑔∗ (𝑥0, … , 𝑥𝑛) = 𝑥𝑑0𝑔 (𝑥1∕𝑥0, … , 𝑥𝑛∕𝑥0) .

Example 1.49. 𝑧3 + 𝑤𝑥𝑦 + 7𝑤3 ∈ ℂ [𝑤, 𝑥, 𝑦, 𝑧] is homogeneous, which can be deho-
mogenised to 𝑧3 + 𝑥𝑦 + 7 ∈ ℂ [𝑥, 𝑦, 𝑧]. Conversely 𝑥3 + 3𝑥2𝑦 + 𝑧7 ∈ ℂ [𝑥, 𝑦, 𝑧] is non-
homogeneous, which can be homogenised to 𝑤4𝑥3 + 3𝑤4𝑥2𝑦 + 𝑧7 ∈ ℂ [𝑤, 𝑥, 𝑦, 𝑧]. Thus
ab𝑧3 + 𝑤𝑥𝑦 + 7𝑤3, 𝑤4𝑥3 + 3𝑤4𝑥2𝑦 + 𝑧7 ⊆ ℂ [𝑤, 𝑥, 𝑦, 𝑧] is a homogeneous ideal.

The following definitions are simplified by considering only prime ideals inHilbert’s
Nullstellensatz.

Definition 1.50 (Algebraic variety). An affine algebraic variety of 𝔸𝑛 over 𝐹 is

𝐴 = {𝑎 ∈ 𝔸𝑛 ∣ ∀𝑓 ∈ 𝐼, 𝑓 (𝑎) = 0}

for some finitely generated prime ideal 𝐼 ⊆ 𝐹 [𝑥1, … , 𝑥𝑛], denoted by 𝐴 (𝐼) and 𝐼 (𝐴) respec-
tively. The set of 𝐹-rational points of 𝐴 is 𝐴 (𝐹) = 𝐴 ∩ 𝔸𝑛 (𝐹). A projective algebraic
variety 𝑃 of 𝒫𝑛 over 𝐹 and the set of 𝐹-rational points of 𝑃 are defined similarly but with
homogeneous prime ideals.

Since 𝐼 (𝐴) can befinitely generated by𝑓1, … , 𝑓𝑚 ∈ 𝐹 [𝑥1, … , 𝑥𝑛], it holds that𝐴 (𝑓1, … , 𝑓𝑚) (𝐹)
is the set of solutions in 𝐹 to the system of equations 𝑓1 (𝑥1, … , 𝑥𝑛) = ⋯ = 𝑓𝑚 (𝑥1, … , 𝑥𝑛) =
0. This holds similarly in 𝒫𝑛.
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Example 1.51. Let ab𝑥2 + 𝑦2 − 1 ⊆ ℝ [𝑥, 𝑦] be a finitely generated prime ideal. Thus
𝐴
(
𝑥2 + 𝑦2 − 1

)
is an affine algebraic variety ofℂ2 overℝ and𝐴

(
𝑥2 + 𝑦2 − 1

)
(ℝ) is the unit

circle 𝑆1. Homogenisation gives a finitely generated homogeneous ideal ab𝑥2 + 𝑦2 − 𝑤2 ⊆
ℝ [𝑤, 𝑥, 𝑦]. Similarly 𝑃

(
𝑥2 + 𝑦2 − 𝑤2) is a projective algebraic variety of ℂ2 over ℝ and

𝑃
(
𝑥2 + 𝑦2 − 𝑤2) (ℝ) is the unit circle 𝑆1.

Let 𝐴 be an affine algebraic variety of 𝔸𝑛 over 𝐹 and 𝑃 be a projective algebraic variety
of 𝒫𝑛 over 𝐹.

Definition 1.52 (Dimension). The dimension 𝑑𝑖𝑚 (𝐴) of 𝐴 is the length of any longest
chain of prime ideals in𝐹 [𝑥1, … , 𝑥𝑛] ∕𝐼 (𝐴). The dimension of𝑃 is𝑑𝑖𝑚 (𝑃) = 𝑑𝑖𝑚 (𝐴 (𝐼 (𝑃)))−
1 for any 𝐴 (𝐼 (𝑃)) ⊆ 𝔸𝑛.

Example 1.53. Let 𝐴 (𝑥 − 𝑦) be an affine algebraic variety of ℂ3 over ℝ. Then a longest
chain of prime ideals is ab0 ⊂ ab𝑦 ⊂ ab𝑦, 𝑧 ⊂ ℝ [𝑥, 𝑦, 𝑧] ∕ab𝑥 − 𝑦, which has length two.
Thus it has dimension 𝑑𝑖𝑚 (𝐴 (𝑥 − 𝑦)) = 2. A projective algebraic variety 𝑃 (𝑥 − 𝑦) of ℂ2

over ℝ has dimension 𝑑𝑖𝑚 (𝑃 (𝑥 − 𝑦)) = 𝑑𝑖𝑚 (𝐴 (𝑥 − 𝑦)) − 1 = 1.

The dimension of projective algebraic varieties can also be defined from Krull’s Haup-
tidealsatz.

Proposition 1.54. 𝑑𝑖𝑚 (𝑃) = 𝑛 − 1 iff 𝐼 (𝑃) is generated by a homogeneous irreducible
polynomial in 𝐹 [𝑋0, … , 𝑋𝑛].

Definition 1.55 (Smooth). A point 𝑎 ∈ 𝐴 is singular iff the Jacobian 𝑚 × 𝑛 matrix 𝐽
defined by 𝐽𝑖𝑗 = 𝜕𝑓𝑖∕𝜕𝑥𝑗 is such that 𝑟𝑘

(
𝐽|𝑎

)
< 𝑛 − 𝑑𝑖𝑚 (𝐴). 𝐴 is smooth if it has no

singular points. This holds similarly for 𝑃.

Example 1.56. Let𝐴 (𝑥 − 𝑦) be an affine algebraic variety ofℂ3 overℝ. Then𝑑𝑖𝑚 (𝐴 (𝑥 − 𝑦)) =
2, so a point 𝑎 = (𝑥, 𝑦, 𝑧) ∈ 𝐴 (𝑥 − 𝑦) is singular iff 𝑟𝑘

(
𝐽|𝑎

)
< 3 − 2 = 1, or

0 = 𝑟𝑘
(
𝐽|𝑎

)
= 𝑟𝑘 (

𝜕 (𝑥 − 𝑦)
𝜕𝑥

|||||||𝑎
𝜕 (𝑥 − 𝑦)

𝜕𝑦
|||||||𝑎

𝜕 (𝑥 − 𝑦)
𝜕𝑧

|||||||𝑎
) = 𝑟𝑘

(
1 −1 0

)
= 1.

Thus there are no singular points and 𝐴 (𝑥 − 𝑦) is smooth.

Definition 1.57 (Function field). The function field of 𝑃 is

𝐹 (𝑃) = {𝑓 (𝑥0, … , 𝑥𝑛) ∕𝑔 (𝑥0, … , 𝑥𝑛) ∣ 𝑓, 𝑔 ∈ 𝐹 [𝑥0, … , 𝑥𝑛] , deg (𝑓) = deg (𝑔) , 𝑔 ∉ 𝐼 (𝑃)} ∕ ∼,

the field of equivalence classes of rational functions of homogeneous polynomials, where
𝑓∕𝑔 ∼ 𝑓′∕𝑔′ iff 𝑓𝑔′ − 𝑓′𝑔 ∈ 𝐼 (𝑃).

Example 1.58. Let 𝑃 (𝑥𝑦) be a projective algebraic variety of ℂ over ℝ. Then 𝑥 ∈ ℝ [𝑥, 𝑦]
and 𝑦 ∈ ℝ [𝑥, 𝑦] are homogeneous of degree one, and 𝑦 ∉ 𝐼 (𝑃). Thus 𝑥∕𝑦 ∈ ℝ (𝑃).

Let 𝑃′ be a projective algebraic variety of 𝒫𝑚 over 𝐹.
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Definition 1.59 (Morphism). Amorphism from 𝑃 to 𝑃′ is an equivalence class of ratio-
nal functions 𝜙 = [𝜙0, … , 𝜙𝑚] ∶ 𝑃 → 𝑃′ for some 𝜙𝑖 ∈ 𝐹 (𝑃), such that for any 𝑝 ∈ 𝑃, there
is a rational function 𝑔 ∈ 𝐹 (𝑃) such that 𝑔𝜙𝑖 (𝑝) ∈ 𝑃′ for each 𝜙𝑖 and 𝑔𝜙𝑖 (𝑝) ≠ 0 for some
𝜙𝑖, where (𝜙0, … , 𝜙𝑚) ∼ (𝜓0, … , 𝜓𝑚) iff each 𝜙𝑖 = 𝑔′𝜓𝑖 for some 𝑔′ ∈ 𝐹 (𝑃).

Example 1.60. Let 𝑃
(
𝑥2 + 𝑦2 − 𝑤2) be a projective algebraic variety of ℂ2 over ℝ and

𝑃′ (0) be a projective algebraic variety of ℂ over ℝ, and let 𝜙 = [𝑤 + 𝑥, 𝑦] ∶ 𝑃 → 𝑃′ be
such that 𝑤 + 𝑥, 𝑦 ∈ ℝ (𝑃). Let 𝑝 = [𝑤, 𝑥, 𝑦] ∈ 𝑃 be a point such that 𝑤 + 𝑥 ≠ 0 or
𝑦 ≠ 0. Then 𝑤 + 𝑥, 𝑦 ≠ 0 are well-defined at 𝑝. Now let 𝑝′ = [𝑤, 𝑥, 𝑦] ∈ 𝑃 be a point
such that 𝑤 + 𝑥 = 𝑦 = 0. Then ((𝑤 − 𝑥) ∕𝑦) (𝑤 + 𝑥) =

(
𝑤2 − 𝑥2

)
∕𝑦 = 𝑦2∕𝑦 = 𝑦 and

((𝑤 − 𝑥) ∕𝑦) 𝑦 = 𝑤 − 𝑥 ≠ 0 are well-defined at 𝑝′. Thus 𝜙 is a morphism.

A standard result in algebraic geometry states that images of morphisms are projective
algebraic varieties.

Proposition 1.61. Let 𝜙 ∶ 𝑃 → 𝑃′ be a morphism and 𝑑𝑖𝑚 (𝑃) = 𝑑𝑖𝑚 (𝑃′) = 1. Then 𝜙 is
either constant or surjective.

Definition 1.62 (Isomorphism). An isomorphism is a morphism 𝜙 ∶ 𝑃 → 𝑃′ such that
there is another morphism 𝜙′ ∶ 𝑃′ → 𝑃 where 𝜙′◦𝜙 = 𝑖𝑑𝑃 and 𝜙◦𝜙′ = 𝑖𝑑𝑃′ . 𝑃 and 𝑃′ are
isomorphic, denoted by 𝑃 ≅ 𝑃′, iff there is an isomorphism 𝜙 ∶ 𝑃 → 𝑃′.

Example 1.63. Let𝑃
(
𝑥2 + 𝑦2 − 𝑤2) be a projective algebraic variety ofℂ2 overℝ and𝑃′ (0)

be a projective algebraic variety ofℂ overℝwith amorphism𝜙 ∶ [𝑤 + 𝑥, 𝑦] ∶ 𝑃 → 𝑃′. Then
𝜙′ =

[
𝑥2 + 𝑦2, 𝑥2 − 𝑦2, 2𝑥𝑦

]
∶ 𝑃′ → 𝑃 is also a morphism such that 𝜙◦𝜙′ =

[
2𝑥2, 2𝑥𝑦

]
=

[𝑥, 𝑦] = 𝑖𝑑𝑃′ and

𝜙′◦𝜙 =
[
(𝑤 + 𝑥)2 + 𝑦2, (𝑤 + 𝑥)2 − 𝑦2, 2 (𝑤 + 𝑥) 𝑦

]
= [2𝑤 (𝑤 + 𝑥) , 2𝑥 (𝑤 + 𝑥) , 2𝑦 (𝑤 + 𝑥)] = [𝑤, 𝑥, 𝑦] = 𝑖𝑑𝑃.

Thus 𝜙 is an isomorphism and 𝑃 ≅ 𝑃′.

c. Algebraic curves
Let 𝐹 be a perfect field of 𝑐ℎ𝑎𝑟 (𝐹) ∉ {2, 3} with algebraic closure 𝐾 = 𝐹 and 𝑉 be a
projective algebraic variety of 𝒫𝑛 over 𝐹.
Definition 1.64 (Projective plane curve). 𝑉 is aprojectiveplane curve iff𝑑𝑖𝑚 (𝑉) =
1 and 𝑛 = 2.

Since a projective plane curve 𝑉 is such that dim (𝑉) = 1 = 2 − 1, it holds that 𝐼 (𝑉)
is generated by some homogeneous irreducible polynomial 𝑓 ⊆ 𝐹 [𝑋, 𝑌, 𝑍]. For ease of
notation𝑉 will be written in the form𝑉 ∶ 𝑓 (𝑋, 𝑌, 𝑍) = 0, or in its simpler dehomogeneous
form 𝑉 ∶ 𝑓 (𝑥, 𝑦) = 0. Now let 𝐶 ∶ 𝑓 (𝑋, 𝑌, 𝑍) = 0 and 𝐶′ ∶ 𝑔 (𝑋, 𝑌, 𝑍) = 0 be two
projective plane curves over 𝐹 with a point 𝑃 = [𝑎, 𝑏, 𝑐] ∈ 𝐶 ∩ 𝐶′.

Definition 1.65 (Multiplicity). Themultiplicity 𝑚𝑃 (𝑓) of 𝐶 at 𝑃 is the smallest𝑚 ∈
ℤ>0 such that

∀𝑖, 𝑗, 𝑘 ∈ ℤ≥0, 𝑖 + 𝑗 + 𝑘 = 𝑛, 𝜕𝑛𝑓
𝜕𝑋𝑖𝜕𝑌𝑗𝜕𝑍𝑘

|||||||𝑃
= 0

for any 𝑛 ∈ {0, … ,𝑚 − 1} but not 𝑛 = 𝑚.
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𝑃 is singular iff 𝑟𝑘
(
𝐽|𝑃

)
< 1, or 𝜕𝑓∕𝜕𝑋|||𝑃 = 𝜕𝑓∕𝜕𝑌|||𝑃 = 𝜕𝑓∕𝜕𝑍|||𝑃 = 0, which holds iff

𝑚𝑃 (𝑓) > 1.

Example 1.66. Assume 𝑐ℎ𝑎𝑟 (𝐹) = 0, and let 𝑓 (𝑋, 𝑌, 𝑍) = 𝑓 (𝑥, 𝑦) =
(
𝑥2 + 𝑦2

)2+3𝑥2𝑦−
𝑦3 with 𝑃 = [0, 0, 1] = (0, 0). Then

𝜕𝑓
𝜕𝑥

|||||||𝑃
= 𝜕𝑓
𝜕𝑦

|||||||𝑃
= 𝜕2𝑓
𝜕𝑥2

||||||||𝑃
= 𝜕2𝑓
𝜕𝑦2

||||||||𝑃
= 𝜕2𝑓
𝜕𝑥𝜕𝑦

||||||||𝑃
= 0, 𝜕3𝑓

𝜕𝑦3
||||||||𝑃
= −6 ≠ 0.

Thus the multiplicity of 𝐶 at 𝑃 is𝑚𝑃 (𝑓) = 3 and 𝑃 is singular.

Definition 1.67 (Tangent). The tangents 𝑇𝑃 (𝑓) of 𝐶 at 𝑃 = [𝑎, 𝑏, 𝑐] with multiplicity
𝑚 = 𝑚𝑃 (𝑓) are the irreducible factors of the polynomial

𝑡𝑃 (𝑓) (𝑋, 𝑌, 𝑍) =
∑

𝑖+𝑗+𝑘=𝑚
( 𝑚
𝑖, 𝑗, 𝑘)

𝜕𝑚𝑓
𝜕𝑋𝑖𝜕𝑌𝑗𝜕𝑍𝑘

|||||||𝑃
(𝑋 − 𝑎)𝑖 (𝑌 − 𝑏)𝑗 (𝑍 − 𝑐)𝑘 .

Example 1.68. Let 𝑓 (𝑋, 𝑌, 𝑍) = 𝑓 (𝑥, 𝑦) =
(
𝑥2 + 𝑦2

)2 + 3𝑥2𝑦 − 𝑦3 with 𝑃 = [0, 0, 1] =
(0, 0) and𝑚 = 𝑚𝑃 (𝑓) = 3. Then

𝑡𝑃 (𝑓) (𝑋, 𝑌, 𝑍) = 𝑡𝑃 (𝑓) (𝑥, 𝑦) = (30)
𝜕3𝑓
𝜕𝑥3

||||||||𝑃
𝑥3 + (31)

𝜕3𝑓
𝜕𝑥2𝜕𝑦

||||||||𝑃
𝑥2𝑦 + (32)

𝜕3𝑓
𝜕𝑥𝜕𝑦2

||||||||𝑃
𝑥𝑦2 + (33)

𝜕3𝑓
𝜕𝑦3

||||||||𝑃
𝑦3

= 18𝑥2𝑦 − 6𝑦3 = 6𝑦
(√

3𝑥 − 𝑦
) (√

3𝑥 + 𝑦
)
.

Thus the tangents of 𝐶 at 𝑃 are 𝑇𝑃 (𝑓) =
{
𝑦,
√
3𝑥 − 𝑦,

√
3𝑥 + 𝑦

}
.

Definition 1.69 (Ordinary singularity). A singular point 𝑃 ∈ 𝐶 is ordinary iff 𝑡𝑃 (𝑓)
has distinct factors.

Example 1.70. Let 𝑓 (𝑋, 𝑌, 𝑍) = 𝑓 (𝑥, 𝑦) =
(
𝑥2 + 𝑦2

)2 + 3𝑥2𝑦 − 𝑦3 with 𝑃 = [0, 0, 1] =
(0, 0). Then 𝑡𝑃 (𝑓) have distinct factors 𝑦,

√
3𝑥 − 𝑦, and

√
3𝑥 + 𝑦. Thus 𝑃 is ordinary.

Definition 1.71 (Intersection number). The intersection number of 𝐶 and 𝐶′ at 𝑃
if deg (gcd (𝑓, 𝑔)) = 0 is 𝐼𝑃 (𝑓, 𝑔), where 𝐼𝑃 ∶ 𝐹 [𝑋, 𝑌, 𝑍] × 𝐹 [𝑋, 𝑌, 𝑍] → ℤ>0 is defined for
any 𝑓′, 𝑔′ ∈ 𝐹 [𝑋, 𝑌, 𝑍] by:
⋄ 𝐼𝑃 (𝑓′, 𝑔′) = 𝐼𝑃 (𝑔′, 𝑓′),
⋄ 𝐼𝑃 (𝑓′, 𝑔′) = 𝐼𝑃 (𝑓′, 𝑔′◦ℎ) for any affine transformation ℎ,
⋄ 𝐼𝑃 (𝑓′, 𝑔′) = 𝐼𝑃 (𝑓′, 𝑔′ + ℎ𝑓′) for any ℎ ∈ 𝐹 [𝑋, 𝑌, 𝑍],
⋄ 𝐼𝑃 (𝑓′, ℎℎ′) = 𝐼𝑃 (𝑓′, ℎ) + 𝐼𝑃 (𝑓′, ℎ′) for any ℎ, ℎ′ ∈ 𝐹 [𝑋, 𝑌, 𝑍], and
⋄ 𝐼𝑃 (𝑓′, 𝑔′) ≥ 𝑚𝑃 (𝑓′)𝑚𝑃 (𝑔′), with equality iff 𝑇𝑃 (𝑓′) ∩ 𝑇𝑃 (𝑔′) = ∅.

Since 𝑇𝑃 (𝑋) = {𝑋}, 𝑇𝑃 (𝑌) = {𝑌}, and 𝑇𝑃 (𝑍) = {𝑍} are all distinct, it holds that
𝐼𝑃 (𝑋, 𝑌) = 𝐼𝑃 (𝑋, 𝑍) = 𝐼𝑃 (𝑌, 𝑍) = 1.
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Example 1.72. Let 𝑓 (𝑋, 𝑌, 𝑍) = 𝑓 (𝑥, 𝑦) =
(
𝑥2 + 𝑦2

)2 + 3𝑥2𝑦 − 𝑦3 and 𝑔 (𝑋, 𝑌, 𝑍) =
𝑔 (𝑥, 𝑦) =

(
𝑥2 + 𝑦2

)3−4𝑥2𝑦2with𝑃 = [0, 0, 1] = (0, 0). Then gcd (𝑓, 𝑔) = 1, sodeg (gcd (𝑓, 𝑔)) =
0. Now let ℎ (𝑥, 𝑦) = 4𝑥2𝑦 + 4𝑦3 + 5𝑥2 − 3𝑦2, such that

𝑔 +
(
3𝑦 − 𝑥2 − 𝑦2

)
𝑓 = 𝑦2ℎ and 𝑓 +

(
𝑦2 − 2𝑥2𝑦 − 𝑦3 − 3𝑥2

)
𝑦 = 𝑥4.

Then

𝐼𝑃 (𝑓, 𝑔) = 𝐼𝑃
(
𝑓, 𝑔 +

(
3𝑦 − 𝑥2 − 𝑦2

)
𝑓
)
= 𝐼𝑃

(
𝑓, 𝑦2ℎ

)
= 𝐼𝑃

(
𝑓, 𝑦2

)
+ 𝐼𝑃 (𝑓, ℎ) .

The first term can be computed as

𝐼𝑃
(
𝑓, 𝑦2

)
= 2𝐼𝑃 (𝑓, 𝑦) = 2𝐼𝑃

(
𝑓 +

(
𝑦2 − 2𝑥2𝑦 − 𝑦3 − 3𝑥2

)
𝑦, 𝑦

)
= 2𝐼𝑃

(
𝑥4, 𝑦

)
= 8𝐼𝑃 (𝑥, 𝑦) = 8.

Now 𝑚𝑃 (𝑓) = 3 and 𝑇𝑃 (𝑓) =
{
𝑦,
√
3𝑥 − 𝑦,

√
3𝑥 + 𝑦

}
. Since 𝐶′′ ∶ ℎ (𝑥) = 0 is also a

projective plane curve, its multiplicity at 𝑃 can be computed to be 𝑚𝑃 (ℎ) = 2 and its
tangents at 𝑃 can also be computed to be 𝑇𝑃 (ℎ) =

{√
5𝑥 −

√
3𝑦,

√
5𝑥 +

√
3𝑦
}
. Hence

𝐼𝑃 (𝑓, ℎ) = 𝑚𝑃 (𝑓)𝑚𝑃 (ℎ) = (3) (2) = 6. Thus the intersection number of 𝐶 and 𝐶′ at 𝑃 is
𝐼𝑃 (𝑓, 𝑔) = 8 + 6 = 14.

Definition 1.73 (Flex). 𝑃 is a flex iff 𝐼𝑃 (𝑓, 𝑔) > 2 is odd.

Example 1.74. Let 𝑓 (𝑋, 𝑌, 𝑍) = 𝑓 (𝑥, 𝑦) = 𝑦 − 𝑥3 with 𝑃 = [0, 0, 1] = (0, 0). Then
𝜕𝑓∕𝜕𝑦|||𝑃 = 1 ≠ 0, so𝑚𝑃 (𝑓) = 1. Since

𝑔 (𝑋, 𝑌, 𝑍) = 𝑔 (𝑥, 𝑦) = 𝑡𝑃 (𝑓) (𝑥, 𝑦) = 𝜕𝑓∕𝜕𝑥|||𝑃 𝑥 + 𝜕𝑓∕𝜕𝑦|||𝑃 𝑦 = 𝑦,

it holds that gcd (𝑓, 𝑔) = 1, so deg (gcd (𝑓, 𝑔)) = 0. Hence

𝐼𝑃 (𝑓, 𝑔) = 𝐼𝑃 (𝑓 − 𝑦, 𝑦) = 𝐼𝑃
(
−𝑥3, 𝑦

)
= 3𝐼𝑃 (−𝑥, 𝑦) = 3 > 2.

Thus 𝑃 is a flex.

The following follows from the fundamental theorem of algebra on the resultant of 𝑓
and 𝑔.

Theorem 1.75 (Bézout). 𝐶 intersects 𝐶′ at (deg (𝑓)) (deg (𝑔)) points up to multiplicity,
so ∑

𝑃∈𝐶∩𝐶′
𝐼𝑃 (𝑓, 𝑔) = (deg (𝑓)) (deg (𝑔)) .

The following follows from a dimension counting argument.

Theorem 1.76 (Cayley-Bacharach). Let deg (𝑓) = deg (𝑔) = 3 such that 𝐶 intersects 𝐶′

at nine points up to multiplicity, and let 𝐶′′ ∶ ℎ (𝑋, 𝑌, 𝑍) = 0 be a cubic projective plane curve
over 𝐹 such that at least eight of these points are in 𝐶′′. Then the ninth point is also in 𝐶′′.

The following definition is the genus-degree formula, which is a corollary of the
adjunction formula and the Riemann-Roch theorem for arbitrary curves and surfaces.
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Definition 1.77 (Degree). The degree of 𝐶 is 𝑑𝐶 = deg (𝑓).

Definition 1.78 (Genus). The genus of 𝐶 is

𝑔𝐶 =
1
2
(𝑑𝐶 − 1) (𝑑𝐶 − 2) − 1

2

∑

𝑃∈𝐶
𝑚 (𝑚 − 1) ,

over all ordinary singularities 𝑃 ∈ 𝐶 with multiplicity𝑚𝑃 (𝑓) = 𝑚.

The genus of 𝐶 is 𝑔𝐶 =
1
2
(𝑑𝐶 − 1) (𝑑𝐶 − 2) if 𝐶 is smooth.

Example 1.79. The line 𝐿 ∶ 𝑦 = 𝑥 is a smooth projective plane curve of degree one and
genus zero. The unit circle 𝑆1 ∶ 𝑥2 + 𝑦2 = 1 is a smooth projective plane curve of degree
two and genus zero. An elliptic curve 𝐸 ∶ 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 is a smooth projective plane
curve of degree three and genus zero.

d. Groups
Let 𝐺 be an additive abelian group, with multiplication ⋅ ∶ ℤ × 𝐺 → 𝐺 defined by

𝑛𝑥 =
⎧

⎨
⎩

𝑥 +⋯+ 𝑥 𝑛 > 0
0 𝑛 = 0
(−𝑥) +⋯+ (−𝑥) 𝑛 < 0

.

Theorem 1.80 (Isomorphism theorems). The following theorems hold:
(a) Let𝐻 be a group and 𝜙 ∶ 𝐺 → 𝐻 be a group homomorphism. Then:

𝐾𝑒𝑟 (𝜙) ⊴ 𝐺, 𝐺
𝐾𝑒𝑟 (𝜙)

≅ 𝐼𝑚 (𝜙) .

(b) Let𝑁 ⊴ 𝐺 and𝐻 ≤ 𝐺 be subgroups. Then:

𝑁 ∩𝐻 ⊴ 𝐻, 𝐻
𝑁 ∩ 𝐻 ≅ 𝑁 +𝐻

𝑁 .

(c) Let𝑁 ⊴ 𝐺 and𝐻 ⊴ 𝐺 be subgroups such that𝑁 ≤ 𝐻. Then:

𝐻
𝑁 ⊴ 𝐺

𝑁,
𝐺∕𝑁
𝐻∕𝑁

≅ 𝐺
𝐻.

All subgroups of 𝐺 are normal, but the above theorems still hold if 𝐺 is non-abelian.

Definition 1.81 (Torsion element). An 𝑛-torsion element is an element 𝑥 ∈ 𝐺 such
that 𝑛 = 𝑜𝑟𝑑 (𝑥) is finite.

Example 1.82. ℤ + 𝑝∕𝑞 ∈ ℚ∕ℤ is a torsion element since 𝑜𝑟𝑑 (𝑥) ∣ 𝑞 is finite.

Definition 1.83 (Torsion subgroup). The 𝑛-torsion subgroup 𝐺 [𝑛] is the group of
𝑚-torsion elements of 𝐺 such that𝑚 ∣ 𝑛. The torsion subgroup 𝐺𝑡𝑜𝑟𝑠 of 𝐺 is the group of
𝑚-torsion elements of 𝐺 for any𝑚 ∈ ℤ≥0.
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Example 1.84. 𝐺 = ℝ∕ℤ has torsion subgroup 𝐺𝑡𝑜𝑟𝑠 = ℚ∕ℤ since any 𝑛-torsion element
ℤ + 𝑥 ∈ 𝐺 is such that 𝑛𝑥 ∈ ℤ and 𝑥 ∈ ℚ.

Definition 1.85 (Finitely generated). 𝐺 is finitely generated iff there are finitely
many elements 𝑥1, … , 𝑥𝑛 ∈ 𝐺 such that any element 𝑥 ∈ 𝐺 is a sum

𝑥 =
𝑛∑

𝑖=1
𝑚𝑖𝑥𝑖, 𝑚𝑖 ∈ ℤ.

Example 1.86. ℤ and ℤ𝑛 are finitely generated abelian groups.

The direct sum⊕ of finitely many abelian groups is equivalent to their direct product
×, thus ℤ𝑛 = ℤ ×⋯×ℤ = ℤ⊕⋯⊕ℤ. Now let 𝐺 be finitely generated.

Theorem 1.87 (Fundamental theorem of finitely generated abelian groups).
There are unique 𝑟,𝑚 ∈ ℤ≥0 and 𝑛1, … , 𝑛𝑚 ∈ ℤ>1 such that

𝐺 ≅ 𝑟ℤ⊕
𝑚⨁

𝑖=1
ℤ𝑛𝑖 ,

with each 𝑛𝑖 ∣ 𝑛𝑖+1.

Definition 1.88 (Rank). The rank 𝑟𝑘 (𝐺) of 𝐺 is the unique 𝑟 ∈ ℤ≥0 in Theorem 1.87.

Example 1.89. A finite abelian group 𝐺 has rank 𝑟𝑘 (𝐺) = 0 since 𝐺𝑡𝑜𝑟𝑠 = 𝐺.
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2 Algebraic structures of an elliptic curve
Informally, an elliptic curve is a cubic curve with no cusps, self-intersections, or isolated
points, whose solutions are confined to a region of space topologically equivalent to a torus.
It can represented by a cubic equation in two variables, with its coefficients being elements
of a specified field. Two elliptic curves over the field of real numbers are illustrated below.

a. Definition
A formal definition is as follows.

Definition 2.1 (Elliptic curve). An elliptic curve over a perfect field 𝐹 is an ordered
pair (𝐸,𝒪𝐸) such that 𝐸 is a smooth projective plane curve of genus one over 𝐹 and𝒪𝐸 ∈ 𝐸
is an 𝐹-rational base point.

This definition uses several terms in other fields of mathematics, which are briefly
covered in the appendices. In particular, one of the many characterisations of a perfect field
is given in Appendix A.1, while several fundamental notions in projective and algebraic
geometry such as projective planes and smoothness are laid out in Appendix A.2. Appendix
A.3 defines a curve and the genus due to the genus-degree formula.

Remark 2.2. The genus in algebraic geometry is usually defined in general literature by
the Riemann-Roch theorem, which does coincide with the topological definition.

As the report is a gentle introduction to elliptic curves, further delving into the vast
world of algebraic geometry will be avoided, and so explicit formulae will be provided
whenever possible. To this end, the various definitions in the appendix can be summarised
in the following proposition.

Proposition 2.3. Let (𝐸,𝒪𝐸) be an elliptic curve over a perfect field 𝐹. Then:
(a) 𝐼 (𝐸) = ab𝑒 for some homogeneous irreducible polynomial 𝑒 of three variables,
(b) any point 𝑃 ∈ 𝐸 has multiplicity𝑚𝑃 (𝑒) = 1, and
(c) 𝑒 have roots confined to a torus and is cubic.

Proof. This follows directly from the appendices. 2

Thus an elliptic curve can be fully defined in terms of its defining polynomial, which
would need to satisfy certain conditions. As per the appendix, an abuse of notation will be
used to denote an elliptic curve (𝐸,𝒪𝐸) over 𝐹 given by a polynomial 𝑒, namely

𝐸 ∶ 𝑒 (𝑋, 𝑌, 𝑍) = 0 ⇐⇒ 𝐸 ∶ 𝑒 (𝑥, 𝑦) = 0,
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which are respectively the homogenised and dehomogenised forms of a polynomial that
can be used interchangeably. For the rest of this section, let 𝐸 ∶ 𝑒 (𝑥, 𝑦) = 0 and 𝐸′ ∶
𝑒′ (𝑥, 𝑦) = 0 be two elliptic curves over a perfect field 𝐹 with algebraic closure 𝐾 = 𝐹. The
notion of an isomorphism, as for any algebraic geometric structure, would be useful. This
is captured in the following definition.

Definition 2.4 (Isomorphism). (𝐸,𝒪𝐸) and (𝐸′, 𝒪𝐸′) are isomorphic, denoted by (𝐸,𝒪𝐸) ≅
(𝐸′, 𝒪𝐸′), iff there is an isomorphism 𝜙 ∶ 𝐸 → 𝐸′ such that 𝜙 (𝒪𝐸) = 𝒪𝐸′ .

Remark 2.5. Isomorphism defines an equivalence relation of elliptic curves, such that
two elliptic curves from an equivalence class are indistinguishable.

Again, this abstract notion can be made explicit later by the defining polynomials of the
elliptic curves.

b. Weierstrass equations
The definition of an elliptic curve boils down to its defining polynomial, which will be
made explicit in this subsection. A family of curves related to elliptic curves will be defined
beforehand.

Definition 2.6 (Weierstrass curve). AWeierstrass curve is a projective plane curve
𝑊 over 𝐹 given by theWeierstrass equation

𝑊 ∶ 𝑤 (𝑥, 𝑦) = 0 ∶ 𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥2 + 𝑎4𝑥 + 𝑎6, 𝑎𝑖 ∈ 𝐹,

with associated quantities:

𝑏2 = 𝑎21+4𝑎2, 𝑏4 = 𝑎1𝑎3+2𝑎4, 𝑏6 = 𝑎23+4𝑎6, 𝑏8 = 𝑎21𝑎6+4𝑎2𝑎6−𝑎1𝑎3𝑎4+𝑎2𝑎23−𝑎24,

𝑐4 = 𝑏22−24𝑏4, 𝑐6 = 36𝑏2𝑏4−𝑏32−216𝑏6, ∆𝑊 = 9𝑏2𝑏4𝑏6−𝑏22𝑏8−8𝑏34−27𝑏26, 𝑗𝑊 = 𝑐34∕∆𝑊.

It holds that 4𝑏8 = 𝑏2𝑏6 − 𝑏24 and 1728∆𝑊 = 𝑐34 − 𝑐26. It can be easily verified that
Weierstrass curves, with the additional condition of smoothness, would almost satisfy
Proposition 2.3. The only remaining requirement is having an additional base point in its
definition, which can be easily fixed as follows.

Definition 2.7 (Point at infinity). The point at infinity of 𝐸 is the point𝒪 = [0, 1, 0].

In contrast to general projective geometry, the line at infinity 𝐿 ∶ 𝑙 (𝑋, 𝑌, 𝑍) = 𝑍 = 0
intersects a Weierstrass curve only at 𝒪, where 𝑋 = 𝑍 = 0 and 𝑌 ≠ 0. As such, any other
point would have 𝑍 ≠ 0 and can be treated as an affine point (𝑎, 𝑏). Now since 0, 1 ∈ 𝐹,
the point 𝒪 is actually an 𝐹-rational point, and can be paired with a smooth Weierstrass
curve𝑊 to give an elliptic curve (𝑊,𝒪). Conversely, any elliptic curve can also be explicitly
given by a smooth Weierstrass curve through an isomorphism as follows.

Proposition 2.8. (𝐸,𝒪𝐸) ≅ (𝑊,𝒪) for some smooth Weierstrass curve𝑊 over 𝐹.

Proof. Omitted, see III.3.1a in [1]. 2
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There are even computerised algorithms to transform a general smooth projective
plane cubic curve with a given arbitrary 𝐹-rational flex point, or an elliptic curve, into a
Weierstrass curve with the 𝐹-rational point 𝒪. The following algorithm summarises the
process in ? proven in the appendix.

Algorithm 2.9 (Transformation of a cubic curve into Weierstrass form). Input:
a cubic curve 𝐸 over 𝐹 with an 𝐹-rational flex point 𝑃 ∈ 𝐸. Output: 𝐸 in Weierstrass form.
(a) Get the unique tangent line 𝐿 at 𝑃.
(b) Find the intersection 𝐿 ∩ 𝐸 to get a point 𝑄 ∈ 𝐿 ⧵ 𝐸 distinct to 𝑃.
(c) Write downan invertiblematrix𝑀 =

(
𝑄 𝑃 𝑅

)
, where𝑅 ∈ {[1, 0, 0] , [0, 1, 0] , [0, 0, 1]}.

(d) Transform [𝑋, 𝑌, 𝑍] ↦→ 𝑀 [𝑋,𝑌, 𝑍]𝑇 to get a scaled Weierstrass equation.
(e) Rescale [𝑋, 𝑌, 𝑍] ↦→ [𝑋,𝑌, 𝑐𝑍] for some 𝑐 ∈ 𝐾∗ to get a Weierstrass equation.

The following example illustrates an implementation of the algorithm.

Example 2.10. Let 𝐸 ∶ 𝑒 (𝑋, 𝑌, 𝑍) = 0 ∶ 𝑋3 +𝑌3 = 𝑍3 be a smooth projective plane cubic
curve over ℝ with an ℝ-rational flex 𝑃 = [1, −1, 0] ∈ 𝐸. Then the unique tangent at 𝑃 is

𝐿 ∶ ( 1
1, 0, 0)

𝜕𝑒
𝜕𝑋

|||||||𝑃
(𝑋 − 1) + ( 1

0, 1, 0)
𝜕𝑒
𝜕𝑌

|||||||𝑃
(𝑌 + 1) + ( 1

0, 0, 1)
𝜕𝑒
𝜕𝑍

|||||||𝑃
𝑍 = 3 (𝑋 + 𝑌) = 0,

which intersects 𝐸 at 𝑋3 + (−𝑋)3 + 𝑍3 = 0, or 𝑍 = 0. Hence 𝐿 ∩ 𝐸 = {𝑃} and let 𝑄 =
[1, −1, 1] ∈ 𝐿 ⧵ 𝐸. Then there is an invertible affine transformation matrix

𝑀 =
⎛
⎜
⎝

1 1 1
−1 −1 0
1 0 0

⎞
⎟
⎠

⇐⇒ 𝑀−1 =
⎛
⎜
⎝

0 0 1
0 −1 −1
1 1 0

⎞
⎟
⎠
.

such that the affine transformation [𝑋, 𝑌, 𝑍] ↦→ 𝑀 [𝑋,𝑌, 𝑍]𝑇 gives

(𝑋 + 𝑌 + 𝑍)3+(−𝑋 − 𝑌)3 = 𝑋3 ⇐⇒ 3𝑌2𝑍+6𝑋𝑌𝑍+3𝑌𝑍2 = 𝑋3−3𝑋2𝑍−3𝑋𝑍2−𝑍3.

Thus the affine transformation [𝑋, 𝑌, 𝑍] ↦→
[
𝑋,𝑌, 1

3
𝑍
]
gives a Weierstrass curve

𝐸 ∶ 𝑌2𝑍 + 2𝑋𝑌𝑍 + 1
3
𝑌𝑍2 = 𝑋3 − 𝑋2𝑍 − 1

3
𝑋𝑍2 − 1

27
𝑍3.

This characterisation allows a smooth Weierstrass curve to act as an alternative defini-
tion for an elliptic curve, and will be done for ease of future discussions. For the rest of this
subsection, let 𝐸 and 𝐸′ be respectively given by the two Weierstrass curves over 𝐹

𝑊 ∶ 𝑤 (𝑥, 𝑦) = 0 ∶ 𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥2 + 𝑎4𝑥 + 𝑎6, 𝑎𝑖 ∈ 𝐹,

𝑊′ ∶ 𝑤′ (𝑥, 𝑦) = 0 ∶ 𝑦2 + 𝑎′1𝑥𝑦 + 𝑎′3𝑦 = 𝑥3 + 𝑎′2𝑥2 + 𝑎′4𝑥 + 𝑎′6, 𝑎′𝑖 ∈ 𝐹,
and write them interchangeably as an abuse of notation by

(𝐸,𝒪𝐸) = 𝐸 ∶ 𝑒 (𝑥, 𝑦) = 0 ⇐⇒ (𝑊,𝒪) = 𝑊 ∶ 𝑤 (𝑥, 𝑦) = 0,

(𝐸′, 𝒪𝐸′) = 𝐸′ ∶ 𝑒′ (𝑥, 𝑦) = 0 ⇐⇒ (𝑊′, 𝒪) = 𝑊′ ∶ 𝑤′ (𝑥, 𝑦) = 0.
With these explicit equations at hand, the abstract notion of isomorphism between elliptic
curves can now be made explicit by considering affine transformations of these equations,
which is given below.
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Proposition 2.11. 𝐸 ≅ 𝐸′ iff there is an affine transformation

(𝑥, 𝑦) ↦→
(
𝑢2𝑥 + 𝑟, 𝑢3𝑦 + 𝑢2𝑠𝑥 + 𝑡

)
, 𝑢 ∈ 𝐾∗, 𝑟, 𝑠, 𝑡 ∈ 𝐾

from𝑊 to𝑊′.

Proof. Omitted, see III.3.1b in [1]. 2

Remark 2.12. This affine transformation also transforms the coefficients and quantities
of𝑊 and𝑊′ by

𝑎1 ↦→
𝑎1 + 2𝑠
𝑢 , 𝑎2 ↦→

𝑎2 − 𝑠𝑎1 + 3𝑟 − 𝑠2
𝑢2 , 𝑎3 ↦→

𝑎3 + 𝑟𝑎1 + 2𝑡
𝑢3 ,

𝑎4 ↦→
𝑎4 − 𝑠𝑎3 + 2𝑟𝑎2 − (𝑡 + 𝑟𝑠) 𝑎1 + 3𝑟2 − 2𝑠𝑡

𝑢4 , 𝑎6 ↦→
𝑎6 + 𝑟𝑎4 − 𝑡𝑎3 + 𝑟2𝑎2 − 𝑟𝑡𝑎1 + 𝑟3 − 𝑡2

𝑢6 ,

𝑏2 ↦→
𝑏2 + 12𝑟

𝑢2 , 𝑏4 ↦→
𝑏4 + 𝑟𝑏2 + 6𝑟2

𝑢4 , 𝑏6 ↦→
𝑏6 + 2𝑟𝑏4 + 𝑟2𝑏2 + 4𝑟3

𝑢6 ,

𝑏8 ↦→
𝑏8 + 3𝑟𝑏6 + 3𝑟2𝑏4 + 𝑟3𝑏2 + 3𝑟4

𝑢8 , 𝑐4 ↦→
𝑐4
𝑢4 , 𝑐6 ↦→

𝑐6
𝑢6 , ∆𝑊 ↦→ ∆𝑊

𝑢12 , 𝑗𝑊 ↦→ 𝑗𝑊

which can be tediously verified.

Again, this will be treated as the definition of isomorphism between elliptic curves.
Now in the original definition of a Weierstrass curve, it is given by a Weierstrass equation
that is somewhat perverse. This longWeierstrass equation can in fact be greatly simplified,
provided there are small restrictions on the characteristic of the underlying field.

Proposition 2.13. If 𝑐ℎ𝑎𝑟 (𝐹) ≠ 2, then

𝐸 ∶ 𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝐵𝑥 + 𝐶, 𝐴, 𝐵, 𝐶 ∈ 𝐹.

If 𝑐ℎ𝑎𝑟 (𝐹) ≠ 3 as well, then

𝐸 ∶ 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵, 𝐴, 𝐵 ∈ 𝐹.

Proof. Let 𝑐ℎ𝑎𝑟 (𝐹) ≠ 2, then the affine transformation (𝑥, 𝑦) ↦→
(
𝑥, 𝑦 − 1

2
(𝑎1𝑥 + 𝑎3)

)

gives an isomorphism from 𝐸 to the curve given by themediumWeierstrass equation

𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝐵𝑥 + 𝐶, 𝐴 = 1
4
𝑏2, 𝐵 = 1

2
𝑏4, 𝐶 = 1

4
𝑏6.

Let 𝑐ℎ𝑎𝑟 (𝐹) ≠ 3 as well, then the affine transformation (𝑥, 𝑦) ↦→
(
𝑥 − 1

12
𝑏2, 𝑦

)
gives an

isomorphism from 𝐸 to the curve given by the shortWeierstrass equation

𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵, 𝐴 = − 1
48
𝑐4, 𝐵 = − 1

864
𝑐6.
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Medium and short Weierstrass equations greatly reduce the tedium when manipulating
them, since there is a symmetry to the equation itself, giving two 𝑦 opposite in sign for each
𝑥. As there are only two characteristics that do not permit the affine transformation to a
short Weierstrass equation, they will be disregarded for ease of future discussions. Hence
always assume that 𝑐ℎ𝑎𝑟 (𝐹) ∉ {2, 3} and write the Weierstrass equations of𝑊 and𝑊′ as

𝑊 ∶ 𝑤 (𝑥, 𝑦) = 0 ∶ 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵, 𝐴, 𝐵 ∈ 𝐹,
𝑊′ ∶ 𝑤′ (𝑥, 𝑦) = 0 ∶ 𝑦2 = 𝑥3 + 𝐴′𝑥 + 𝐵′, 𝐴′, 𝐵′ ∈ 𝐹.

The following example illustrates the affine transformation to a short Weierstrass equation.

Example 2.14. Let
𝐸 ∶ 𝑦2 + 2𝑥𝑦 + 1

3
𝑦 = 𝑥3 − 𝑥2 − 1

3
𝑥 − 1

27
be the Weierstrass curve overℝ from the example above. Since 𝑐ℎ𝑎𝑟 (ℝ) = 0 ∉ {2, 3}, there
is an affine transformation (𝑥, 𝑦) ↦→

(
𝑥, 𝑦 − 𝑥 − 1

6

)
such that

(
𝑦 − 𝑥 − 1

6

)2
+2𝑥

(
𝑦 − 𝑥 − 1

6

)
+ 1

3

(
𝑦 − 𝑥 − 1

6

)
= 𝑥3−𝑥2− 1

3
𝑥− 1

27
⇐⇒ 𝑦2 = 𝑥3+ 1

108
,

which is a short Weierstrass equation.

Among the quantities associated with Weierstrass curves, most are used in defining
the simplified Weierstrass equations, while the last two, the discriminant ∆𝑊 and the
𝑗-invariant 𝑗𝑊, encode various properties of the curve itself. As only short Weierstrass
equations are considered, these two quantities can be restated in an equivalent form in
terms of the new coefficients. The discriminant is redefined as follows.

Definition 2.15 (Discriminant). The discriminant of𝑊 is

∆𝑊 = −16
(
4𝐴3 + 27𝐵2

)
.

The discriminant is transformed as ∆𝑊 ↦→ ∆𝑊∕𝑢12 by the affine transformation in
Proposition 2.11. It encodes behaviours at the singularities of Weierstrass curves, and
whether they exist. The following proposition allows for an easy method of checking the
smoothness of a Weierstrass curve.

Proposition 2.16. 𝑊 is smooth iff ∆𝑊 ≠ 0.
Proof. Assume that𝑊 is not smooth and 𝑃 = (𝑎, 𝑏) ∈ 𝑊 is singular. Then

0 = 𝜕𝑤
𝜕𝑋

|||||||𝑃
= −3𝑎2 − 𝐴, 0 = 𝜕𝑤

𝜕𝑌
|||||||𝑃
= 2𝑏, 0 = 𝜕𝑤

𝜕𝑍
|||||||𝑃
= 𝑏2 − 2𝐴𝑎 − 3𝐵.

Since 𝑏 = 0 and𝐴 = −3𝑎2, it holds that 0 = 2𝐴𝑎+3𝐵 = −6𝑎3+3𝐵, so𝐵 = 2𝑎3. Hence∆𝑊 =
−16

(
4
(
−3𝑎2

)3 + 27
(
2𝑎3

)2) = 0. Conversely assume that ∆𝑊 = −16
(
4𝐴3 + 27𝐵2

)
= 0,

such that the discriminant of 𝑥3 + 𝐴𝑥 + 𝐵 is −
(
4𝐴3 + 27𝐵2

)
= 0. Then there is a repeated

root 𝑥 = 𝑎 ∈ 𝐾, so 𝑃 = (𝑎, 0) ∈ 𝑊 and

𝑊 ∶ 𝑦2 = (𝑥 − 𝑎)2 (𝑥 − 𝑎′) , 𝑎′ ∈ 𝐾.
Then

𝜕𝑤
𝜕𝑥

|||||||𝑃
= −2 (𝑎 − 𝑎) (𝑎 − 𝑎′) − (𝑎 − 𝑎)2 = 0, 𝜕𝑤

𝜕𝑦
|||||||𝑃
= 2 (0) = 0.

Thus 𝑃 is singular and𝑊 is not smooth. 2



2 ALGEBRAIC STRUCTURES OF AN ELLIPTIC CURVE 18

Hence𝑊 is eligible as an elliptic curve iff∆𝑊 ≠ 0, and by the proof above, iff 𝑥3+𝐴𝑥+𝐵
has distinct factors. The following example illustrates the discriminant.

Example 2.17. Let 𝐸 be the Weierstrass curve over ℝ from the example above. Then

∆𝐸 = −16 (4 (0)3 + 27
( 1
108

)2
) = − 1

27
< 0,

so 𝐸 is smooth. Thus 𝐸 is an elliptic curve over ℝ.

The 𝑗-invariant, defined only for smooth Weierstrass curves where ∆𝑊 ≠ 0, is redefined
as follows.

Definition 2.18 (𝑗-invariant). The 𝑗-invariant of𝑊 is

𝑗𝑊 = 1728 ( 4𝐴3

4𝐴3 + 27𝐵2) .

The 𝑗-invariant is transformed as 𝑗𝑊 ↦→ 𝑗𝑊 by the affine transformation in Proposition
2.11. It stays invariant between elliptic curves that are isomorphic, which gives its name.
The following proposition allows for an alternative characterisation of an isomorphism.

Proposition 2.19. 𝐸 ≅ 𝐸′ iff 𝑗𝑊 = 𝑗𝑊′ .

Proof. Assume that 𝐸 ≅ 𝐸′, then the affine transformation maps 𝑗𝑊 to 𝑗𝑊, so 𝑗𝑊 = 𝑗𝑊′ .
Conversely assume that 𝑗𝑊 = 𝑗𝑊′ , so

1728 ( 4𝐴3

4𝐴3 + 27𝐵2) = 1728 ( 4𝐴′3

4𝐴′3 + 27𝐵′2) ⇐⇒ 𝐴3𝐵′2 = 𝐴′3𝐵2.

If 𝐴 = 0, then 𝐵 ≠ 0 and 𝐴′ = 0. Then there is an affine transformation

(𝑥, 𝑦) ↦→ ( 3

√
𝐵
𝐵′𝑥,

√
𝐵
𝐵′𝑦) ⇐⇒ 𝐵

𝐵′𝑦
2 = 𝐵

𝐵′𝑥
3 + 𝐴′ 3

√
𝐵
𝐵′𝑥 + 𝐵′,

such that 𝑦2 = 𝑥3 + 𝐵′ = 𝑥3 + 𝐴′𝑥 + 𝐵′. If 𝐵 = 0, then 𝐴 ≠ 0 and 𝐵′ = 0. Then there is
also an affine transformation

(𝑥, 𝑦) ↦→
⎛
⎜
⎝

√
𝐴
𝐴′𝑥,

4

√
𝐴
𝐴′

3

𝑦
⎞
⎟
⎠

⇐⇒
√

𝐴
𝐴′

3

𝑦2 =
√

𝐴
𝐴′

3

𝑥3 + 𝐴′

√
𝐴
𝐴′𝑥 + 𝐵′,

such that 𝑦2 = 𝑥3 + 𝐴′𝑥 = 𝑥3 + 𝐴′𝑥 + 𝐵′. Otherwise 𝐴 ≠ 0 and 𝐵 ≠ 0, then there is an
affine transformation from𝑊 to𝑊′ equal to the two affine transformations above. Thus
𝐸 ≅ 𝐸′. 2

While 𝑗-invariant affine transformations preserve elliptic curves, this does not necessar-
ily hold for their set of rational points. The following illustrates the 𝑗-invariant.
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Example 2.20. Let 𝐸 be the elliptic curve over ℝ from the example above. Then

𝑗𝐸 = −1728
⎛
⎜
⎜
⎝

4 (0)3

4 (0)3 + 27
( 1
108

)2

⎞
⎟
⎟
⎠

= 0.

Hence 𝐸 is isomorphic to any elliptic curve with zero 𝑗-invariant. Now let 𝐸′ ∶ 𝑦2 = 𝑥3 +𝐵
for some 𝐵 ∈ ℝ such that 𝑗𝐸′ = 0, then there is an affine transformation

(𝑥, 𝑦) ↦→
⎛
⎜
⎝

1

3 3
√
2
2
𝐵
𝑥, 1

2
√
3
3
𝐵
𝑦
⎞
⎟
⎠
.

from 𝐸 to 𝐸′. Thus 𝐸 ≅ 𝐸′.

The definition and isomorphism classes of elliptic curves are now fully characterised.

Remark 2.21. There are alternate characterisations of elliptic curves by other families of
curves, which will not be discussed here. One of these is theLegendre form of aWeierstrass
curve, written as

𝐸 ∶ 𝑦2 = 𝑥 (𝑥 − 1) (𝑥 − 𝜆) , 𝜆 ∈ 𝐾 ⧵ {0, 1} .
This is merely a transformation, but proves useful when studying elliptic curves over the
reals.

c. Group law
An elliptic curve has an additional group theoretic property that makes it an algebraic
group. This subsection provides a full definition of the additive group induced by an elliptic
curve, as well as an attempt to prove that it is indeed one. The following lemma will be
used in the definition of the addition operation.

Lemma 2.22. Let 𝑃 = [𝑎, 𝑏, 𝑐] ∈ 𝐸 and 𝑄 = [𝑎′, 𝑏′, 𝑐′] ∈ 𝐸 be points. Then:
(a) if 𝑃 ≠ 𝑄, there is a unique line joining 𝑃 and 𝑄 given by

𝐿 ∶ (𝑏𝑐′ − 𝑏′𝑐) 𝑋 + (𝑎′𝑐 − 𝑎𝑐′) 𝑌 + (𝑎𝑏′ − 𝑎′𝑏) 𝑍 = 0,

(b) if 𝑃 = 𝑄, there is a unique tangent at 𝑃 given by

𝐿 ∶
(
−3𝑎2 − 𝐴𝑐2

)
𝑋 + 2𝑏𝑐𝑌 +

(
𝑏2 − 2𝐴𝑎𝑐 − 3𝐵𝑐2

)
𝑍 = 0,

(c) there is a unique third point 𝑅 ∈ 𝐸 such that 𝐿 intersects 𝐸 at 𝑃, 𝑄, and 𝑅.

Proof. Let 𝐿 ∶ 𝑙 (𝑋, 𝑌, 𝑍) = 0.
(a) If 𝑃 ≠ 𝑄, then

𝑙 (𝑋, 𝑌, 𝑍) =
⎛
⎜
⎝

𝑋
𝑌
𝑍

⎞
⎟
⎠
⋅
⎛
⎜
⎝

⎛
⎜
⎝

𝑎
𝑏
𝑐

⎞
⎟
⎠
×
⎛
⎜
⎝

𝑎′
𝑏′
𝑐′
⎞
⎟
⎠

⎞
⎟
⎠
.
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(b) If 𝑃 = 𝑄, then

𝑙 (𝑋, 𝑌, 𝑍) = ( 1
1, 0, 0)

𝜕𝑒
𝜕𝑋

|||||||𝑃
(𝑋 − 𝑎)+( 1

0, 1, 0)
𝜕𝑒
𝜕𝑌

|||||||𝑃
(𝑌 − 𝑏)+( 1

0, 0, 1)
𝜕𝑒
𝜕𝑍

|||||||𝑃
(𝑍 − 𝑐) .

(c) Since deg (𝑙) = 1 and deg (gcd (𝑒, 𝑙)) = 0, Bézout’s theorem gives that 𝐿 intersects
𝐸 at three points up to multiplicity. Assume that 𝑃 = [𝑎, 𝑏, 𝑐] ≠ 𝑄 = [𝑎′, 𝑏′, 𝑐′]. If
𝐼𝑃 (𝑒, 𝑙) = 1 and 𝐼𝑄 (𝑒, 𝑙) = 1, then there is a unique third point 𝑅 ∈ 𝐸 such that
𝑅 ≠ 𝑃,𝑄 and 𝐼𝑅 (𝑒, 𝑙) = 1. Otherwise 𝐼𝑃 (𝑒, 𝑙) = 2 or 𝐼𝑄 (𝑒, 𝑙) = 2, then there is
also a unique third point 𝑅 = 𝑃 or 𝑅 = 𝑄 respectively. Otherwise assume that
𝑃 = 𝑄 = [𝑎, 𝑏, 𝑐]. Since {𝑙} = 𝑇𝑃 (𝑙) ∈ 𝑇𝑃 (𝑒), it holds that 𝐼𝑃 (𝑒, 𝑙) > 𝑚𝑃 (𝑒)𝑚𝑃 (𝑙) = 1.
If 𝐼𝑃 (𝑒, 𝑙) = 2, then there is a unique third point 𝑅 ∈ 𝐸 such that 𝑅 ≠ 𝑃 and
𝐼𝑅 (𝑒, 𝑙) = 1. Otherwise 𝐼𝑃 (𝑒, 𝑙) = 3, then there is also a unique third point 𝑅 = 𝑃. 2

The following example illustrates the unique lines and tangents above.

Example 2.23. Let 𝐸 ∶ 𝑦2 = 𝑥3 + 2𝑥 + 1 be an elliptic curve over ℝ with points 𝑃 =
(0, −1) ∈ 𝐸 and 𝑄 = (1, 2) ∈ 𝐸. Then the unique line joining 𝑃 and 𝑄 is 𝐿 ∶ 𝑦 = 3𝑥 − 1,
while the tangent at 𝑃 is 𝐿𝑃 ∶ 𝑦 = −𝑥 − 1, and the tangent at 𝑄 is 𝐿𝑄 ∶ 𝑦 =

5
4
𝑥 + 3

4
.

Instead of defining the addition operation right away, it is clearer to define an interme-
diate operation with the above lemma as follows.

Definition 2.24 (∗). ∗∶ 𝐸 × 𝐸 → 𝐸 is defined by 𝑃 ∗ 𝑄 = 𝑅, where 𝑅 is the unique third
point in Lemma 2.22.

The addition operation can then be defined immediately in terms of this intermediate
operation, which are both symmetric and hence commutative.

Definition 2.25 (+). + ∶ 𝐸 × 𝐸 → 𝐸 is defined by 𝑃 + 𝑄 = (𝑃 ∗ 𝑄) ∗ 𝒪.
This definition is chosen carefully so as to make a group law possible. While it might

be slightly convoluted, there is an easy geometrical interpretation. While 𝑃 ∗ 𝑄 ∈ 𝐸 is
simply the unique third intersection point of two points 𝑃 ∈ 𝐸 and 𝑄 ∈ 𝐸, reflecting it
along the horizontal axis gives 𝑃 + 𝑄. This motivates writing out several explicit formulae
relating the affine coordinates of 𝑃, 𝑄 and 𝑃 + 𝑄, which will allow equation manipulations
in later sections. The following algorithm summarises the explicit formulae for +, which
are proven in the appendix.

Algorithm 2.26 (Group law explicit formulae). Input: points 𝑃,𝑄 ∈ 𝐸. Output:
𝑃 + 𝑄.

𝑃 + 𝑄 =

⎧
⎪
⎨
⎪
⎩

𝑅 𝑃 = (𝑎, 𝑏) , 𝑄 = (𝑎′, 𝑏′) , 𝑎 ≠ 𝑎′

𝑆 𝑃 = 𝑄 = (𝑎, 𝑏) , 𝑏 ≠ 0
𝑃 𝑄 = 𝒪
𝒪 𝑃 = 𝑄 = (𝑎, 0)

,

where

𝑅 = ((𝐴 + 𝑎𝑎′) (𝑎 + 𝑎′) + 2 (𝐵 − 𝑏𝑏′)
(𝑎 − 𝑎′)2

,
(
𝐴𝑏′ − 𝑎′2𝑏

)
(3𝑎 + 𝑎′) +

(
𝑎2𝑏′ − 𝐴𝑏

)
(𝑎 + 3𝑎′) − 4𝐵 (𝑏 − 𝑏′)

(𝑎 − 𝑎′)3
) ,

𝑆 = (𝑎
4 − 2𝐴𝑎2 − 8𝐵𝑎 + 𝐴2

4𝑏2 , 𝑎
6 + 5𝐴𝑎4 + 20𝐵𝑎3 − 5𝐴2𝑎2 − 4𝐴𝐵𝑎 − 𝐴3 − 8𝐵2

8𝑏3 ) .
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The first case is referred to as the addition formula, while the second case is referred to
as the duplication formula. The last two cases allows the definition of a negation operation
used for inverses in the group law. This is referred to as the negation formula, where
−𝒪 = 𝒪 and − (𝑎, 𝑏) = (𝑎, −𝑏). Now the group law explicit formulae for characteristic two
and three are more complicated and given in full under code listings in the appendix. The
following example illustrates an implementation of the algorithm in the appendix.

Example 2.27. Let 𝐸 be the elliptic curve over ℝ and let 𝐿, 𝐿𝑃, 𝐿𝑄 be the lines for the
points 𝑃,𝑄 ∈ 𝐸 from the example above. Then 𝐿 intersects 𝐸 at (3𝑥 − 1)2 = 𝑥3 +2𝑥 + 1, or
𝑥 (𝑥 − 1) (𝑥 − 8) = 0. Hence 𝑃 ∗ 𝑄 = (8, 23), so 𝑃 + 𝑄 = (8, −23). Similarly 𝐿𝑃 intersects
𝐸 at (−𝑥 − 1)2 = 𝑥3 + 2𝑥 + 1, or 𝑥2 (𝑥 − 1) = 0, while 𝐿𝑄 intersects 𝐸 at

( 5
4
𝑥 + 3

4

)2
=

𝑥3 + 2𝑥 + 1, or (𝑥 − 1)2 (16𝑥 + 7) = 0. Thus 𝑃 ∗ 𝑃 = (1, −2) and 𝑄 ∗ 𝑄 = (−7∕16, 13∕64),
so 𝑃 + 𝑃 = (1, 2) and 𝑄 + 𝑄 = (−7∕16, −13∕64).

An alternative formulation for + is such that three points 𝑃,𝑄, 𝑅 ∈ 𝐸 are collinear iff

𝑃 + 𝑄 + 𝑅 = 𝑃 + (𝑄 + 𝑅) = (𝑃 + 𝑄) + 𝑅 = 𝒪.

This formulation will help in proving that certain maps obey some property later, but also
allows for a pictorial description for ∗. As per the notation in the appendix: the first pane
describes (∗)2; the second pane describes (∗)3; the third pane describes (∗)1 and (∗)5; the
fourth pane describes (∗)4; the unillustrated line at infinity describes (∗)6.

The group structure of an elliptic curve with respect to + can now be stated in the
following theorem.

Theorem 2.28 (Group law). (𝐸,𝒪,+) is an abelian group.

As full proofs for associativity such as in III.3.4 of ? require further prerequisites
on algebraic curves, particularly on divisors and differentials, only the sketch of an
alternative geometric proof is given, of which the special case of nine pairwise distinct
points is assumed.

Proof. The unique right identity is 𝒪 ∈ 𝐸 and unique right inverses are given by the
negation formula. Symmetry of + gives the unique identity, unique right inverses, and
commutativity. Associativity of+ can be checkedwith variousmethods, such as by tediously
verifying cases of the explicit formulae in ?. Alternatively, let 𝑃,𝑄, 𝑅 ∈ 𝐸 be points, and let
⋄ 𝐿1 ∶ 𝑙1 (𝑋, 𝑌, 𝑍) = 0 be the line joining 𝑃, 𝑄, and 𝑃 ∗ 𝑄 = − (𝑃 + 𝑄),
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⋄ 𝐿2 ∶ 𝑙2 (𝑋, 𝑌, 𝑍) = 0 be the line joining 𝑄, 𝑅, and 𝑄 ∗ 𝑅 = − (𝑄 + 𝑅),
⋄ 𝐿3 ∶ 𝑙3 (𝑋, 𝑌, 𝑍) = 0 be the line joining 𝑃 + 𝑄, 𝒪, and (𝑃 + 𝑄) ∗ 𝒪 = − (𝑃 + 𝑄),
⋄ 𝐿4 ∶ 𝑙4 (𝑋, 𝑌, 𝑍) = 0 be the line joining 𝑄 + 𝑅, 𝒪, and (𝑄 + 𝑅) ∗ 𝒪 = − (𝑄 + 𝑅),
⋄ 𝐿5 ∶ 𝑙5 (𝑋, 𝑌, 𝑍) = 0 be the line joining 𝑃 + 𝑄, 𝑅, and (𝑃 + 𝑄) ∗ 𝑅 = − ((𝑃 + 𝑄) + 𝑅),

and
⋄ 𝐿6 ∶ 𝑙6 (𝑋, 𝑌, 𝑍) = 0 be the line joining 𝑃, 𝑄 + 𝑅, and 𝑃 ∗ (𝑄 + 𝑅) = − (𝑃 + (𝑄 + 𝑅)),

assuming that these points are pairwise distinct except for− ((𝑃 + 𝑄) + 𝑅) and− (𝑃 + (𝑄 + 𝑅)).
Now let

𝐶1 ∶ (𝑙1𝑙4𝑙5) (𝑋, 𝑌, 𝑍) = 0, 𝐶2 ∶ (𝑙2𝑙3𝑙6) (𝑋, 𝑌, 𝑍) = 0,
be cubics such that

𝐼 = {𝒪, 𝑃, 𝑄, 𝑅, 𝑃 + 𝑄,𝑄 + 𝑅,− (𝑃 + 𝑄) , − (𝑄 + 𝑅)} ⊆ 𝐶1 ∩ 𝐶2.

Then Bézout’s theorem gives that 𝐸, 𝐶1, and 𝐶2 pairwise intersect at nine points up to
multiplicity. Hence

𝐸 ∩𝐶1 = 𝐼 ∪ {− ((𝑃 + 𝑄) + 𝑅)} , 𝐸 ∩𝐶2 = 𝐼 ∪ {− (𝑃 + (𝑄 + 𝑅))} , 𝐶1 ∩𝐶2 = 𝐼 ∪ {𝑆} ,

for some ninth point 𝑆 ∈ 𝐶1 ∩ 𝐶2. Since 𝐼 ⊆ 𝐸, the Cayley-Bacharach theorem gives 𝑆 ∈ 𝐸,
so

− ((𝑃 + 𝑄) + 𝑅) = 𝑆 = − (𝑃 + (𝑄 + 𝑅)) .
Thus (𝑃 + 𝑄) + 𝑅 = 𝑃 + (𝑄 + 𝑅). 2

With an abelian group at hand, some group theoretic properties of an elliptic curve can
be explored. In particular, restricting an elliptic curve onto its 𝐹-rational points retain the
group structure.

Proposition 2.29. (𝐸 (𝐹) , 𝒪,+) ≤ (𝐸,𝒪,+).

Proof. Since 0, 1 ∈ 𝐹, it holds that𝒪 ∈ 𝐸 (𝐹). Let 𝑃,𝑄 ∈ 𝐸 (𝐹) be points, then the explicit
formulae give −𝑃, 𝑃 + 𝑄 ∈ 𝐸 (𝐹). Thus (𝐸 (𝐹) , 𝒪,+) ≤ (𝐸,𝒪,+). 2

Additionally, the 𝑛-torsion points of an elliptic curve also form a group, provided 𝒪 is
included. The following example illustrates the structure of the 2-torsion subgroup.

Example 2.30. Let 𝑃 = (𝑎, 𝑏) ∈ 𝐸 [2], then 𝑏 = −𝑏 = 0. Since 𝑥3 + 𝐴𝑥 + 𝐵 = 0 has three
distinct solutions, there are three distinct points 𝑃1 = (𝑎1, 0), 𝑃2 = (𝑎2, 0), and 𝑃3 = (𝑎3, 0)
in 𝐸 [2]. Thus (𝐸 [2] , 𝒪,+) = ({𝒪, 𝑃1, 𝑃2, 𝑃3} , 𝒪, +) ≅

(
ℤ2
2, 0, +

)
.

Hence 𝑏 = 0 iff 𝑜𝑟𝑑 (𝑎, 𝑏) = 2.

Remark 2.31. In fact, the 𝑛-torsion points of 𝐸 form a subgroup 𝐸 [𝑛] of 𝐸, such that
(𝐸 [𝑝] , 𝒪,+) ≅

(
ℤ2
𝑝, 0, +

)
if 𝑐ℎ𝑎𝑟 (𝐹) ∤ 𝑝, and either (𝐸 [𝑝𝑒] , 𝒪, +) ≅ ({0} , 0, +) or (𝐸 [𝑝𝑒] , 𝒪, +) ≅(

ℤ𝑝𝑒 , 0, +
)
for all 𝑒 ∈ ℤ>0 if 𝑐ℎ𝑎𝑟 (𝐹) ∣ 𝑝.
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d. Isogenies
Prior to this section, the only maps between elliptic curves that have been defined were
affine transformations. Now that the group law is defined, group homomorphisms can
also be considered. However, a slightly different approach to this will be taken with the
following definition, noting that morphisms of curves are either constant or surjective.

Definition 2.32 (Isogeny). An isogeny from 𝐸 to 𝐸′ is a surjective morphism 𝜙 ∶ 𝐸 →
𝐸′ such that 𝜙 (𝒪) = 𝒪.

As isomorphisms are defined as invertible morphisms that preserve the point at infinity,
they are isogenies as well. Now despite the simple condition, isogenies are actually group
homomorphisms, which also preserve the point at infinity. The following proposition then
gives an equivalent definition.

Proposition 2.33. Let 𝜙 ∶ 𝐸 → 𝐸′ be an isogeny. Then 𝜙 is a group homomorphism.

Proof. Omitted, see III.4.8 in [1]. 2

The following is a typical example of an isogeny.

Example 2.34. Themultiplication by 𝑛map [𝑛] ∶ 𝐸 → 𝐸 defined by [𝑛] (𝑃) = 𝑛𝑃 is an
isogeny such that 𝐾𝑒𝑟 ([𝑛]) = 𝐸 [𝑛].

Let 𝜙 ∶ 𝐸 → 𝐸′ be an isogeny. While isomorphisms are easily characterised by 𝑗-
invariant affine transformations, the smaller restriction on isogenies allow for a wider
range of coordinate transformations that still obey the group homomorphism property. In
particular, rational functions that define isogenies can be characterised by the following
lemma.

Lemma 2.35. Let 𝑓 ∈ 𝐹 (𝐸) be a rational function. Then

𝑓 (𝑥, 𝑦) =
𝑓′ (𝑥) + 𝑓′′ (𝑥) 𝑦

𝑓′′′ (𝑥)
, 𝑓′, 𝑓′′ ∈ 𝐹 [𝑥] , 𝑓′′′ ∈ 𝐹 [𝑥] ⧵ {0} .

Proof. Let 𝑓 = 𝑔∕ℎ for some 𝑔 ∈ 𝐹 [𝑥, 𝑦] and some ℎ ∈ 𝐹 [𝑥, 𝑦] ⧵ {0}. Then 𝑔 (𝑥, 𝑦) =∑𝑛
𝑖=0 𝑔𝑖 (𝑥) 𝑦

𝑖 for some 𝑔𝑖 ∈ 𝐹 [𝑥], some ℎ𝑖 ∈ 𝐹 [𝑥] ⧵ {0}, and some 𝑛,𝑚 ∈ ℤ≥0, so:

𝑔 (𝑥, 𝑦) =
𝑛∑

𝑖=0
𝑔𝑖 (𝑥) 𝑦𝑖 =

𝑛∕2∑

𝑖=0
𝑔2𝑖 (𝑥) 𝑦2𝑖 +

𝑛∕2∑

𝑖=0
𝑔2𝑖+1 (𝑥) 𝑦2𝑖+1

=
𝑛∕2∑

𝑖=0
𝑔2𝑖 (𝑥)

(
𝑥3 + 𝐴𝑥 + 𝐵

)𝑖 +
𝑛∕2∑

𝑖=0
𝑔2𝑖+1 (𝑥)

(
𝑥3 + 𝐴𝑥 + 𝐵

)𝑖 𝑦

= 𝑔′ (𝑥) + 𝑔′′ (𝑥) 𝑦, 𝑔′, 𝑔′′ ∈ 𝐹 [𝑥] .
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Similarly ℎ (𝑥, 𝑦) = ℎ′ (𝑥) + ℎ′′ (𝑥) 𝑦 for some ℎ′, ℎ′′ ∈ 𝐹 [𝑥]. Thus

𝑓 (𝑥, 𝑦) =
𝑔 (𝑥, 𝑦)
ℎ (𝑥, 𝑦)

= 𝑔′ (𝑥) + 𝑔′′ (𝑥) 𝑦
ℎ′ (𝑥) + ℎ′′ (𝑥) 𝑦

= (𝑔′ (𝑥) + 𝑔′′ (𝑥) 𝑦) (ℎ′ (𝑥) − ℎ′′ (𝑥) 𝑦)
(ℎ′ (𝑥) + ℎ′′ (𝑥) 𝑦) (ℎ′ (𝑥) − ℎ′′ (𝑥) 𝑦)

= 𝑔′ (𝑥) ℎ′ (𝑥) − 𝑔′′ (𝑥) ℎ′′ (𝑥) 𝑦2 − 𝑔′ (𝑥) ℎ′′ (𝑥) 𝑦 + 𝑔′′ (𝑥) ℎ′ (𝑥) 𝑦
ℎ′ (𝑥)2 − ℎ′′ (𝑥)2 𝑦2

=
𝑔′ (𝑥) ℎ′ (𝑥) − 𝑔′′ (𝑥) ℎ′′ (𝑥)

(
𝑥3 + 𝐴𝑥 + 𝐵

)
− 𝑔′ (𝑥) ℎ′′ (𝑥) 𝑦 + 𝑔′′ (𝑥) ℎ′ (𝑥) 𝑦

ℎ′ (𝑥)2 − ℎ′′ (𝑥)2 (𝑥3 + 𝐴𝑥 + 𝐵)

= 𝑓′ (𝑥) + 𝑓′′ (𝑥) 𝑦
𝑓′′′ (𝑥)

, 𝑓, 𝑓′ ∈ 𝐹 [𝑥] , 𝑓′′ ∈ 𝐹 [𝑥] ⧵ {0} . 2

An entire isogeny can now be characterised similarly, noting the group homomorphism
property. The following proposition gives the explicit standard form of an isogeny, defined
in terms of its image.

Proposition 2.36. Let 𝑃 = (𝑎, 𝑏) ∈ 𝐸 ⧵ 𝐾𝑒𝑟 (𝜙) be a point. Then

𝜙 (𝑃) = (𝑟 (𝑎)𝑠 (𝑎)
, 𝑢 (𝑎)𝑣 (𝑎)

𝑏) 𝑟, 𝑢 ∈ 𝐹 [𝑥] , 𝑠, 𝑣 ∈ 𝐹 [𝑥] ⧵ {0} ,

such that gcd (𝑟, 𝑠) = gcd (𝑢, 𝑣) = 1.
Proof. Let 𝜙 =

[
𝜙𝑥, 𝜙𝑦, 𝜙𝑧

]
for some 𝜙𝑥, 𝜙𝑦, 𝜙𝑧 ∈ 𝐹 (𝐸). Since 𝜙 (𝑃) ≠ 𝒪, it holds that

𝜙𝑧 (𝑃) ≠ 0, so

𝜙 (𝑃) =
[
𝜙𝑥 (𝑃) , 𝜙𝑦 (𝑃) , 𝜙𝑧 (𝑃)

]
= (

𝜙𝑥 (𝑃)
𝜙𝑧 (𝑃)

,
𝜙𝑦 (𝑃)
𝜙𝑧 (𝑃)

) .

Then 𝜙𝑥 (𝑃) ∕𝜙𝑧 (𝑃) , 𝜙𝑦 (𝑃) ∕𝜙𝑧 (𝑃) ∈ 𝐹 (𝐸) are rational functions, so

𝜙𝑥 (𝑃)
𝜙𝑧 (𝑃)

= 𝜓 (𝑎) + 𝜓′ (𝑎) 𝑏
𝜓′′ (𝑎)

,
𝜙𝑦 (𝑃)
𝜙𝑧 (𝑃)

= 𝜒 (𝑎) + 𝜒′ (𝑎) 𝑏
𝜒′′ (𝑎)

, 𝜓, 𝜓′, 𝜒, 𝜒′ ∈ 𝐹 [𝑥] , 𝜓′′, 𝜒′′ ∈ 𝐹 [𝑥]⧵{0} .

Since 𝜙 (−𝑃) = −𝜙 (𝑃),

(𝜓 (𝑎) + 𝜓′ (𝑎) (−𝑏)
𝜓′′ (𝑎)

, 𝜒 (𝑎) + 𝜒′ (𝑎) (−𝑏)
𝜒′′ (𝑎)

) = 𝜙 (−𝑃) = −𝜙 (𝑃) = (𝜓 (𝑎) + 𝜓′ (𝑎) 𝑏
𝜓′′ (𝑎)

, −𝜒 (𝑎) + 𝜒′ (𝑎) 𝑏
𝜒′′ (𝑎)

) .

Hence 𝜓′ (𝑎) = 𝜒 (𝑎) = 0. Now let 𝑔 = gcd (𝜓, 𝜓′′) and 𝑔′ = gcd (𝜒′, 𝜒′′). Thus let

𝑟 = 𝜓
𝑔 , 𝑢 =

𝜒′

𝑔′ ∈ 𝐹 [𝑥] , 𝑠 = 𝜓′′
𝑔 , 𝑣 = 𝜒′′

𝑔′ ∈ 𝐹 [𝑥] ⧵ {0} ,

such that gcd (𝑟, 𝑠) = gcd (𝑢, 𝑣) = 1. 2

In the above proof, the assumption that a point 𝑃 ∈ 𝐸 is not in the kernel allows for the
isogeny to be scaled appropriately. If 𝑃 is in the kernel, it would be mapped to the point at
infinity, which would mean that 𝜙𝑧, and hence 𝑠 or 𝑣, is zero. With this in mind, an abuse
of notation allows for the standard form to be written as

𝜙 (𝑥, 𝑦) = (𝑟 (𝑥)𝑠 (𝑥)
, 𝑢 (𝑥)𝑣 (𝑥)

𝑦) , 𝑟, 𝑠, 𝑢, 𝑣 ∈ 𝐹 [𝑥] , gcd (𝑟, 𝑠) = gcd (𝑢, 𝑣) = 1,

remembering that 𝜙 (𝒪) = 𝒪, and 𝜙 (𝑎, 𝑏) = 𝒪 whenever 𝑠 (𝑎) = 0 or 𝑣 (𝑎) = 0 for any
point (𝑎, 𝑏) ∈ 𝐸. The following example rewrites the multiplication by two map with the
familiar duplication formula.
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Example 2.37. By the duplication formula,

[2] (𝑥, 𝑦) = (𝑥
4 − 2𝐴𝑥2 − 8𝐵𝑥 + 𝐴2

4𝑦2 , 𝑥
6 + 5𝐴𝑥4 + 20𝐵𝑥3 − 5𝐴2𝑥2 − 4𝐴𝐵𝑥 − 𝐴3 − 8𝐵2

8𝑦3 )

= (𝑥
4 − 2𝐴𝑥2 − 8𝐵𝑥 + 𝐴2

4 (𝑥3 + 𝐴𝑥 + 𝐵)
, 𝑥

6 + 5𝐴𝑥4 + 20𝐵𝑥3 − 5𝐴2𝑥2 − 4𝐴𝐵𝑥 − 𝐴3 − 8𝐵2

8 (𝑥3 + 𝐴𝑥 + 𝐵)2
𝑦) ,

which is in standard form. Then [2] (𝑎, 𝑏) = 𝒪 iff 𝑏2 = 𝑎3 + 𝐴𝑎 + 𝐵 = 0 for any point
(𝑎, 𝑏) ∈ 𝐸.

There are also two useful notions of an isogeny, the first of which is its degree.

Definition 2.38 (Isogeny degree). The degree of 𝜙 is deg (𝜙) = max {deg (𝑟) , deg (𝑠)}.

The degree of the constant morphism, while not an isogeny, is defined to be zero. The
degrees of two trivial isogenies are given in the following example.

Example 2.39. The identity isogeny, or the multiplication by one map [1] has degree
deg ([1]) = max {1, 1} = 1. Similarly, the multiplication by negative one map [−1] also has
degree deg ([−1]) = 1.

The second invariant notion of an isogeny is its separability.

Definition 2.40 (Separable isogeny). 𝜙 is separable iff 𝑑 (𝑟∕𝑠) ∕𝑑𝑥 ≠ 0.

Remark 2.41. The isogeny 𝜙 induces an injection 𝜙∗ ∶ 𝐹 (𝐸′) → 𝐹 (𝐸) of function fields.
Its separability is equivalently formulated as that of 𝐹 (𝐸) ∕𝜙∗𝐹 (𝐸′), which reflects the
definition of a separable extension.

The following example of the multiplication by two map illustrates these two notions.

Example 2.42. [2] has degree deg ([2]) = max {4, 3} = 4 and is separable since

𝑑
𝑑𝑥 (

𝑥4 − 2𝐴𝑥2 − 8𝐵𝑥 + 𝐴2

4 (𝑥3 + 𝐴𝑥 + 𝐵)
) = 𝑥6 + 5𝐴𝑥4 + 20𝐵𝑥3 − 5𝐴2𝑥2 − 4𝐴𝐵𝑥 − 𝐴3 − 8𝐵2

4 (𝑥3 + 𝐴𝑥 + 𝐵)2
≠ 0.

Separability always holds in 𝑐ℎ𝑎𝑟 (𝐹) = 0, but there are inseparable isogenies in
𝑐ℎ𝑎𝑟 (𝐹) = 𝑝 for some prime 𝑝 ∈ ℤ>0. More on separable isogenies will be discussed
in a later section. Now since + is a morphism, the set of all isogenies between 𝐸 and
𝐸′, together with the constant morphism, forms an abelian group𝐻𝑜𝑚 (𝐸, 𝐸′) under the
operation

(𝜙 + 𝜓) (𝑃) = 𝜙 (𝑃) + 𝜓 (𝑃) .
Isogenies in the group can also compose to form a ring when 𝐸 = 𝐸′ in the following
definition.

Definition 2.43 (Endomorphism). 𝜙 is an endomorphism of 𝐸 iff 𝐸 = 𝐸′. The endo-
morphism ring 𝐸𝑛𝑑 (𝐸) of 𝐸 is the ring of all endomorphisms of 𝐸 with respect to + and
◦, where

(𝜙◦𝜓) = 𝜙 (𝜓 (𝑃)) .
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The following example gives an endomorphism of elliptic curves over fields of non-zero
characteristic that is of particular interest.

Example 2.44. Let 𝐹 = 𝔽𝑝 for some prime 𝑝 ∈ ℤ>0. Then the Frobenius endomorphism
𝐹𝑟 ∶ 𝐸 → 𝐸 defined by 𝐹𝑟 (𝑥, 𝑦) = (𝑥𝑝, 𝑦𝑝) is an inseparable endomorphism with degree
deg (𝐹𝑟) = 𝑝.

The Frobenius endomorphism will be formally defined in a later section. On a final
note, endomorphisms with inverses also form a multiplicative subgroup.

Definition 2.45 (Automorphism). 𝜙 is an automorphism of 𝐸 iff it is an endomor-
phism and an isomorphism. The automorphism group 𝐴𝑢𝑡 (𝐸) is the group of all auto-
morphisms of 𝐸.

Unlike the endomorphism ring, the automorphism group of an elliptic curve is easily
characterised.

Proposition 2.46.

𝐴𝑢𝑡 (𝐸) ≅
⎧

⎨
⎩

ℤ6 𝑗𝐸 = 0
ℤ4 𝑗𝐸 = 1728
ℤ2 𝑗𝐸 ∉ {0, 1728}

.

Proof. Let 𝜙 ∈ 𝐴𝑢𝑡 (𝐸). Then 𝜙 induces a 𝑗-invariant affine transformation

(𝑥, 𝑦) ↦→
(
𝑢2𝑥 + 𝑟, 𝑢3𝑦 + 𝑢2𝑠𝑥 + 𝑡

)
, 𝑢 ∈ 𝐾∗, 𝑟, 𝑠, 𝑡 ∈ 𝐾

from𝑊 to itself. Since 𝜙 is an automorphism, it holds that 𝑟 = 𝑠 = 𝑡 = 0, and 𝐴 = 𝐴∕𝑢4
and 𝐵 = 𝐵∕𝑢6. If 𝑗𝐸 = 0, then 𝐴 = 0 and 𝐵 ≠ 0, so 𝑢6 = 1. Hence 𝑢 is a sixth root of unity
and 𝐴𝑢𝑡 (𝐸) ≅ ℤ6. If 𝑗𝐸 = 1728, then 𝐴 ≠ 0 and 𝐵 = 0, so 𝑢4 = 1. Hence 𝑢 is a fourth root
of unity and 𝐴𝑢𝑡 (𝐸) ≅ ℤ4. Otherwise 𝑗𝐸 ∉ {0, 1728}, then 𝐴 ≠ 0 and 𝐵 ≠ 0, so 𝑢6 = 1 and
𝑢4 = 1. Hence 𝑢2 = 1 and 𝑢 is a second root of unity. Thus 𝐴𝑢𝑡 (𝐸) ≅ ℤ2. 2

Remark 2.47. If 𝑐ℎ𝑎𝑟 (𝐹) ∈ {2, 3}, then the above list of cases for𝐴𝑢𝑡 (𝐸)with 𝑗𝐸 = 0, 1728
is not exhaustive. In particular, if 𝑐ℎ𝑎𝑟 (𝐹) = 2, then 𝐴𝑢𝑡 (𝐸) ≅ ℤ4 ⋉ ℤ3, otherwise
𝑐ℎ𝑎𝑟 (𝐹) = 3, then 𝐴𝑢𝑡 (𝐸) ≅ ℤ3 ⋉𝑄8.

The above definitions are defined for 𝐸 (𝐹) as well, and are written 𝐻𝑜𝑚𝐹 (𝐸, 𝐸′),
𝐸𝑛𝑑𝐹 (𝐸), and 𝐴𝑢𝑡𝐹 (𝐸) respectively.
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3 Elliptic curves over 𝔽𝑝
When studying elliptic curves over a field or a family of fields, an important question would
be to determine the set of solutions existing in that field. For instance, it is desirable to
count the rational solutions in that field, which would have far fetching applications in
number theory and cryptography. For finite fields, there is a finite process to compute the
rational points that would always work. The following example illustrates a naive approach
for this.

Example 3.1. Let 𝐸 ∶ 𝑦2 = 𝑥3 + 𝑥 + 1 be an elliptic curve over 𝔽5. Since there are five
distinct values for 𝑥 ∈ 𝔽5 = {0, 1, 2, 3, 4}, computing 𝑥3 + 𝑥 + 1 for each value of 𝑥 and
checking if it is a quadratic residue 𝑦2 in 𝔽5 gives the following
⋄ If 𝑥 = 0, then 𝑦2 = 𝑥3 + 𝑥 + 1 = 1 = 12 = 42, so 𝑦 = 1 or 𝑦 = 4.
⋄ If 𝑥 = 1, then 𝑦2 = 𝑥3 + 𝑥 + 1 = 3 is not a quadratic residue.
⋄ If 𝑥 = 2, then 𝑦2 = 𝑥3 + 𝑥 + 1 = 1 = 12 = 42, so 𝑦 = 1 or 𝑦 = 4.
⋄ If 𝑥 = 3, then 𝑦2 = 𝑥3 + 𝑥 + 1 = 1 = 12 = 42, so 𝑦 = 1 or 𝑦 = 4.
⋄ If 𝑥 = 4, then 𝑦2 = 𝑥3 + 𝑥 + 1 = 4 = 22 = 32, so 𝑦 = 2 or 𝑦 = 3.

Since 𝒪 ∈ 𝐸 (𝔽5), there are exactly nine 𝔽5-rational points

𝐸 (𝔽5) = {𝒪, (0, 1) , (0, 4) , (2, 1) , (2, 4) , (3, 1) , (3, 4) , (4, 2) , (4, 3)} .

Hence 𝐸 (𝔽5) ≅ ℤ2
3 or 𝐸 (𝔽5) ≅ ℤ9. Now Lagrange’s theorem gives that 𝑜𝑟𝑑 (𝑃) = 3 or

𝑜𝑟𝑑 (𝑃) = 9 for any non-zero point 𝑃 ∈ 𝐸 (𝔽5). Let 𝑃 = (0, 1) ∈ 𝐸 (𝔽5). By the addition and
duplication formulae, it holds that 3𝑃 = (2, 1) and 9𝑃 = 𝒪, so it has order 𝑜𝑟𝑑 (𝑃) = 9 and
is a generator of 𝐸 (𝔽5). Thus 𝐸 (𝔽5) ≅ ℤ9.

This finite process is straightforward in the sense that it always terminates. However,
as it runs with an asymptotic time complexity of 𝑂 (𝑞) for a finite field 𝔽𝑞, the approach
becomes rather intractable for large prime powers 𝑞 ∈ ℤ>0. This section will attempt to
develop several techniques to compute 𝐸

(
𝔽𝑞
)
, or more specifically ||||𝐸

(
𝔽𝑞
)||||, which will span

the next few subsections. Now let 𝐸 be an elliptic curve over the perfect field 𝐹 = 𝔽𝑞 = 𝔽𝑝𝑒
for some prime 𝑝 ∈ ℤ>0 ⧵ {2, 3} and some 𝑒 ∈ ℤ>0, given by the Weierstrass curve

𝐸 ∶ 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵, 𝐴, 𝐵 ∈ 𝐹,

with the group of rational points 𝐸 (𝐹) = (𝐸 (𝐹) , 𝒪,+).

a. Hasse’s theorem: inseparable isogenies
The following theorem bounds the maximum cardinality of the group of rational points.

Theorem 3.2 (Hasse). |𝐸 (𝐹)| = 𝑞 − 𝑡 + 1 for some trace 𝑡 ∈ ℤ such that |𝑡| ≤ 2
√
𝑞.

Remark 3.3. This is a special case of the Hasse-Weil theorem, which states that |𝐶 (𝐹)| =
𝑞 − 𝑡 + 1 for some |𝑡| ≤ 2𝑔

√
𝑞 for any projective algebraic curve 𝐶 over 𝐹 of genus 𝑔.

Proof of Hasse’s theorem concerns the properties of separable and inseparable isogenies,
which are given by separable and inseparable polynomials. The following lemma allows
inseparable polynomials to be written in a reduced form.
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Lemma 3.4. Let 𝑓 ∈ 𝐹 [𝑥] be an inseparable polynomial. Then 𝑓 (𝑥) = 𝑔 (𝑥𝑝) for some
𝑔 ∈ 𝐹 [𝑥].

Proof. Let 𝑓 (𝑥) =
∑𝑛

𝑖=0 𝑎𝑖𝑥
𝑖 = ∑

𝑎𝑖≠0
𝑎𝑖𝑥𝑚𝑖 for some 𝑎𝑖 ∈ 𝐹 and some 𝑛,𝑚𝑖 ∈ ℤ>0. Since

𝑓 is separable, it holds that 0 = 𝑑𝑓∕𝑑𝑥 = ∑
𝑎𝑖≠0

𝑚𝑖𝑎𝑖𝑥𝑚𝑖−1. Then𝑚𝑖𝑎𝑖 = 0 for each 𝑎𝑖 ≠ 0,
so 𝑝 ∣ 𝑚𝑖 and 𝑚𝑖 = 𝑝𝑘 for some 𝑘 ∈ ℤ≥0. Thus 𝑓 (𝑥) =

∑
𝑎𝑖≠0

𝑎𝑖 (𝑥𝑝)
𝑘 = 𝑔 (𝑥𝑝) for some

𝑔 ∈ 𝐹 [𝑥]. 2

The polynomial 𝑔 would then be of a smaller degree than 𝑓, which justifies why it is
deemed as reduced. A similar argument allows inseparable isogenies to be reduced, so let
𝐸′ be another elliptic curve over 𝐹 given by the Weierstrass curve

𝐸′ ∶ 𝑦2 = 𝑥3 + 𝐴′𝑥 + 𝐵′, 𝐴′, 𝐵′ ∈ 𝐹,

and let 𝜙 ∶ 𝐸 → 𝐸′ be an isogeny. The following lemma again allows inseparable isogenies
to be written in a reduced form.

Lemma 3.5. Let 𝜙 be inseparable. Then

𝜙 (𝑥, 𝑦) = (𝑟
′ (𝑥𝑝)
𝑠′ (𝑥𝑝)

, 𝑢
′ (𝑥𝑝)
𝑣′ (𝑥𝑝)

𝑦𝑝) , 𝑟′, 𝑠′, 𝑢′, 𝑣′ ∈ 𝐹 [𝑥] .

Proof. Since 𝜙 is inseparable,

0 = 𝑑
𝑑𝑥

(𝑟
𝑠
)
= 1
𝑠2 (

𝑑𝑟
𝑑𝑥𝑠 −

𝑑𝑠
𝑑𝑥𝑟) ⇐⇒ 𝑑𝑟

𝑑𝑥𝑠 =
𝑑𝑠
𝑑𝑥𝑟.

Since gcd (𝑟, 𝑠) = 1, it holds that 𝑟 ∣ 𝑑𝑟∕𝑑𝑥. Since deg (𝑑𝑟∕𝑑𝑥) < deg (𝑟), it also holds
that 𝑑𝑟∕𝑑𝑥 = 0, so 𝑟 is inseparable and 𝑟 (𝑥) = 𝑟′ (𝑥𝑝) for some 𝑟′ ∈ 𝐹 [𝑥]. Similarly 𝑠 is
inseparable, so 𝑑𝑠∕𝑑𝑥 = 0 and 𝑠 (𝑥) = 𝑠′ (𝑥𝑝) for some 𝑠′ ∈ 𝐹 [𝑥]. Now

(𝑢
𝑣 𝑦
)2
=
(𝑟
𝑠
)3
+ 𝐴′ 𝑟

𝑠 + 𝐵′ ⇐⇒ 𝑢2𝑠3𝑦2 = 𝑣2𝑡, 𝑡 = 𝑟3 + 𝐴′𝑟𝑠2 + 𝐵′𝑠3.

Then 𝑑𝑟∕𝑑𝑥 = 0 and 𝑑𝑠∕𝑑𝑥 = 0 gives 𝑑𝑡∕𝑑𝑥 = 0, which gives 𝑑
(
𝑢2𝑦2∕𝑣2

)
∕𝑑𝑥 =

𝑑
(
𝑡∕𝑠3

)
∕𝑑𝑥 = 0. Hence 𝑢 (𝑥)2 𝑦2 = 𝑦′ (𝑥𝑝) and 𝑣 (𝑥)2 = 𝑣′ (𝑥𝑝) for some 𝑦′, 𝑣′ ∈ 𝐹 [𝑥] sim-

ilarly. Now since 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 has distinct factors, let 𝑦2 = (𝑥 − 𝛼1) (𝑥 − 𝛼2) (𝑥 − 𝛼3)
for some 𝛼𝑖 ∈ 𝐾. Then each (𝑥 − 𝛼𝑖) is a factor of 𝑦′ (𝑥𝑝), so

(
𝑥𝑝 − 𝛼𝑝𝑖

)
= (𝑥 − 𝛼𝑖)

𝑝 is also
a factor of 𝑦′ (𝑥𝑝) and of 𝑢 (𝑥) 𝑦2. Hence 𝑦′ (𝑥𝑝) = 𝑡′ (𝑥𝑝)

(
𝑦2
)𝑝
for some 𝑡′ ∈ 𝐹 [𝑥]. Now

any factor (𝑥 − 𝛼) of 𝑢 (𝑥) is such that (𝑥 − 𝛼)𝑝 = (𝑥𝑝 − 𝛼𝑝) is a factor of 𝑡′ (𝑥𝑝). Since
gcd (𝑝, 2) = 1, it holds that

(
(𝑥 − 𝛼)𝑝

)2
is also a factor of 𝑡′ (𝑥𝑝), so 𝑡′ (𝑥𝑝) = 𝑢′ (𝑥𝑝)2 for

some 𝑢′ ∈ 𝐹 [𝑥]. Thus 𝑢 (𝑥)2 𝑦2 = 𝑢′ (𝑥𝑝)2 (𝑦𝑝)2 and

𝜙 (𝑥, 𝑦) = (𝑟 (𝑥)𝑠 (𝑥)
, 𝑢 (𝑥)𝑣 (𝑥)

𝑦) = (𝑟
′ (𝑥𝑝)
𝑠′ (𝑥𝑝)

, ±𝑢
′ (𝑥𝑝)
𝑣′ (𝑥𝑝)

𝑦𝑝) .

Now the above lemma might feel slightly arbitrary due to the presence of 𝑥𝑝 and 𝑦𝑝 in
the isogeny. This brings the discussion to a particular endomorphism defined as follows,
which would simplify the above expression.
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Definition 3.6 (Frobenius endomorphism). The Frobenius endomorphism 𝐹𝑟 ∶
𝐸 → 𝐸 is defined by 𝐹𝑟 (𝑥, 𝑦) = (𝑥𝑝, 𝑦𝑝) if 𝑒 = 1. The 𝑞-th power Frobenius endomorphism
𝐹𝑟𝑞 ∶ 𝐸 → 𝐸 is defined by 𝐹𝑟𝑞 (𝑥, 𝑦) = (𝑥𝑞, 𝑦𝑞).

The Frobenius endomorphism is also injective by virtue of the field characteristic, and
hence bijective, which allows for an inverse isogeny to be easily defined.

Remark 3.7. A remarkable equivalent characterisation of a perfect field is that the Frobe-
nius endomorphism of a field with positive characteristic is an automorphism, which
induces a similar property for isogenies defined over this field.

The above lemmas for inseparable 𝜙 can now be written in terms of the Frobenius
endomorphism 𝜙 = 𝜙′◦𝐹𝑟, where

𝜙′ (𝑥, 𝑦) = (𝑟
′ (𝑥)
𝑠′ (𝑥)

, 𝑢
′ (𝑥)
𝑣′ (𝑥)

𝑦) , 𝑟′, 𝑠′, 𝑢′, 𝑣′ ∈ 𝐹 [𝑥] ,

which is a reduced standard form of an isogeny. In fact, any isogeny can be written as the
composition of a Frobenius endomorphism. The following proposition summarises the
above lemmas nicely.

Proposition 3.8. 𝜙 = 𝜙𝑠◦𝐹𝑟𝑛 for some separable isogeny 𝜙𝑠 ∶ 𝐸 → 𝐸′ and some 𝑛 ∈ ℤ≥0.

Proof. If 𝜙 is separable, then let 𝜙𝑠 = 𝜙 and 𝑛 = 0. Otherwise 𝜙 = 𝜙1◦𝐹𝑟 for some
𝜙1 ∶ 𝐸 → 𝐸′. If 𝜙𝑖 ∶ 𝐸 → 𝐸′ is inseparable, then 𝜙𝑖 = 𝜙𝑖+1◦𝐹𝑟𝑖 for some 𝜙𝑖+1 ∶ 𝐸 → 𝐸′.
Since deg (𝜙) is finite, by induction, there is some 𝑛 ∈ ℤ≥0 such that 𝑛 ≤ deg (𝜙) and
𝜙𝑛 ∶ 𝐸 → 𝐸′ is separable. Thus let 𝜙𝑠 = 𝜙𝑛. 2

Remark 3.9. Since 𝐹 is a perfect field, the isogeny 𝜙 can also be written as 𝜙 = 𝐹𝑟𝑛◦𝜙′𝑠
for some separable isogeny 𝜙′𝑠 ∶ 𝐸 → 𝐸′ such that deg (𝜙𝑠) = deg (𝜙′𝑠). If 𝐹 is not a perfect
field, the Frobenius endomorphism is not necessarily an automorphism, so 𝐼𝑚 (𝐹𝑟) ⊆ 𝐸
and the domain of 𝜙𝑠 is only a subset of 𝐸.

Hence any isogeny can be decomposed as the unique composition of a separable isogeny
and a Frobenius endomorphism, so 𝜙 will be written as

𝜙 = 𝜙𝑠◦𝐹𝑟𝑛, 𝜙𝑠 ∈ 𝐹 [𝐸] , 𝑛 ∈ ℤ≥0,

where 𝜙𝑠 is a separable isogeny. Two additional notions of degree of an isogeny can then be
defined as follows.

Definition 3.10 (Separable degree). The separable degree of𝜙 is deg𝑠 (𝜙) = deg (𝜙𝑠).
The inseparable degree of 𝜙 is deg𝑖 (𝜙) = 𝑝𝑛.

It is clear that the degree of an isogeny is related to these two degrees by

deg (𝜙) = deg𝑠 (𝜙) deg𝑖 (𝜙) .

If an isogeny is separable, its decomposition to a Frobenius endomorphism is trivial, so its
separable degree is equal to its degree and its inseparable degree is one.
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Remark 3.11. An inseparable isogeny does not necessarily have its inseparable degree
equal to its degree and its separable degree equal to one. If this is the case, then the isogeny
is purely inseparable. However, purely inseparable isogenies are not always inseparable,
as with the case for degree one isogenies, which are isomorphisms, with all three degree
equal to one.

The following example illustrates the two additional notions of degree.

Example 3.12. 𝐹𝑟 has separable degree deg𝑠 (𝐹𝑟) = 1 and inseparable degree deg𝑖 (𝐹𝑟) =
𝑝, while [2] has separable degree deg𝑠 ([2]) = deg ([2]) = 4 and inseparable degree
deg𝑖 ([2]) = 1.

This digression leads to an important proposition relating the kernel and the separable
degree of an isogeny as follows, which is crucial to the proof of Hasse’s theorem.

Proposition 3.13. |||𝐾𝑒𝑟 (𝜙)||| = deg𝑠 (𝜙).

Proof. Let

𝑆1 = {(𝑎, 0) ∈ 𝐸′} = 𝐸 [2] , 𝑆2 = {(0, 𝑏) ∈ 𝐸′} , 𝑆3 = {(𝑎, 𝑏) ∈ 𝐸′ ∣ deg (𝑟 − 𝑎𝑠) < deg (𝜙𝑠)} ,

𝑆4 = {(𝑎, 𝑏) ∈ 𝐸′
|||||||||

(𝑟
𝑠
)
(𝑎′) = 𝑎, 𝑑

𝑑𝑥
(𝑟
𝑠
)
(𝑎′) = 0, (𝑎′, 𝑏′) ∈ 𝐸} , 𝑆 = 𝑆1 ∪ 𝑆2 ∪ 𝑆3 ∪ 𝑆4.

Then |𝑆1| ≤ 3 and |𝑆2| ≤ 2 are finite. Since deg (𝜙𝑠) is finite, it holds that |||𝑆3||| ≤ 2 deg (𝜙𝑠) is
also finite. Since 𝜙𝑠 is separable, it holds that 𝑑 (𝑟∕𝑠) ∕𝑑𝑥 ≠ 0, so |𝑆4| ≤ deg (𝑟) is also finite.
Hence 𝑆 is finite and 𝐸′ ⧵ 𝑆 is non-empty. Now let 𝑃 = (𝑎, 𝑏) ∈ 𝐸′ ⧵ 𝑆 and 𝑃′ = (𝑎′, 𝑏′) ∈ 𝐸
be points, and let 𝜓 = 𝑟 − 𝑎𝑠 ∈ 𝐾 [𝑥] be such that deg (𝜓) = deg (𝜙𝑠). Then 𝜙𝑠 (𝑃′) = 𝑃
iff (𝑟∕𝑠) (𝑎′) = 𝑎 and (𝑢∕𝑣) (𝑎′) 𝑏′ = 𝑏. Since 𝑏 ≠ 0 gives 𝑢 (𝑎′) ≠ 0, this also holds iff
𝜓 (𝑎′) = 𝑟 (𝑎′) − 𝑎𝑠 (𝑎′) = 0 and 𝑏′ = (𝑣∕𝑢) (𝑎′) 𝑏. Hence ||||𝜙

−1
𝑠 (𝑃)|||| is the number of distinct

roots of 𝜓. Suppose for a contradiction that 𝑎′ is a repeated root of 𝜓. Then

0 = 𝜓 (𝑎′) = 𝑟 (𝑎′) − 𝑎𝑠 (𝑎′) , 0 = 𝑑𝜓
𝑑𝑥 (𝑎

′) = 𝑑𝑟
𝑑𝑥 (𝑎

′) − 𝑎 𝑑𝑠𝑑𝑥 (𝑎
′) ,

such that
(𝑟
𝑠
)
(𝑎′) = 𝑎, 𝑑𝑟

𝑑𝑥 (𝑎
′) 𝑠 (𝑎′) = 𝑑𝑠

𝑑𝑥 (𝑎
′) 𝑟 (𝑎′) ⇐⇒ 𝑑

𝑑𝑥
(𝑟
𝑠
)
(𝑎′) = 0,

so 𝑃′ ∈ 𝑆4, which is a contradiction. Hence 𝜓 splits over 𝐾 and ||||𝜙
−1
𝑠 (𝑃)|||| = deg (𝜓).

Since 𝜒 ∶ 𝐾𝑒𝑟 (𝜙𝑠) → 𝜙−1𝑠 (𝑃) defined by 𝜒 (𝑄) = 𝑄 + 𝑃 is a bijection, it holds that
|||𝐾𝑒𝑟 (𝜙𝑠)||| =

||||𝜙
−1
𝑠 (𝑃)||||. Since 𝐹𝑟 is bijective, so are 𝐹𝑟

𝑛 and 𝐹𝑟𝑛|𝐾𝑒𝑟(𝜙) ∶ 𝐾𝑒𝑟 (𝜙) → 𝐾𝑒𝑟 (𝜙𝑠),
so |||𝐾𝑒𝑟 (𝜙)||| = |||𝐾𝑒𝑟 (𝜙𝑠)|||. Thus

|||𝐾𝑒𝑟 (𝜙)||| = |||𝐾𝑒𝑟 (𝜙𝑠)||| =
||||𝜙

−1
𝑠 (𝑃)|||| = deg (𝜓) = deg (𝜙𝑠) = deg𝑠 (𝜙) .

Motivated by the endomorphism ring, composition of isogenies with appropriate do-
mains can be seen as multiplication. In particular, their degrees multiply out naturally in
the following lemma.
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Lemma 3.14. Let 𝐸′′ be an elliptic curve over 𝐹 such that 𝜓 ∶ 𝐸′ → 𝐸′′ is an isogeny. Then

deg (𝜓◦𝜙) = deg (𝜓) deg (𝜙) , deg𝑠 (𝜓◦𝜙) = deg𝑠 (𝜓) deg𝑠 (𝜙) , deg𝑖 (𝜓◦𝜙) = deg𝑖 (𝜓) deg𝑖 (𝜙) .

Proof. Since 𝜙 and 𝜓 are surjective, so is 𝜓◦𝜙, so the first isomorphism theorem gives

𝐸
𝐾𝑒𝑟 (𝜙)

≅ 𝐸′, 𝐸′

𝐾𝑒𝑟 (𝜓)
≅ 𝐸′′, 𝐸

𝐾𝑒𝑟 (𝜓◦𝜙)
≅ 𝐸′′,

such that
|||𝐾𝑒𝑟 (𝜓◦𝜙)||| =

|𝐸|
|𝐸′′| =

|||𝐸′||| |||𝐾𝑒𝑟 (𝜙)|||
|𝐸′| ∕ |||𝐾𝑒𝑟 (𝜓)|||

= |||𝐾𝑒𝑟 (𝜓)||| |||𝐾𝑒𝑟 (𝜙)||| .

Hence deg𝑠 (𝜓◦𝜙) = deg𝑠 (𝜓) deg𝑠 (𝜙). Now let 𝜓 = 𝜓𝑠◦𝐹𝑟𝑚 and 𝜓◦𝜙 = 𝜒𝑠◦𝐹𝑟𝑘 for some
isogenies 𝜓𝑠 ∶ 𝐸′ → 𝐸′′ and 𝜒𝑠 ∶ 𝐸 → 𝐸′′ and some𝑚, 𝑘 ∈ ℤ≥0. Then

𝜒𝑠◦𝐹𝑟𝑘 = 𝜓𝑠◦𝐹𝑟𝑚◦𝜙𝑠◦𝐹𝑟𝑛.

Since deg𝑠 (𝐹𝑟) = 1, it holds that deg𝑠 (𝐹𝑟𝑚) = 1, so

deg𝑠 (𝐹𝑟𝑚◦𝜙𝑠) = deg𝑠 (𝐹𝑟𝑚) deg𝑠 (𝜙𝑠) = deg𝑠 (𝜙𝑠) .

Then 𝐹𝑟𝑚◦𝜙𝑠 = 𝜒′
𝑠◦𝐹𝑟𝑚 for some isogeny 𝜒′

𝑠 ∶ 𝐸 → 𝐸′ such that deg (𝜙𝑠) = deg (𝜒′
𝑠), so

𝜒𝑠◦𝐹𝑟𝑘 = 𝜓𝑠◦𝜒′
𝑠◦𝐹𝑟𝑛+𝑚.

Since 𝜓𝑠◦𝜒′
𝑠 is separable, it holds that 𝑘 = 𝑛 + 𝑚. Hence deg𝑖 (𝜓◦𝜙) = deg𝑖 (𝜓) deg𝑖 (𝜙).

Thus
deg (𝜓◦𝜙) = deg𝑠 (𝜓) deg𝑖 (𝜓) deg𝑠 (𝜙) deg𝑖 (𝜙) = deg (𝜓) deg (𝜙) .

This paves the way to the proof of the following proposition on inseparable isogenies,
which is also crucial to the proof of Hasse’s theorem. Now let 𝜓 ∶ 𝐸 → 𝐸′ be an isogeny.

Proposition 3.15. Let 𝜙 and 𝜓 be inseparable, and let 𝐸′′ and 𝐸′′′ be elliptic curves over 𝐹
such that 𝜒 ∶ 𝐸′′ → 𝐸 and 𝜒′ ∶ 𝐸′ → 𝐸′′′ are isogenies. Then 𝜙◦𝜒, 𝜒′◦𝜙, and 𝜙 − 𝜓 are
inseparable.

Proof. Since deg𝑖 (𝜙◦𝜒) = deg𝑖 (𝜙) deg𝑖 (𝜒) > 1 and deg𝑖 (𝜒′◦𝜙) = deg𝑖 (𝜙) deg𝑖 (𝜒) > 1,
it holds that 𝜙◦𝜒 and 𝜒′◦𝜙 are inseparable. Now let 𝜙 = 𝜙𝑠◦𝐹𝑟𝑛 and 𝜓 = 𝜓𝑠◦𝐹𝑟𝑚 for some
separable isogenies 𝜙𝑠 ∶ 𝐸 → 𝐸′ and 𝜓𝑠 ∶ 𝐸 → 𝐸′ and some 𝑛,𝑚 ∈ ℤ>0. Then

𝜙 − 𝜓 = 𝜙𝑠◦𝐹𝑟𝑛 − 𝜓𝑠◦𝐹𝑟𝑚 =
(
𝜙𝑠◦𝐹𝑟𝑛−1 − 𝜓𝑠◦𝐹𝑟𝑚−1

)
◦𝐹𝑟.

Thus 𝜙 − 𝜓 is inseparable. 2

Hence adding a separable isogeny with an inseparable isogeny will give a separable
isogeny. Returning to the initial motivation, letting 𝐸 = 𝐸′ = 𝐸′′ = 𝐸′′′ in the above results
implies that the set of all inseparable endomorphisms of 𝐸 is an ideal of 𝐸𝑛𝑑 (𝐸).
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b. Hasse’s theorem: quadratic forms
Now the degree map deg ∶ 𝐻𝑜𝑚 (𝐸, 𝐸′) → ℤ≥0 has a particular property that allows a
form of the Cauchy-Schwarz inequality to be defined on it. This property can be defined
with the aid of the following notion.

Definition 3.16 (Bilinear pairing). A pairing 𝑏 ∶ 𝐺×𝐺 → 𝐹 of an group 𝐺 is bilinear
iff 𝑏 (𝑥 + 𝑦, 𝑧) = 𝑏 (𝑥, 𝑧) + 𝑏 (𝑦, 𝑧) and 𝑏 (𝑥, 𝑦 + 𝑧) = 𝑏 (𝑥, 𝑦) + 𝑏 (𝑥, 𝑧) for any 𝑥, 𝑦, 𝑧 ∈ 𝐺.

In other words the pairing is linear in both components. A bilinear pairing can be
defined in terms of the degree map, with the set of isogenies 𝐻𝑜𝑚 (𝐸, 𝐸′) as the abelian
group, which has the following property.

Definition 3.17 (Quadratic form). A quadratic form is a map 𝑑 ∶ 𝐴 → 𝐹 of an
abelian group 𝐴 such that 𝑑 (𝑥) = 𝑑 (−𝑥) for any 𝑥 ∈ 𝐴, and the associated pairing
𝑏𝑑 ∶ 𝐴 × 𝐴 → 𝐹 defined by

𝑏𝑑 (𝑥, 𝑦) =
1
2
(𝑑 (𝑥 + 𝑦) − 𝑑 (𝑥) − 𝑑 (𝑦))

is bilinear.

The associated bilinear pairing is usually written ab⋅, ⋅ ∶ 𝐴 × 𝐴 → 𝐹 with context, and
inherits all the definitions from linear algebra, such as the notions of being symmetric and
positive definite.

Remark 3.18. Conversely, for any symmetric bilinear pairing ab⋅, ⋅ ∶ 𝐴 ×𝐴 → 𝐹, the map
𝑑 ∶ 𝐴 → 𝐹 defined by 𝑑 (𝑥) = ab𝑥, 𝑥 is a quadratic form, so notions related to symmetric
bilinear pairings and quadratic forms are interchangeable, provided 𝑐ℎ𝑎𝑟 (𝐹) ≠ 2.

Hence an aim would be to show that the degree map indeed is a positive definite
quadratic form, as symmetry follows by definition. This could be done by proving a particu-
lar fundamental property that holds for all quadratic forms, which is given in the following
theorem. Now denote −𝜙 = [−1] ◦𝜙 and

𝜙 +⋯+ 𝜙 = 𝑛𝜙 = [𝑛] ◦𝜙, 𝜓 +⋯+ 𝜓 = 𝑚𝜓 = [𝑚] ◦𝜓, 𝑛,𝑚 ∈ ℤ,

to ease the proofs below.

Theorem 3.19 (Parallelogram law). deg (𝜙 + 𝜓)+deg (𝜙 − 𝜓) = 2 deg (𝜙)+2 deg (𝜓).

Proof. If 𝜙 = 0 or 𝜓 = 0, then deg (𝜙 + 𝜓) + deg (𝜙 − 𝜓) = 2 deg (𝜙) + 2 deg (𝜓) holds. If
𝜙 = 𝜓 or 𝜙 = −𝜓, then

deg (𝜙 + 𝜓)+deg (𝜙 − 𝜓) = deg (2𝜙) = deg ([2]) deg (𝜙) = 4 deg (𝜙) = 2 deg (𝜙)+2 deg (𝜓)

also holds. Otherwise let

𝜙 (𝑥, 𝑦) = (𝑤1, 𝑧1) , 𝜓 (𝑥, 𝑦) = (𝑤2, 𝑧2) , (𝜙 + 𝜓) (𝑥, 𝑦) = (𝑤3, 𝑧3) , (𝜙 − 𝜓) (𝑥, 𝑦) = (𝑤4, 𝑧4) ,
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for each 𝑤𝑖 = 𝑟𝑖 (𝑥) ∕𝑠𝑖 (𝑥) and 𝑧𝑖 = 𝑢𝑖 (𝑥) 𝑦∕𝑣𝑖 (𝑥) for some homogeneous polynomials
𝑟𝑖, 𝑠𝑖, 𝑢𝑖, 𝑣𝑖 ∈ 𝐹 [𝑥] such that each gcd (𝑟𝑖, 𝑠𝑖) = gcd (𝑢𝑖, 𝑣𝑖) = 1 and

deg (𝜙) = deg (𝑟1) = deg (𝑠1) , deg (𝜓) = deg (𝑟2) = deg (𝑠2) ,

deg (𝜙 + 𝜓) = deg (𝑟3) = deg (𝑠3) , deg (𝜙 − 𝜓) = deg (𝑟4) = deg (𝑠4) .
By the addition formula,

𝑤3 =
(𝐴 + 𝑤1𝑤2) (𝑤1 + 𝑤2) + 2 (𝐵 − 𝑧1𝑧2)

(𝑤1 − 𝑤2)
2 , 𝑤4 =

(𝐴 + 𝑤1𝑤2) (𝑤1 + 𝑤2) + 2 (𝐵 + 𝑧1𝑧2)
(𝑤1 − 𝑤2)

2 .

Adding these two equations gives (𝑤3 + 𝑤4) (𝑤1 − 𝑤2)
2 = 2 (𝐴 + 𝑤1𝑤2) (𝑤1 + 𝑤2) + 4𝐵, so

𝑟3𝑠4 + 𝑟4𝑠3
𝑠3𝑠4

=
2 (𝐴𝑠1𝑠2 + 𝑟1𝑟2) (𝑟1𝑠2 + 𝑟2𝑠1) + 4𝐵𝑠21𝑠22

(𝑟1𝑠2 − 𝑟2𝑠1)
2 .

Hence let

𝑅 = 𝑟3𝑠4+𝑟4𝑠3, 𝑆 = 𝑠3𝑠4, 𝑈 = 2 (𝐴𝑠1𝑠2 + 𝑟1𝑟2) (𝑟1𝑠2 + 𝑟2𝑠1)+4𝐵𝑠21𝑠22, 𝑉 = (𝑟1𝑠2 − 𝑟2𝑠1)
2 .

Similarly multiplying these two equations gives

𝑤3𝑤4 (𝑤1 − 𝑤2)
4 = (𝐴 + 𝑤1𝑤2)

2 (𝑤1 + 𝑤2)
2 + 4𝐵 (𝐴 + 𝑤1𝑤2) (𝑤1 + 𝑤2) + 4𝐵2 − 4𝑧21𝑧22

=
(
𝐴2 + 2𝐴𝑤1𝑤2 + 𝑤2

1𝑤2
2
) (
𝑤2
1 + 2𝑤1𝑤2 + 𝑤2

2
)
+ 4𝐵

(
𝐴𝑤1 + 𝐴𝑤2 + 𝑤2

1𝑤2 + 𝑤1𝑤2
2
)

+ 4𝐵2 − 4
(
𝑤3
1 + 𝐴𝑤1 + 𝐵

) (
𝑤3
2 + 𝐴𝑤2 + 𝐵

)

= 𝐴2𝑤2
1 − 2𝐴2𝑤1𝑤2 + 𝐴2𝑤2

2 − 4𝐵𝑤3
1 + 4𝐵𝑤2

1𝑤2 + 4𝐵𝑤1𝑤2
2 − 4𝐵𝑤3

2
− 2𝐴𝑤3

1𝑤2 + 4𝐴𝑤2
1𝑤2

2 − 2𝐴𝑤1𝑤3
2 + 𝑤4

1𝑤2
2 − 2𝑤3

1𝑤3
2 + 𝑤2

1𝑤4
2

= 𝐴2 (𝑤1 − 𝑤2)
2 − 4𝐵𝑤2

1 (𝑤1 − 𝑤2) + 4𝐵𝑤2
2 (𝑤1 − 𝑤2)

− 2𝐴𝑤1𝑤2 (𝑤1 − 𝑤2)
2 + 𝑤2

1𝑤2
2 (𝑤1 − 𝑤2)

2

=
(
𝐴2 − 2𝐴𝑤1𝑤2 + 𝑤2

1𝑤2
2
)
(𝑤1 − 𝑤2)

2 − 4𝐵
(
𝑤2
1 − 𝑤2

2
)
(𝑤1 − 𝑤2)

= (𝐴 − 𝑤1𝑤2)
2 (𝑤1 − 𝑤2)

2 − 4𝐵 (𝑤1 + 𝑤2) (𝑤1 − 𝑤2)
2 ,

such that 𝑤3𝑤4 (𝑤1 − 𝑤2)
2 = (𝐴 − 𝑤1𝑤2)

2 − 4𝐵 (𝑤1 + 𝑤2), so

𝑟3𝑟4
𝑠3𝑠4

= (𝐴𝑠1𝑠2 − 𝑟1𝑟2)
2 − 4𝐵 (𝑟1𝑠2 + 𝑟2𝑠1) 𝑠1𝑠2

(𝑟1𝑠2 − 𝑟2𝑠1)
2 .

Hence also let

𝑇 = 𝑟3𝑟4, 𝑊 = (𝐴𝑠1𝑠2 − 𝑟1𝑟2)
2 − 4𝐵 (𝑟1𝑠2 + 𝑟2𝑠1) 𝑠1𝑠2,

such that
deg (𝑅) = deg (𝑆) = deg (𝑇) = deg (𝜙 + 𝜓) + deg (𝜙 − 𝜓) ,
deg (𝑈) = deg (𝑉) = deg (𝑊) = 2 deg (𝜙) + 2 deg (𝜓) .
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Suppose for a contradiction that gcd (𝑅, 𝑆, 𝑇) ≠ 1, so 𝑔 ∣ gcd (𝑅, 𝑆, 𝑇) for some irreducible
homogeneous polynomial 𝑔 ∈ 𝐹 [𝑥]. If 𝑔 ∣ 𝑟3, then 𝑔 ∤ 𝑠3, so 𝑔 ∣ 𝑠4 and 𝑔 ∤ 𝑟4 gives 𝑔 ∤
𝑟3𝑠4+𝑟4𝑠3 = 𝑅. Otherwise 𝑔 ∤ 𝑟3, then 𝑔 ∣ 𝑟4, so 𝑔 ∤ 𝑠4 and 𝑔 ∣ 𝑠3 also gives 𝑔 ∤ 𝑟3𝑠4+𝑟4𝑠3 = 𝑅,
which is a contradiction. Hence gcd (𝑅, 𝑆, 𝑇) = 1. Now let 𝑔′ = gcd (𝑈,𝑉,𝑊), so

𝑈 = 𝑔′𝑈′, 𝑉 = 𝑔′𝑉′, 𝑊 = 𝑔′𝑊′, 𝑈′, 𝑉′,𝑊′ ∈ 𝐹 [𝑥] , gcd (𝑈′, 𝑉′,𝑊′) = 1,

such that
deg (𝑈′) = deg (𝑉′) = deg (𝑊′) = deg (𝑈) − deg (𝑔′) .

Combining the two equations from adding and multiplying gives a ratio

[𝑅, 𝑆, 𝑇] = [𝑅𝑆 , 1,
𝑇
𝑆 ] = [𝑈𝑉 , 1,

𝑊
𝑉 ] = [𝑈,𝑉,𝑊] = [𝑔′𝑈′, 𝑔′𝑉′, 𝑔′𝑊′] = [𝑈′, 𝑉′,𝑊′] ,

such that 𝑅 = 𝑈′, 𝑇 = 𝑊′, and 𝑆 = 𝑉′. Hence

deg (𝜙 + 𝜓)+deg (𝜙 − 𝜓) = deg (𝑅) = deg (𝑈′) = deg (𝑈)−deg (𝑔′) ≤ deg (𝑈) = 2 deg (𝜙)+2 deg (𝜓) .

Now replacing (𝜙, 𝜓) ↦→ (𝜙 + 𝜓, 𝜓 + 𝜙) gives the converse

2 deg (𝜙 + 𝜓) + 2 deg (𝜙 − 𝜓) ≥ deg (𝜙 + 𝜓 + 𝜙 − 𝜓) + deg (𝜙 + 𝜓 − 𝜙 + 𝜓)
= deg ([2]) deg (𝜙) + deg ([2]) deg (𝜓)
= 4 deg (𝜙) + 4 deg (𝜓) ,

Thus deg (𝜙 + 𝜓) + deg (𝜙 − 𝜓) = 2 deg (𝜙) + 2 deg (𝜓). 2

An application of the parallelogram law would be a simple inductive proof of the
following lemma, which has many other proofs.

Lemma 3.20. Let 𝑛 ∈ ℤ. Then deg ([𝑛]) = 𝑛2.

Proof. deg ([0]) = 0 and deg ([1]) = 1. Assume that deg ([𝑚]) = 𝑚2 for any 𝑚 ≤ 𝑛 for
some 𝑛 ∈ ℤ≥0. Then

deg ([𝑛 + 1]) = 2 deg ([𝑛])+2 deg ([1])−deg ([𝑛 − 1]) = 2𝑛2+2−(𝑛 − 1)2 = 𝑛2+2𝑛+1 = (𝑛 + 1)2 .

Hencedeg ([𝑛]) = 𝑛2 for any𝑛 ∈ ℤ≥0 by induction. Similarlydeg ([−𝑛]) = deg ([−1]) deg ([𝑛]) =
deg ([𝑛]) for any 𝑛 ∈ ℤ≥0. Thus deg ([𝑛]) = 𝑛2 for any 𝑛 ∈ ℤ. 2

In fact, the above lemma can be generalised for arbitrary isogenies, as follows.

Lemma 3.21. Let 𝑛,𝑚 ∈ ℤ. Then deg (𝑛𝜙 + 𝑚𝜓) = 𝑛2 deg (𝜙) + 2𝑛𝑚ab𝜙, 𝜓 + 𝑚2 deg (𝜓).

Proof. Since ab𝜙, 𝜙 = 1
2
(deg (2𝜙) − 2 deg (𝜙)) = 2 deg (𝜙) − deg (𝜙) = deg (𝜙), it holds

that

deg (𝑛𝜙 + 𝑚𝜓) = ab𝑛𝜙 + 𝑚𝜓, 𝑛𝜙 + 𝑚𝜓 = 𝑛2 deg (𝜙) + 2𝑛𝑚ab𝜙, 𝜓 + 𝑚2 deg (𝜓) .

The initial aim can then be proven in the following lemma.
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Lemma 3.22. deg ∶ 𝐻𝑜𝑚 (𝐸, 𝐸′) → ℤ≥0 is a positive definite quadratic form.

Proof. deg (−𝜙) = deg ([−1]) deg (𝜙) = deg (𝜙). Let 𝜒 ∶ 𝐸 → 𝐸′ be an isogeny. Since

deg (𝜙 + 𝜓 + 𝜒) = 2 deg (𝜙 + 𝜓) + 2 deg (𝜒) − deg (𝜙 + 𝜓 − 𝜒)
= 2 deg (𝜙 + 𝜓) + 2 deg (𝜒) − 2 deg (𝜙 − 𝜒) − 2 deg (𝜓) + deg (𝜙 − 𝜓 − 𝜒)
= 2 deg (𝜙 + 𝜓) + 2 deg (𝜒) − 2 deg (𝜙 − 𝜒) − 2 deg (𝜓)

+ 2 deg (𝜓 + 𝜒) + 2 deg (𝜙) − deg (𝜙 + 𝜓 + 𝜒) ,

it holds that deg (𝜙 + 𝜓 + 𝜒) = deg (𝜙 + 𝜓)+deg (𝜒)−deg (𝜙 − 𝜒)−deg (𝜓)+deg (𝜓 + 𝜒)+
deg (𝜙). Hence

ab𝜙 + 𝜓, 𝜒 = 1
2
(deg (𝜙 + 𝜓 + 𝜒) − deg (𝜙 + 𝜓) − deg (𝜒))

= 1
2
(− deg (𝜙 − 𝜒) − deg (𝜓) + deg (𝜓 + 𝜒) + deg (𝜙))

= 1
2
(−2 deg (𝜙) − 2 deg (𝜒) + deg (𝜙 + 𝜒) − deg (𝜓) + deg (𝜓 + 𝜒) + deg (𝜙))

= 1
2
(deg (𝜙 + 𝜒) − deg (𝜙) − deg (𝜒) + deg (𝜓 + 𝜒) − deg (𝜓) − deg (𝜒)) = ab𝜙, 𝜒 + ab𝜓, 𝜒.

Similarly ab𝜙, 𝜓 + 𝜒 = ab𝜙, 𝜓 + ab𝜙, 𝜒 by symmetry. Thus since deg (𝜙) > 0 for any 𝜙 ≠ 0
and deg (0) = 0, it holds that deg is a positive definite quadratic form. 2

Replacing the degree map with any map satisfying the parallelogram law also gives a
quadratic form. The following variant of the Cauchy-Schwarz inequality generalises to
quadratic forms similarly.

Theorem 3.23 (Cauchy-Schwarz). ab𝜙, 𝜓2 ≤ deg (𝜙) deg (𝜓).

Proof. Let 𝑛 = −ab𝜙, 𝜓 and𝑚 = deg (𝜙). Then

0 ≤ ab𝜙, 𝜓2 deg (𝜙)−2ab𝜙, 𝜓2 deg (𝜙)+deg (𝜙)2 deg (𝜓) = deg (𝜙)
(
deg (𝜙) deg (𝜓) − ab𝜙, 𝜓2

)
.

Thus ab𝜙, 𝜓2 ≤ deg (𝜙) deg (𝜓). 2

Hasse’s theorem can finally be proven.

Proof (Proof of Theorem 3.2). A point 𝑃 = [𝑎, 𝑏, 𝑐] ∈ 𝐸 (𝐹) iff 𝑎𝑞 = 𝑎, 𝑏𝑞 = 𝑏, and
𝑐𝑞 = 𝑐 by Fermat’s little theorem, or [𝑎𝑞, 𝑏𝑞, 𝑐𝑞] = [𝑎, 𝑏, 𝑐]. This holds iff the 𝑞-th power
Frobenius endomorphism 𝐹𝑟𝑞 ∶ 𝐸 → 𝐸 is such that 𝐹𝑟𝑞 (𝑃) = 𝑃, or 𝑃 ∈ 𝐾𝑒𝑟

(
𝐹𝑟𝑞 − [1]

)
.

Hence 𝐸 (𝐹) = 𝐾𝑒𝑟
(
𝐹𝑟𝑞 − [1]

)
. Since [1] is separable and 𝐹𝑟𝑞 is inseparable with degree

deg
(
𝐹𝑟𝑞

)
= deg𝑖

(
𝐹𝑟𝑞

)
= 𝑞, it holds that 𝐹𝑟𝑞 − [1] is separable, so

𝐾𝑒𝑟
(
𝐹𝑟𝑞 − [1]

)
= deg𝑠

(
𝐹𝑟𝑞 − [1]

)
= deg

(
𝐹𝑟𝑞 − [1]

)
= deg

(
𝐹𝑟𝑞

)
−2ab𝐹𝑟𝑞, [1]+deg ([1]) = 𝑞−2ab𝐹𝑟𝑞, [1]+1.

Then let 𝑡 = 2ab𝐹𝑟𝑞, [1], so Cauchy-Schwarz gives 𝑡2 = 4ab𝐹𝑟𝑞, 12 ≤ 4deg
(
𝐹𝑟𝑞

)
deg ([1]) =

4𝑞. Thus |𝐸 (𝐹)| = 𝑞 − 𝑡 + 1 for |𝑡| ≤ 2
√
𝑞. 2
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c. Riemann hypothesis
Hasse’s theorem, or more accurately the Hasse-Weil theorem, is also sometimes referred
to as the Riemann hypothesis for smooth projective algebraic curves over finite fields. It
has an alternative formulation that makes it analogous to the famous classical Riemann
hypothesis, an open problem in number theory deemed worthy of being called one of the
Millennium Prize Problems by the Clay Mathematics Institute with a monetary prize of a
million dollars. The conjecture revolves around zeroes of the following complex function.

Definition 3.24 (Riemann zeta function). The Riemann zeta function 𝜁 ∶ ℂ → ℂ
is defined for any ℜ(𝑠) > 1 as the power series 𝜁 (𝑠) =

∑∞
𝑛=1 𝑛

−𝑠, and extended to ℂ by
analytic continuation.

Riemann himself proved the analytic continuation, as well as a functional equation
satisfied by the Riemann zeta function given by

𝜉 (𝑠) = 𝜉 (1 − 𝑠) , 𝜉 (𝑠) = 1
2

√
𝜋
−𝑠
𝑠 (𝑠 − 1) 𝛤

( 1
2
𝑠
)
𝜁 (𝑠) .

The conjecture is then formulated in ? as follows.

Conjecture 3.25 (Riemann). Let 𝑠 ∈ ℂ be such that 𝑠 ∉ −2ℤ>0. If 𝜁 (𝑠) = 0, then
ℜ(𝑠) = 1

2
.

The connection to this still open problem can be seen via a powerful theorem known
as theWeil conjectures, proposed by Weil and proven in steps later by himself, Dwork,
Deligne, Grothendieck, and many others. The so-called conjectures also involve a related
zeta function encoding the number of rational points of a smooth projective algebraic
varieties variety, which is defined as follows.

Definition 3.26 (Local zeta function). The local zeta function of a projective alge-
braic variety 𝑉 over 𝐹 is the power series

𝑍𝑉 (𝑡) = exp (
∞∑

𝑛=1

|||𝑉 (𝐹𝑛)|||
𝑡𝑛
𝑛 ) ,

|||𝑉 (𝐹𝑛)||| =
1

(𝑛 − 1)!
𝑑𝑛
𝑑𝑡𝑛 ln (𝑍𝑉 (𝑡))

|||||||𝑡=0
.

where 𝐹𝑛 = 𝔽𝑞𝑛 .

The following example is a trivial application the local zeta function.

Example 3.27. Let𝑉 (0) be the trivial projective algebraic variety over𝐹. Then |||𝑉 (𝐹𝑛)||| = 1
for any 𝑛 ∈ ℤ>0, so

𝑍𝑉 (𝑡) = exp (
∞∑

𝑛=1

𝑡𝑛
𝑛 ) = exp (ln ( 1

1 − 𝑡)) =
1

1 − 𝑡 .

His three conjectures are then formulated as follows, which are easily satisfied by the
above example.

Theorem 3.28 (Weil conjectures). Let 𝑉 be a smooth projective algebraic variety over 𝐹
of dimension 𝑛 ∈ ℤ≥0.
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⋄ Rationality. 𝑍𝑉 (𝑡) = 𝑃 (𝑡) ∕ (1 − 𝑡) (1 − 𝑞𝑛𝑡) ∈ ℚ [𝑡], where

𝑃 (𝑡) =
2𝑛−1∏

𝑖=1
𝑃𝑖 (𝑡)

(−1)𝑖+1 , 𝑃𝑖 ∈ ℤ [𝑡] .

⋄ Functional equation. Let 𝜖 ∈ ℤ be the Euler characteristic of 𝑉. Then

𝑍𝑉 (
1
𝑞𝑛𝑡 ) = ±

√
𝑞
𝑛𝜖
𝑡𝜖𝑍𝑉 (𝑡) .

⋄ Riemann hypothesis. Let 𝑆𝑖 = {𝛼 ∈ ℂ ∣ |𝛼| =
√
𝑞
𝑖
} and 𝑃𝑖 be as per above. Then each

𝑃𝑖 (𝑡) =
∏

𝛼∈𝑆′𝑖

(1 − 𝛼𝑡) ,

over some 𝑆′𝑖 ⊆ 𝑆𝑖 such that 𝑃𝑖 ∈ ℤ (𝑡).

Proof. Omitted, see [5], [6], and [7]. 2

Remark 3.29. There is a fourth Weil conjecture on Betti numbers that states if 𝑉 is a
reduction modulo 𝑞 of a smooth projective algebraic variety𝑊 over a number field, then
deg (𝑃𝑖) is the 𝑖𝑡ℎ topological Betti number of𝑊 for each 𝑃𝑖.

In the special case where 𝑉 is a smooth projective algebraic curve 𝐶 of genus 𝑔𝐶, its
dimension is 𝑛 = 1 and its Euler characteristic is 𝜖 = 2 − 2𝑔𝐶, which greatly simplifies
Theorem 3.28. The following is a formulation for the elliptic curve 𝐸 of genus one.

Theorem 3.30 (Weil conjectures for elliptic curves). 𝑍𝐸 satisfies the following prop-
erties.
⋄ Rationality. 𝑍𝐸 (𝑡) = 𝑃 (𝑡) ∕ (1 − 𝑡) (1 − 𝑞𝑡) ∈ ℚ (𝑡) for some 𝑃 ∈ ℤ (𝑡).
⋄ Functional equation. 𝑍𝐸 (1∕𝑞𝑡) = ±𝑍𝐸 (𝑡).
⋄ Riemann hypothesis. 𝑃 (𝑡) =

∏
𝛼 (1 − 𝛼𝑡) for some 𝛼 ∈ ℂ such that |𝛼| =

√
𝑞 and

𝑃 ∈ ℤ (𝑡).

As full proofs of the Weil conjectures, even just for elliptic curves, requires further
prerequisites on algebraic geometry, particularly on the Tate module and theWeil pairing,
only the final part of the proof is given, of which the following lemma will be assumed.

Lemma 3.31. |||𝐸 (𝐹𝑛)||| = 1 + 𝑞𝑛 − 𝛼𝑛 − 𝛼𝑛 for some 𝛼 ∈ ℂ such that |𝛼| =
√
𝑞.

Proof. Omitted, see V.2.3 in [1]. 2

Letting 𝑛 = 1 in the above lemma for Theorem 3.30 gives ||||𝐸 (𝐹)| − 1 − 𝑞||| =
||||−𝛼 − 𝛼|||| ≤

2 |𝛼| = 2
√
𝑞, which proves Hasse’s theorem once again. The final part of the proof is as

follows.
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Proof (Proof of Theorem 3.30). The above lemma on the zeta function gives 𝛼 ∈ ℂ
such that |𝛼| =

√
𝑞, and

ln (𝑍𝐸 (𝑡)) =
∞∑

𝑛=1

(
1 + 𝑞𝑛 − 𝛼𝑛 − 𝛼𝑛

) 𝑡𝑛
𝑛 = − ln (1 − 𝑡)−ln (1 − 𝑞𝑡)+ln (1 − 𝛼𝑡)+ln

(
1 − 𝛼𝑡

)
.

Thus

𝑍𝐸 (𝑡) =
(1 − 𝛼𝑡)

(
1 − 𝛼𝑡

)

(1 − 𝑡) (1 − 𝑞𝑡)
, |𝛼| =

√
𝑞,

which satisfies rationality and the Riemann hypothesis, and gives the functional equation

𝑍𝐸 (
1
𝑞𝑡) =

(1 − 𝛼
𝑞𝑡) (1 −

𝛼
𝑞𝑡)

(1 − 1
𝑞𝑡) (1 −

1
𝑡 )

=
𝑞𝑡2 −

(
𝛼 + 𝛼

)
𝑡 + 𝛼𝛼

𝑞
(𝑞𝑡 − 1) (𝑡 − 1)

=
(1 − 𝛼𝑡)

(
1 − 𝛼𝑡

)

(1 − 𝑡) (1 − 𝑞𝑡)
= 𝑍𝐸 (𝑡) .

By the above proof, the connection to the classical Riemann hypothesis can then be seen
as follows. An analogue of the Riemann zeta function can be defined for elliptic curves
over 𝐹 as 𝜁𝐸 (𝑠) = 𝑍𝐸 (𝑞−𝑠). It then satisfies a similar functional equation,

𝜁𝐸 (𝑠) = 𝑍𝐸 (𝑞−𝑠) = 𝑍𝐸
(
𝑞𝑠−1

)
= 𝜁𝐸 (1 − 𝑠) .

If 𝜁𝐸 (𝑠) = 0, Theorem 3.30 also gives

(1 − 𝛼𝑞−𝑠)
(
1 − 𝛼𝑞−𝑠

)

(1 − 𝑞−𝑠) (1 − 𝑞1−𝑠)
= 0, |𝛼| =

√
𝑞.

Hence 1 = 𝛼𝑞−𝑠 or 1 = 𝛼𝑞−𝑠, so 𝑞ℜ(𝑠) = |||𝑞𝑠||| =
√
𝑞. Thusℜ(𝑠) = 1

2
.

Remark 3.32. The Weil conjectures is a generalisation of Riemann hypothesis, which
those for elliptic curves is in turn a special case of. In general, there are many zeta functions
analogous to the Riemann zeta function. One such family of zeta functions is for a finitely
generated algebra 𝑅 over ℤ, defined as

𝜁𝑅 (𝑠) =
∏

𝑀

1
1 − |||𝑅∕𝑀|||

−𝑠 ,

over all maximal ideals𝑀 ⊂ 𝑅.

d. Schoof’s algorithm
In light of Hasse’s theorem, there were improved algorithms to compute 𝐸 (𝐹) similar
to the naive approach described in a previous subsection. Lagrange’s theorem gives that
𝑜𝑟𝑑 (𝑃) ∣ |𝐸 (𝐹)| for any point 𝑃 ∈ 𝐸 (𝐹), the latter of which is bounded by Hasse’s theorem.
After obtaining a random point 𝑃 ∈ 𝐸 (𝐹) by inspection or otherwise, simply try all values
of 𝑛 ∈ ℤ such that 𝑞 − 2

√
𝑞 + 1 ≤ 𝑛 ≤ 𝑞 + 2

√
𝑞 + 1 to catch whenever 𝑛𝑃 = 𝒪. If this 𝑛

is unique, the point 𝑃 is a generator of 𝐸 (𝐹) and hence |𝐸 (𝐹)| = 𝑜𝑟𝑑 (𝑃) = 𝑛. Otherwise
obtain a different random point 𝑃 ∈ 𝐸 (𝐹) and repeat. This process can be illustrated with
a prior example.
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Example 3.33. Let𝐸 ∶ 𝑦2 = 𝑥3+𝑥+1 be an elliptic curve over𝔽5 and𝑃 = (0, 1) ∈ 𝐸 (𝔽5) be
a point. Hasse’s theorem gives |||𝐸 (𝔽5)||| = 5−𝑡+1 for some |𝑡| ≤ 2

√
5, so |||𝐸 (𝔽5)||| ∈ {2, … , 10}.

Then the addition formula gives only 9𝑃 = 𝒪, so |||𝐸 (𝔽5)||| = 9.

There is then room for algorithms like baby-step giant-step that trades a space complex-
ity of 𝑂

(√
𝑞
)
for a time complexity of also 𝑂

(√
𝑞
)
, speeding up the computation further.

However, discussions herewill be on a different algorithm for computing |𝐸 (𝐹)|, which also
builds upon Hasse’s theorem. A high-level description of the deterministic polynomial
time algorithm is as follows.

Algorithm 3.34 (Schoof’s algorithm). Input: an elliptic curve𝐸 over𝔽𝑞. Output:
||||𝐸
(
𝔽𝑞
)||||.

(a) Generate a set 𝑆 of distinct primes excluding 𝑝 with product𝑁 ∈ ℤ>0, such that𝑁 >
4
√
𝑞.

(b) Compute 𝑡 mod 𝑛 for each 𝑛 ∈ 𝑆.
(c) Obtain 𝑡 mod 𝑁 from each 𝑡 mod 𝑛.
(d) Reduce 𝑡 into a value between −2

√
𝑞 and 2

√
𝑞.

(e) Calculate |𝐸 (𝐹)| = 𝑞 − 𝑡 + 1.

The proof of this algorithm will be done in reverse. The first and last two steps will be
made clear later, but several results will be proven for the second and third. In particular,
the former generates a system of prime congruences for the latter, which in turn employs a
classical theorem in number theory as follows.

Theorem 3.35 (Chinese remainder). Let𝑛1, … , 𝑛𝑘 ∈ ℤ>1 be pairwise coprimewith prod-
uct𝑁 ∈ ℤ>0, and let 𝑡1, … , 𝑡𝑘 ∈ ℤ. Then there is a unique 𝑡 ∈ ℤ≥0 such that 𝑡 < 𝑁 and each
𝑡 ≡ 𝑡𝑖 mod 𝑛𝑖.

Proof. Let 𝑘 = 2. Bézout’s identity gives 𝑚1𝑛1 + 𝑚2𝑛2 = 1 for some 𝑚𝑖 ∈ ℤ. Let
𝑡′ = 𝑡2𝑚1𝑛1 + 𝑡1𝑚2𝑛2, so

𝑡′ = (𝑡2 − 𝑡1)𝑚1𝑛1 + 𝑡1 (𝑚1𝑛1 +𝑚2𝑛2) ≡ 𝑡1 mod 𝑛1,

𝑡′ = 𝑡2 (𝑚1𝑛1 +𝑚2𝑛2) − (𝑡2 − 𝑡1)𝑚2𝑛2 ≡ 𝑡2 mod 𝑛2.
If 𝑡′′ ∈ ℤ is such that 𝑡′′ ≡ 𝑡1 mod 𝑛1 and 𝑡′′ ≡ 𝑡2 mod 𝑛2, then 𝑡′ ≡ 𝑡′′ mod 𝑛1 and
𝑡′ ≡ 𝑡′′ mod 𝑛2, so 𝑛1 ∣ 𝑡′ − 𝑡′′ and 𝑛2 ∣ 𝑡′ − 𝑡′′. Then𝑁 = 𝑛1𝑛2 ∣ 𝑡′ − 𝑡′′, so 𝑡′ ≡ 𝑡′′ mod 𝑁
and 𝑡′ is unique up to congruences. Hence division gives a unique 𝑡 ∈ ℤ≥0 such that 𝑡 < 𝑁
and 𝑡 ≡ 𝑡′ mod 𝑁. Now let 𝑘 ∈ ℤ≥2 with product 𝑁𝑘 ∈ ℤ>0 and assume that there is a
unique 𝑡′ ∈ ℤ≥0 such that 𝑡′ < 𝑁𝑘 and each 𝑡′ ≡ 𝑡𝑖 mod 𝑛𝑖. Since𝑁𝑘 and 𝑛𝑘+1 are coprime,
the case 𝑘 = 2 gives a unique 𝑡 ∈ ℤ≥0 such that 𝑡 < 𝑁𝑘𝑛𝑘+1, and 𝑡 ≡ 𝑡′ mod 𝑁𝑘 and
𝑡 ≡ 𝑡𝑘+1 mod 𝑛𝑘+1. Thus the unique 𝑡 ∈ ℤ≥0 holds by induction. 2

Remark 3.36. The Chinese remainder theorem can be generalised to ideals 𝐼𝑖 of arbitrary
commutative unital rings 𝑅, replacing the coprime condition with 𝐼𝑛 + 𝐼𝑚 = 𝑅 for all
𝑛,𝑚 ∈ ℤ and modulo with respect to 𝐼𝑖.

A general process for computing this unique 𝑡 ∈ ℤ≥0 can be inferred directly from
the proof of the Chinese remainder theorem, using the extended Euclidean algorithm for
Bézout’s identity, illustrated as follows.
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Example 3.37. Let

𝑡 ≡ 1 mod 2, 𝑡 ≡ 2 mod 3, 𝑡 ≡ 3 mod 5

be a system of congruences for 𝑡 ∈ ℤ≥0. Bézout’s identity gives (−1) (2) + (1) (3) = 1, so
let 𝑡′ = 2 (−1) (2) + 1 (1) (3) = −1 be such that 𝑡′ ≡ 1 mod 2 and 𝑡′ ≡ 2 mod 3. Hence
division gives 𝑡′′ = 1 (6) + (−1) = 5 < 6 such that 𝑡′′ ≡ 𝑡′ mod 6. Similarly Bézout’s
identity gives (1) (6) + (−1) (5) = 1, so let 𝑡′′′ = 3 (1) (6) + 5 (−1) (5) = −7 be such that
𝑡′′′ ≡ 5 mod 6 and 𝑡′′′ ≡ 3 mod 5. Thus division gives 𝑡 = 1 (30) + (−7) = 23 < 30 such
that 𝑡 ≡ 𝑡′′′ mod 30 similarly.

For the rest of this section, let 𝑆 be as in the first step of Schoof’s algorithm and 𝑛 ∈ 𝑆
be a prime. Now invoking the Chinese remainder theorem on the system of congruences
𝑡′ ≡ 𝑡 mod 𝑛 generated by the second step gives a unique 𝑡′′ ∈ ℤ≥0 such that 𝑡′′ < 𝑁
and 𝑡′′ ≡ 𝑡′ mod 𝑁, as in the third step. The fourth step then ensures this 𝑡′′ falls within
the required bound using careful Euclidean division to give the trace 𝑡 ∈ ℤ, of which the
first step has made possible by forcing 𝑆 to span the entire interval over which it could lie
in. The fifth step is merely a simple application of Hasse’s theorem. It only remains to
understand the second step of Schoof’s algorithm. This uses the properties of a general
system of polynomials allowing for recursive operations, given in the following definition.

Definition 3.38 (Division polynomial). The 𝑛-th division polynomial 𝜓𝑛 ∈ 𝐹 [𝑥, 𝑦]
is defined for 𝑛 ∈ ℤ by

𝜓0 (𝑥, 𝑦) = 0,
𝜓1 (𝑥, 𝑦) = 1,
𝜓2 (𝑥, 𝑦) = 2𝑦,
𝜓3 (𝑥, 𝑦) = 3𝑥4 + 6𝐴𝑥2 + 12𝐵𝑥 − 𝐴2,
𝜓4 (𝑥, 𝑦) = 4𝑦

(
𝑥6 + 5𝐴𝑥4 + 20𝐵𝑥3 − 5𝐴2𝑥2 − 4𝐴𝐵𝑥 − 𝐴3 − 8𝐵2

)
,

recursively defined for 𝑛 > 4 by

𝜓2𝑚 = 1
2𝑦
𝜓𝑚

(
𝜓𝑚+2𝜓2𝑚−1 − 𝜓𝑚−2𝜓2𝑚+1

)
,

𝜓2𝑚+1 = 𝜓𝑚+2𝜓3𝑚 − 𝜓𝑚−1𝜓3𝑚+1,

and for 𝑛 < 0 by 𝜓−𝑛 = −𝜓𝑛, with associated polynomials 𝜙𝑛, 𝜔𝑛 ∈ 𝐹 [𝑥, 𝑦] defined for
𝑛 ∈ ℤ≥0 by

𝜙𝑛 = 𝑥𝜓2𝑛 − 𝜓𝑛+1𝜓𝑛−1,
𝜔𝑛 =

1
4𝑦

(
𝜓𝑛+2𝜓2𝑛−1 − 𝜓𝑛−2𝜓2𝑛+1

)
.

It holds that 𝜙−𝑛 = −𝜙𝑛 and 𝜔−𝑛 = −𝜔𝑛, and 𝜓2𝑚 = 2𝜔𝑛𝜓𝑛. The following lemma
allows certain division polynomials to be written solely in terms of 𝑥.
Lemma 3.39. If 𝑛 ∈ ℤ is even, then

𝜓𝑛 ∈ 2𝑦ℤ [𝑥,𝐴, 𝐵] , 𝜙𝑛 ∈ ℤ [𝑥,𝐴, 𝐵] , 𝜔𝑛 ∈ ℤ [𝑥,𝐴, 𝐵] ,

otherwise 𝑛 ∈ ℤ is odd, then

𝜓𝑛 ∈ ℤ [𝑥,𝐴, 𝐵] , 𝜙𝑛 ∈ ℤ [𝑥,𝐴, 𝐵] , 𝜔𝑛 ∈ 𝑦ℤ [𝑥,𝐴, 𝐵] .
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Proof. Let 𝑍 = ℤ [𝑥,𝐴, 𝐵], then 𝜓0, 𝜓2, 𝜓4 ∈ 2𝑦𝑍 and 𝜓1, 𝜓3 ∈ 𝑍. Assume that 𝜓𝑛 ∈ 2𝑦𝑍
for any even 𝑛 ∈ ℤ≥0 and 𝜓𝑛 ∈ 𝑍 for any odd 𝑛 ∈ ℤ≥0 such that 𝑛 < 2𝑚. If𝑚 is even, then

𝜓𝑚, 𝜓𝑚+2, 𝜓𝑚−2 ∈ 2𝑦𝑍, 𝜓𝑚−1, 𝜓𝑚+1 ∈ 𝑍 ⇐⇒ 𝜓2𝑚 ∈ 2𝑦𝑍, 𝜓2𝑚+1 ∈ 𝑍.

Otherwise𝑚 is odd, then similarly

𝜓𝑚−1, 𝜓𝑚+1 ∈ 2𝑦𝑍, 𝜓𝑚, 𝜓𝑚+2, 𝜓𝑚−2 ∈ 𝑍 ⇐⇒ 𝜓2𝑚 ∈ 2𝑦𝑍, 𝜓2𝑚+1 ∈ 𝑍.

Hence 𝜓𝑛 ∈ 2𝑦𝑍 for any even 𝑛 ∈ ℤ and 𝜓𝑛 ∈ 𝑍 for any odd 𝑛 ∈ ℤ. If 𝑛 is even, then

𝜓2𝑛 ∈ 𝑦2𝑍 = 𝑍, 𝜓𝑛+1𝜓𝑛−1 ∈ 𝑍 ⇐⇒ 𝜙𝑛 ∈ 𝑍.

Otherwise 𝑛 is odd, then similarly

𝜓2𝑛 ∈ 𝑍, 𝜓𝑛+1𝜓𝑛+1 ∈ 4𝑦2𝑍 = 𝑍 ⇐⇒ 𝜙𝑛 ∈ 𝑍.

Now if 𝑛 is even, then also

𝜓𝑛+2, 𝜓𝑛−2 ∈ 2𝑦𝑍, 𝜓𝑛−1, 𝜓𝑛+1 ∈ 𝑍 ⇐⇒ 𝜔𝑛 ∈ 𝑍.

Otherwise 𝑛 is odd, then similarly also

𝜓𝑛−1, 𝜓𝑛+1 ∈ 2𝑦𝑍, 𝜓𝑛+2, 𝜓𝑛−2 ∈ 𝑍 ⇐⇒ 𝜔𝑛 ∈ 𝑦𝑍.

The division polynomials 𝜙𝑛 (𝑥, 𝑦), 𝜓𝑛 (𝑥, 𝑦)
2, and 𝜔𝑛 (𝑥, 𝑦)

2 can then be written as
𝜙𝑛 (𝑥), 𝜓𝑛 (𝑥)

2, and 𝜔𝑛 (𝑥)
2 respectively as an abuse of notation without ambiguity. Now the

familiar expression for 𝜓4 is that of the multiplication by two map, generalised as follows.
Proposition 3.40. Let 𝑛 ∈ ℤ. Then

[𝑛] (𝑥, 𝑦) = (𝑥 −
𝜓𝑛+1 (𝑥, 𝑦) 𝜓𝑛−1 (𝑥, 𝑦)

𝜓𝑛 (𝑥)
2 , 𝜓2𝑛 (𝑥, 𝑦)

2𝜓𝑛 (𝑥, 𝑦)
4) = (

𝜙𝑛 (𝑥)
𝜓𝑛 (𝑥)

2 ,
𝜔𝑛 (𝑥, 𝑦)
𝜓𝑛 (𝑥, 𝑦)

3) .

The proof of this proposition is through induction on 𝑛 ∈ ℤ≥0 with base cases 𝑛 ∈
{0, … , 4}, while 𝑛 ∈ ℤ<0 follows directly from the above observation. While it is com-
pletely elementary through the group law explicit formulae, it is extremely tedious and
computational and hence are omitted altogether.

Proof. Omitted, see III.E.3.7 in [1]. 2

Remark 3.41. This proof can be approached via other ways, such as through properties of
theWeierstrass elliptic function℘ in 9.33 of ?, which will not be discussed. The fact that
gcd

(
𝜙𝑛, 𝜓2𝑛

)
= 1 and deg (𝜙𝑛) = 𝑛2 also lends itself to another proof that deg ([𝑛]) = 𝑛2 for

any 𝑛 ∈ ℤ.

Relating this back to the standard form of isogenies, it holds that 𝜓𝑛 (𝑎, 𝑏) = 0 iff
[𝑛] (𝑃) = 𝒪 for any point 𝑃 = (𝑎, 𝑏) ∈ 𝐸, which is the case whenever 𝑃 ∈ 𝐸 [𝑛]. Group op-
erations in 𝐸𝑛𝑑 (𝐸 [𝑛]) can be more easily done since the polynomials involved in the endo-
morphisms have bounded degrees in the coordinate ring 𝐹 [𝑥, 𝑦] ∕ab𝑦2 − 𝑥3 − 𝐴𝑥 − 𝐵, 𝜓𝑛,
provided 𝜓𝑛 is already precomputed. Now arithmetic in 𝐸𝑛𝑑 (𝐸 [𝑛]) is motivated by the sec-
ond step of Schoof’s algorithm, where all congruences are modulo 𝑛 and endomorphisms
are computed modulo 𝜓𝑛. A characteristic equation that all endomorphisms satisfy will
be given in the following lemma.
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Lemma 3.42. Let 𝜙 ∈ 𝐸𝑛𝑑 (𝐸) be an endomorphism, and let 𝑑 = deg (𝜙) and 𝑡 = 2ab𝜙, [1].
Then 𝜙2 − 𝑡𝜙 + [𝑑] = 0.

Proof. Let 𝑛 ∈ {−1, 1}. Since deg 𝜙 + [𝑛] = deg (𝜙) + 2𝑛ab𝜙, [1] + deg ([𝑛]) = 𝑑 + 𝑛𝑡 + 1,
it holds that

ab𝜙2, [1] = − 1
2

(
deg

(
𝜙2 − [1]

)
− deg

(
𝜙2
)
− deg (− [1])

)

= − 1
2

(
deg (𝜙 − [1]) deg (𝜙 + [1]) − deg (𝜙)2 − 1

)

= − 1
2

(
(𝑑 + 𝑡 + 1) (𝑑 − 𝑡 + 1) − 𝑑2 − 1

)
= − 1

2

(
2𝑑 − 𝑡2

)
.

Since also

ab𝜙2, 𝜙 = 1
2

(
deg

(
𝜙2 + 𝜙

)
− deg

(
𝜙2
)
− deg (𝜙)

)
= 1

2
deg (𝜙) (deg (𝜙 + [1]) − deg (𝜙) − [1]) = 𝑑ab𝜙, [1] = 1

2
𝑑𝑡,

it holds that

deg
(
𝜙2 − 𝑡𝜙 + [𝑑]

)
= deg

(
𝜙2
)
+ deg (𝑡𝜙) + deg ([𝑑]) − 2ab𝜙2, 𝑡𝜙 + 2ab𝜙2, [𝑑] − 2ab𝑡𝜙, [𝑑]

= deg (𝜙)2 + 𝑡2 deg (𝜙) + 𝑑2 − 2𝑡ab𝜙2, 𝜙 + 2𝑑ab𝜙2, [1] − 2𝑑𝑡ab𝜙, [1]
= 2𝑑2 − 2𝑡ab𝜙2, 𝜙 + 2𝑑ab𝜙2, [1]
= 2𝑑2 − 2

( 1
2
𝑑𝑡2

)
+ 2𝑑

(
− 1

2

(
2𝑑 − 𝑡2

))
= 0.

Thus 𝜙2 − 𝑡𝜙 + [𝑑] = 0. 2

In particular, the 𝑞-th Frobenius endomorphism satisfies the characteristic equation, so
it can be written as 𝑡𝐹𝑟𝑞 = 𝐹𝑟2𝑞 + [𝑞]. While it is possible to compute the right hand side
directly and try all values of 𝑡 until one satisfies the characteristic equation, the polynomials
involved in 𝐹𝑟𝑞 and 𝐹𝑟2𝑞 will have rapidly increasing degrees, which is highly impractical
for huge 𝑞. The second step handles exactly this by reducing the equation in 𝐸𝑛𝑑 (𝐸) to
one in 𝐸𝑛𝑑 (𝐸 [𝑛]) with affine points, as seen in the following lemma.

Lemma 3.43. Let 𝑃 = (𝑎, 𝑏) ∈ 𝐸 [𝑛] be a point. Then there are unique 𝑡𝑛 ∈ ℤ≥0 and
𝑞𝑛 ∈ ℤ>0 such that 𝑡𝑛 ≡ 𝑡, 𝑞𝑛 ≡ 𝑞 mod 𝑛 with |||𝑡𝑛||| , |||𝑞𝑛||| < 𝑛, and

𝑡𝑛 (𝑎𝑞, 𝑏𝑞) =
(
𝑎𝑞2 , 𝑏𝑞2

)
+
(
𝑎𝑞, 𝑏𝑞

)
, 𝑞𝑛𝑃 =

(
𝑎𝑞, 𝑏𝑞

)
∈ 𝐸 [𝑛] .

Proof. Since 𝐹𝑟𝑞 is injective, so is 𝐹𝑟2𝑞, so 𝐹𝑟𝑞 (𝑃) = (𝑎𝑞, 𝑏𝑞) and 𝐹𝑟2𝑞 (𝑃) =
(
𝑎𝑞2 , 𝑏𝑞2

)
.

Hence
𝑡 (𝑎𝑞, 𝑏𝑞) =

(
𝑎𝑞2 , 𝑏𝑞2

)
+ 𝑞 (𝑎, 𝑏) .

Now Lagrange’s theorem gives that 𝑃 ∈ 𝐸 [𝑛] iff 𝑜𝑟𝑑 (𝑃) = 𝑛. Since 𝑞 is prime and 𝑞 ≠ 𝑛, it
holds that gcd (𝑞, 𝑛) = 1, so 𝑞𝑃 ≠ 𝒪. Then division gives a unique 𝑞𝑛 ∈ ℤ>0 such that 𝑞𝑛 ≡ 𝑞
mod 𝑛 with |||𝑞𝑛||| < 𝑛. Hence 𝑞𝑛𝑃 = 𝑞𝑃 =

(
𝑎𝑞, 𝑏𝑞

)
for some point

(
𝑎𝑞, 𝑏𝑞

)
∈ 𝐸 [𝑛]. Similarly

division gives a unique 𝑡𝑛 ∈ ℤ≥0 such that 𝑡𝑛 ≡ 𝑡 mod 𝑛 and |||𝑡𝑛||| < 𝑛. Since𝐹𝑟𝑞 has a trivial
kernel and 𝑛𝐹𝑟𝑞 (𝑃) = 𝐹𝑟𝑞 (𝑛𝑃) = 𝐹𝑟𝑞 (𝒪) = 𝒪, it holds that 𝑜𝑟𝑑

(
𝐹𝑟𝑞 (𝑃)

)
= 𝑛 = 𝑜𝑟𝑑 (𝑃),

so 𝑡𝑛𝐹𝑟𝑞 (𝑃) = 𝑡𝐹𝑟𝑞 (𝑃) similarly. Thus

𝑡𝑛 (𝑎𝑞, 𝑏𝑞) =
(
𝑎𝑞2 , 𝑏𝑞2

)
+
(
𝑎𝑞, 𝑏𝑞

)
.
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Hence it boils down to obtaining a suitable 𝑡𝑛 ∈ ℤ≥0 satisfying

𝑡𝑛 (𝑥𝑞, 𝑦𝑞) =
(
𝑥𝑞2 , 𝑦𝑞2

)
+ 𝑞𝑛 (𝑥, 𝑦) ,

all ofwhich can be computed as per usual, but in the coordinate ring𝐹 [𝑥, 𝑦] ∕ab𝑦2 − 𝑥3 − 𝐴𝑥 − 𝐵, 𝜓𝑛.
The following algorithm illustrates the process of computing this 𝑡𝑛, with further details
given in ?.

Algorithm 3.44 (Computation of the trace modulo prime). Input: an elliptic curve
𝐸 over 𝔽𝑞 and a prime 𝑛 ∈ 𝑆. Output: 𝑡𝑛. If 𝑛 = 2, then

𝑡𝑛 = {0 𝑔 ≠ 1
1 𝑔 = 1

, 𝑔 = gcd
(
𝑥𝑞 − 𝑥, 𝑥3 + 𝐴𝑥 + 𝐵

)
.

Otherwise 𝑛 > 2, then compute 𝜓𝑛 and 𝑞𝑛, and reduce 𝑞𝑛 into a value between −𝑛∕2 and 𝑛∕2.
Let

(𝑥′, 𝑦′) =
(
𝑥𝑞2 , 𝑦𝑞2

)
+ 𝑞𝑛 (𝑥, 𝑦) , (𝑥′′, 𝑦′′) = (𝑥𝑞, 𝑦𝑞) .

If 𝑥′ = 𝑥𝑖, where (𝑥𝑖, 𝑦𝑖) = 𝑖 (𝑥′′, 𝑦′′) for some 𝑖 ∈ {1, … , (𝑛 − 1) ∕2}, then

𝑡𝑛 = {𝑖 𝑦′ = 𝑦𝑖
−𝑖 𝑦′ = −𝑦𝑖

.

Otherwise if 𝑞𝑛 ≡ 𝑟2𝑛 mod 𝑛 for some 𝑟𝑛 ∈ {1, … , (𝑛 − 1) ∕2}, then let (𝑥𝑟, 𝑦𝑟) = 𝑟𝑛 (𝑥, 𝑦) and

(𝑟 (𝑥)𝑠 (𝑥)
, 𝑢 (𝑥)𝑣 (𝑥)

𝑦) = (𝑥′′ − 𝑥𝑟, 𝑦′′ − 𝑦𝑟) , gcd (𝑟, 𝑠) = gcd (𝑢, 𝑣) = 1.

If gcd (𝑟, 𝜓𝑛) = 1, then

𝑡𝑛 = {2𝑟𝑛 𝑔′ ≠ 1
−2𝑟𝑛 𝑔′ = 1

, 𝑔′ = gcd (𝑢, 𝜓𝑛)

Otherwise 𝑡𝑛 = 0.

An analysis of Schoof’s algorithm shows that it has a time complexity of 𝑂
(
log8 (𝑞)

)
,

which is asymptotically faster than that of the naive approach. Subsequently, there were
refinements that restricted the primes in 𝑆 into Elkies primes and Atkin primes rather
than arbitrary small primes, and made use ofmodular polynomials rather than division
polynomials. Now known as the Schoof-Elkies-Atkin algorithm, it has a time complexity
of 𝑂

(
log6 (𝑞)

)
and is widely used in practicality when the prime 𝑞 in question is huge, seen

in the ellcard command in the PARI programming language. In implementations when
maximum efficiency is required, a probabilistic version is used, which allows even faster
computations of many operations.
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e. Point counting
As per the aim of this section, Schoof’s algorithm computes the number of rational points
of elliptic curves over finite fields. Although computations are generally done by code due
to routine tedium, the following simple example illustrates a possible execution process.

Example 3.45. Let 𝐸 ∶ 𝑦2 = 𝑥3 + 2𝑥 + 1 be an elliptic curve over 𝔽19, so let 𝑆 = {2, 3, 5}
be such that 𝑁 = (2) (3) (5) = 30 > 20 = 4

√
25 > 4

√
19.

⋄ Let 𝑛 = 2. Then

𝑥19 = 𝑥 (−2𝑥 − 1)6 = 7𝑥7 + 2𝑥6 + 12𝑥5 + 8𝑥4 + 3𝑥3 + 12𝑥2 + 𝑥
= 7𝑥 (−2𝑥 − 1)2 + 2 (−2𝑥 − 1)2 + 12𝑥2 (−2𝑥 − 1) + 8𝑥 (−2𝑥 − 1) + 3 (−2𝑥 − 1) + 12𝑥2 + 𝑥
= 4𝑥3 + 𝑥2 + 2𝑥 + 18 = 4 (−2𝑥 − 1) + 𝑥2 + 2𝑥 + 18 = 𝑥2 + 13𝑥 + 14,

so gcd
(
𝑥19 − 𝑥, 𝑥3 + 2𝑥 + 1

)
= gcd

(
𝑥2 + 12𝑥 + 14, 𝑥3 + 2𝑥 + 1

)
= 1. Hence 𝑡2 = 1.

⋄ Let 𝑛 = 3. Then 𝑞3 = 1 ≡ 19 mod 3 such that −3∕2 ≤ 1 ≤ 3∕2, and 𝜓3 (𝑥) =
3𝑥4 + 12𝑥2 + 12𝑥 + 15. Since 𝜓3 (8) = 3 (8)4 + 12 (8)2 + 12 (8) + 15 = 0, it holds
that (8, 𝑏) ∈ 𝐸 (𝔽19) [3] for some 𝑏 ∈ 𝔽19. Lagrange’s theorem gives 3 ∣ |||𝐸 (𝔽19)|||, so
19 − 𝑡 + 1 ≡ 0 mod 3 and 𝑡 ≡ 20 ≡ 2 mod 3. Hence 𝑡3 = 2.

⋄ Let 𝑛 = 5. Then 𝑞5 = −1 ≡ 19 mod 5 such that −5∕2 ≤ 1 ≤ 5∕2, and

𝜓5 (𝑥) = 𝜓4 (𝑥, 𝑦) 𝜓2 (𝑥, 𝑦)
3 − 𝜓1 (𝑥, 𝑦) 𝜓3 (𝑥, 𝑦)

3

= 4𝑦
(
𝑥6 + 10𝑥4 + 𝑥3 + 18𝑥2 + 11𝑥 + 11 + 11

)
(2𝑦)3 − 1

(
3𝑥4 + 12𝑥2 + 12𝑥 + 15

)3

= 13
(
𝑥3 + 2𝑥 + 1

)2 (𝑥6 + 10𝑥4 + 𝑥3 + 18𝑥2 + 11𝑥 + 3
)

+ 11𝑥12 + 18𝑥10 + 18𝑥9 + 9𝑥8 + 11𝑥7 + 6𝑥6 + 12𝑥5 + 10𝑥4 + 18𝑥3 + 12𝑥2 + 13𝑥 + 7
= 5𝑥12 + 10𝑥10 + 17𝑥8 + 5𝑥7 + 𝑥6 + 9𝑥5 + 12𝑥4 + 2𝑥3 + 5𝑥2 + 8𝑥 + 8,

so let (𝑥′, 𝑦′) =
(
𝑥361, 𝑦361

)
− (𝑥, 𝑦) and (𝑥′′, 𝑦′′) =

(
𝑥19, 𝑦19

)
. It can be tediously

verified that 𝑥′ ≠ 𝑥1 but 𝑥′ = 𝑥2, where (𝑥𝑖, 𝑦𝑖) = 𝑖 (𝑥′′, 𝑦′′), so 𝑡𝑛 ≡ 2 mod 5 or
𝑡𝑛 ≡ −2 mod 5. Another tedious verification gives 𝑦′ = −𝑦2, so 𝑡𝑛 ≡ −2 ≡ 3 mod 5.
Hence 𝑡5 = 3.

The Chinese remainder theorem from the example above gives 𝑡 ≡ 23 mod 30 such that
0 ≥ 23 < 30 = 𝑁. Thus 𝑡 = 23 − 30 = −7 is such that |−7| < 8 = 4

√
4 < 4

√
19 and

|||𝐸 (𝔽19)||| = 19 − (−7) + 1 = 27.

While just counting 𝐹-rational points may have many practical applications, a subtler
question would be characterising their group structure. This would be more than just
Schoof’s algorithm, but machinery from previous subsections can finally combine to give
the following proposition.

Proposition 3.46. 𝐸 (𝐹) ≅ ℤ𝑛1 or 𝐸 (𝐹) ≅ ℤ𝑛1 ⊕ ℤ𝑛2 for some 𝑛1, 𝑛2 ∈ ℤ>0 such that
𝑛1 ∣ 𝑛2.

Proof. The fundamental theorem of finite abelian groups gives

𝐸 (𝐹) ≅
𝑚⨁

𝑖=1
ℤ𝑛𝑖 , 𝑚 ∈ ℤ≥0, 𝑛𝑖 ∈ ℤ>0,
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such that each 𝑛𝑖 ∣ 𝑛𝑖+1. Let 𝐺𝑖 =
{
𝑥 ∈ ℤ𝑛𝑖 ∣ 𝑜𝑟𝑑 (𝑥) ∣ 𝑛1

}
≤ ℤ𝑛𝑖 be subgroups. Then each

𝜙𝑖 ∶ ℤ𝑛1 → 𝐺𝑖 defined by 𝜙𝑖 (𝑥) = 𝑛𝑖𝑥∕𝑛1 is an isomorphism, so each |||𝐺𝑖
||| =

||||ℤ𝑛1
|||| = 𝑛1.

Hence

𝑛𝑚1 =
||||||||||

𝑚⨁

𝑖=1
𝐺𝑖

||||||||||
= |𝐸 (𝐹) [𝑛1]| ≤ |𝐸 [𝑛1]| = |𝐾𝑒𝑟 (𝑛1)| = deg𝑠 ([𝑛1]) ≤ deg ([𝑛1]) = 𝑛21.

Since 𝑞 ∉ {2, 3}, it holds that |𝐸 (𝐹)| = 𝑞 − 𝑡 + 1 ≥ 𝑞 − 2
√
𝑞 + 1 > 1. Thus |𝐸 (𝐹)| ≇ {0}

and𝑚 ∈ {1, 2}. 2

Both cases can arise from different elliptic curves and finite fields, as seen in the follow-
ing example.

Example 3.47. 𝐸 (𝔽5) ≅ ℤ9 in the above example, while 𝐸′ ∶ 𝑦2 = 𝑥3 + 𝑥 over 𝔽5 has
𝐸′ (𝔽5) ≅ ℤ2 ⊕ℤ2.

Remark 3.48. If 𝑞 ∈ {2, 3}, then 𝐸 (𝐹) could be trivial, but the only examples with this
property are 𝐸2 ∶ 𝑦2 + 𝑦 = 𝑥3 + 𝑥 + 1 and 𝐸′

2 ∶ 𝑦2 + 𝑦 = 𝑥3 + 𝑥2 + 1 over 𝔽2 and
𝐸3 ∶ 𝑦2 = 𝑥3 − 𝑥 − 1 over 𝔽3, up to isomorphism.
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4 Elliptic curves over ℚ
After the discussion of elliptic curves over finite fields, the focus redirects to the field of
rational numbers. Again, the question of computing the rational points arises again, with
the unfortunate answer that it is not as straightforward as finite fields. Due to the countably
infinite nature of the rationals, enumerating all possible rational solutions of all elliptic
curves is not possible, so other techniques will be deployed. In particular, there will be an
attempt to prove one of the most fundamental theorems of elliptic curves over the rationals,
namely that the rational points form a finitely generated group. While finite groups arising
from finite fields can be fully characterised by the fundamental theorem of finite abelian
groups, finitely generated groups arising from the rationals can be fully characterised by
the fundamental theorem of finitely generated abelian groups,

𝐸 (ℚ) ≅ ℤ𝑟 ⊕
𝑚⨁

𝑖=1
ℤ𝑛𝑖 , 𝑟,𝑚 ∈ ℤ≥0, 𝑛𝑖 ∈ ℤ>1,

such that each 𝑛𝑖 ∣ 𝑛𝑖+1, which is given in full in Appendix A.4. However, there are issues
with computing 𝑟 ∈ ℤ≥0, which will be discussed later. Now let 𝐸 be an elliptic curve over
the perfect field ℚ, given by the Weierstrass curve

𝐸 ∶ 𝑦2 = 𝑥3 + 𝐴′𝑥 + 𝐵′, 𝐴′ = 𝑝
𝑞 , 𝐵

′ = 𝑝′
𝑞′ ∈ ℚ,

with the group of rational points 𝐸 (ℚ) = (𝐸 (ℚ) ,𝒪,+). Since there is a 𝑗-invariant affine
transformation (𝑥, 𝑦) ↦→

(
𝑞−2𝑞′−2𝑥, 𝑞−3𝑞′−3𝑦

)
, there is an isomorphism from 𝐸 to the

curve given by the Weierstrass equation

( 1
𝑞3𝑞′3𝑦)

2
= ( 1

𝑞2𝑞′2𝑥)
3
+ 𝑝
𝑞 (

1
𝑞2𝑞′2𝑥) +

𝑝′
𝑞′ ⇐⇒ 𝑦2 = 𝑥3 + 𝑝𝑞3𝑞′4𝑥 + 𝑝′𝑞6𝑞′5.

Hence for this section, assume without loss of generality that

𝐸 ∶ 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵, 𝐴, 𝐵 ∈ ℤ.

a. Nagell-Lutz theorem
For the following sections, let ∆′

𝐸 =
1
16
∆𝐸 be the reduced discriminant. Then the following

theorem characterises the affine coordinates of torsion points.

Theorem 4.1 (Nagell-Lutz). Let 𝑃 = (𝑎, 𝑏) ∈ 𝐸 (ℚ) be a non-zero torsion point. Then:
(a) 𝑎, 𝑏 ∈ ℤ, and
(b) 𝑏 = 0 or 𝑏2 ∣ ∆′

𝐸 .

Proof of the first part of the Nagell-Lutz theorem will be split into several definitions
and lemmas, many of which follows from the properties of 𝑝-adic numbers, which will
not be discussed. Now let 𝑝 ∈ ℤ>0 be a prime. A particular valuation in the construction of
𝑝-adic numbers describing how a prime divides the numerator or denominator of a rational
number is given in the following definition.
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Definition 4.2 (𝑝-adic valuation). The 𝑝-adic valuation is a valuation 𝑣𝑝 ∶ ℚ →
ℤ ∪ {∞} defined by

𝑣𝑝 (𝑥) =
⎧

⎨
⎩

max {𝑣 ∈ ℤ≥0
||||| 𝑥 =

𝑞
𝑟 𝑝

𝑣, 𝑞 ∈ ℤ, 𝑟 ∈ ℤ>0, 𝑝 ∤ 𝑟} 𝑥 ≠ 0

∞ 𝑥 = 0
.

Hence any 𝑥 ∈ ℚ will be uniquely written as

𝑥 = 𝑞
𝑟 𝑝

𝑣, 𝑞 ∈ ℤ, 𝑟 ∈ ℤ>0,

such that 𝑝, 𝑞, 𝑟 are pairwise coprime, where 𝑣 = 𝑣𝑝 (𝑥). It is clear that 𝑣𝑝 (𝑞∕𝑟) is positive
whenever 𝑝 divides 𝑞 and 𝑣𝑝 (𝑞∕𝑟) is negative whenever 𝑝 divides 𝑟, while 𝑣𝑝 (𝑞∕𝑟) is zero
otherwise. This can be illustrated in the following example.

Example 4.3.

𝑣5 (
100
10 ) = 𝑣5 (

2
15

1) = 1, 𝑣5 (
10
100) = 𝑣5 (

1
25

−1) = −1, 𝑣5 (1) = 𝑣5
(
50
)
= 0.

Three properties given in the following lemma will come in handy when computing
𝑝-adic valuations of sums and products.
Lemma 4.4. Let 𝑥, 𝑦 ∈ ℚ. Then:
(a) 𝑣𝑝 (1∕𝑥) = −𝑣𝑝 (𝑥),
(b) 𝑣𝑝 (𝑥𝑦) = 𝑣𝑝 (𝑥) + 𝑣𝑝 (𝑦), and
(c) 𝑣𝑝 (𝑥 + 𝑦) ≥ min

{
𝑣𝑝 (𝑥) , 𝑣𝑝 (𝑦)

}
, with equality if 𝑣𝑝 (𝑥) ≠ 𝑣𝑝 (𝑦).

Proof. Let
𝑥 = 𝑞

𝑟 𝑝
𝑣, 𝑦 = 𝑞′

𝑟′ 𝑝
𝑣′ , 𝑞, 𝑞′ ∈ ℤ, 𝑟, 𝑟′ ∈ ℤ>0,

such that 𝑝, 𝑞, 𝑟 are pairwise coprime and 𝑝, 𝑞′, 𝑟′ are pairwise coprime, where 𝑣 = 𝑣𝑝 (𝑥)
and 𝑣′ = 𝑣𝑝 (𝑦).
(a) Since gcd (𝑟, 𝑞) = 1,

𝑣𝑝 (
1
𝑥) = 𝑣𝑝 (

𝑟
𝑞𝑝

−𝑣) = −𝑣 = −𝑣𝑝 (𝑥) .

(b) Since gcd (𝑝, 𝑞𝑞′) = gcd (𝑝, 𝑟𝑟′) = 1,

𝑣𝑝 (𝑥𝑦) = 𝑣𝑝 (
𝑞𝑞′
𝑟𝑟′ 𝑝

𝑣+𝑣′) = 𝑣 + 𝑣′ = 𝑣𝑝 (𝑥) + 𝑣𝑝 (𝑦) .

(c) Assume that 𝑣 = 𝑣′. Then

𝑣𝑝 (𝑥 + 𝑦) = 𝑣𝑝 (
𝑞𝑟′𝑝𝑣 + 𝑞′𝑟𝑝𝑣

𝑟𝑟′ ) = 𝑣𝑝 (
𝑞𝑟′ + 𝑞′𝑟

𝑟𝑟′ 𝑝𝑣) ≥ 𝑣 = min {𝑣, 𝑣′} = min
{
𝑣𝑝 (𝑥) , 𝑣𝑝 (𝑦)

}
.

Assume otherwise that 𝑣 > 𝑣′. Since gcd (𝑟𝑟′) = gcd
(
𝑝, 𝑞𝑟′𝑝𝑣−𝑣′ + 𝑞′𝑟

)
= 1,

𝑣𝑝 (𝑥 + 𝑦) = 𝑣𝑝 (
𝑞𝑟′𝑝𝑣 + 𝑞′𝑟𝑝𝑣′

𝑟𝑟′ ) = 𝑣𝑝 (
𝑞𝑟′𝑝𝑣−𝑣′ + 𝑞′𝑟

𝑟𝑟′ 𝑝𝑣′) = 𝑣′ = min {𝑣, 𝑣′} = min
{
𝑣𝑝 (𝑥) , 𝑣𝑝 (𝑦)

}
.

Similarly, if 𝑣 < 𝑣′, then 𝑣𝑝 (𝑥 + 𝑦) = min
{
𝑣𝑝 (𝑥) , 𝑣𝑝 (𝑦)

}
. 2
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The following example illustrates the above lemma.

Example 4.5.

𝑣5 (
25
5 ) = 𝑣5 (5) = 1 = 2 − 1 = 𝑣5 (25) − 𝑣5 (5) , 𝑣2 (8) = 3 > 2 = min {𝑣2 (4) , 𝑣2 (4)} .

With this trick, a relation between the 𝑝-adic valuated coordinates of any affine rational
point in an elliptic curve can be seen in the following lemma.

Lemma 4.6. Let 𝑃 = (𝑎, 𝑏) ∈ 𝐸 (ℚ) be a point. Then 𝑣𝑝 (𝑎) < 0 iff 𝑣𝑝 (𝑏) < 0, for which
𝑣𝑝 (𝑎) = −2𝑣 and 𝑣𝑝 (𝑏) = −3𝑣 for some 𝑣 ∈ ℤ>0.

Proof. Assume that 𝑣𝑝 (𝑎) < 0. Since 𝐴, 𝐵 ∈ ℤ, it holds that 𝑣𝑝 (𝐴) , 𝑣𝑝 (𝐵) ≥ 0, so

2𝑣𝑝 (𝑏) = 𝑣𝑝
(
𝑏2
)
= 𝑣𝑝

(
𝑎3 + 𝐴𝑎 + 𝐵

)
= min

{
3𝑣𝑝 (𝑎) , 𝑣𝑝 (𝐴) + 𝑣𝑝 (𝑎) , 𝑣𝑝 (𝐵)

}
= 3𝑣𝑝 (𝑎) .

Hence 2 ∣ 𝑣𝑝 (𝑎) and 3 ∣ 𝑣𝑝 (𝑏), so 𝑣𝑝 (𝑎) = −2𝑣 and 𝑣𝑝 (𝑏) = −3𝑣 for some 𝑣 ∈ ℤ>0.
Conversely assume that 𝑣𝑝 (𝑎) ≥ 0. Then 2𝑣𝑝 (𝑏) ≥ min

{
3𝑣𝑝 (𝑎) , 𝑣𝑝 (𝐴) + 𝑣𝑝 (𝑎) , 𝑣𝑝 (𝐵)

}
≥

0. Thus 𝑣𝑝 (𝑏) ≥ 0. 2

Hence for any point 𝑃 = (𝑎, 𝑏) ∈ 𝐸 (ℚ),

𝑎 = 𝑞
𝑑2 , 𝑏 = 𝑟

𝑑3 , 𝑞, 𝑟 ∈ ℤ, 𝑑 ∈ ℤ>0

such that gcd (𝑞, 𝑑) = gcd (𝑟, 𝑑) = 1. This fact will be proven explicitly here as it will be
used several times in later subsections. Now a change of coordinates will be undertaken to
ease discussions, namely

𝑡 = 𝑇 = 𝑋
𝑌 , 𝑠 = 𝑆 = 𝑍

𝑌 , [𝑋, 𝑌, 𝑍] ↦→ [𝑇, 1, 𝑆] = (𝑡, 𝑠) ,

which is an invertible projective transformation

𝐸 ∶ 𝑌2𝑍 = 𝑋3+𝐴𝑋𝑍2+𝐵𝑍3 ⇐⇒ 𝐸′ ∶ 𝑆 = 𝑇3+𝐴𝑇𝑆2+𝐵𝑆3 ∶ 𝑠 = 𝑡3+𝐴𝑡𝑠2+𝐵𝑠3.

This has the effect that

𝒪 ↦→ (0, 0) , (𝑎, 𝑏) ↦→ (𝑎𝑏 ,
1
𝑏)

for any point (𝑎, 𝑏) ∈ 𝐸 (ℚ) such that 𝑏 ≠ 0, while the three 2-torsion points (𝑎, 0)map to
three points at infinity and can be disregarded for now. The modified group law is then
given in the following lemma.

Lemma 4.7. Let 𝑃 = (𝑎, 𝑏) ∈ 𝐸′ (ℚ) and 𝑄 = (𝑎′, 𝑏′) ∈ 𝐸′ (ℚ) be points such that 𝑃 + 𝑄 =
(𝑎′′, 𝑏′′) ∈ 𝐸′ (ℚ). Then −𝑃 = (−𝑎,−𝑏) and

𝑎′′ = 𝑎+𝑎′+2𝐴𝜆𝜇 + 3𝐵𝜆2𝜇
1 + 𝐴𝜆2 + 𝐵𝜆3 , 𝜆 = 𝑎2 + 𝑎𝑎′ + 𝑎′2 + 𝐴𝑏′2

1 − 𝐴𝑎 (𝑏 + 𝑏′) − 𝐵 (𝑏2 + 𝑏𝑏′ + 𝑏′2)
, 𝜇 = 𝑏−𝜆𝑎.
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Proof. Since (𝑎, 𝑏) ↦→ (𝑎∕𝑏, 1∕𝑏), it holds that− (𝑎, 𝑏) = (𝑎, −𝑏) ↦→ (−𝑎∕𝑏,−1∕𝑏). Let
𝑃 ∗ 𝑄 = − (𝑃 + 𝑄) = (−𝑎′′, −𝑏′′). If 𝑎 ≠ 𝑎′, then the line joining 𝑃 and 𝑄 is

𝐿 ∶ 𝑠 = 𝜆1𝑡 + 𝜇1, 𝜆1 =
𝑏 − 𝑏′
𝑎 − 𝑎′ , 𝜇1 = 𝑏 − 𝜆1𝑎.

Otherwise 𝑎 = 𝑎′, then the tangent at 𝑃 is

𝐿 ∶ 𝑠 = 𝜆2𝑡 + 𝜇2, 𝜆2 =
3𝑎2 + 𝐴𝑏2

1 − 2𝐴𝑎𝑏 − 3𝐵𝑏2 , 𝜇2 = 𝑏 − 𝜆2𝑎.

Since

𝑏 − 𝑏′ = 𝑎3 + 𝐴𝑎𝑏2 + 𝐵𝑏3 − 𝑎′3 − 𝐴𝑎′𝑏′2 − 𝐵𝑏′3

= 𝑎3 − 𝑎′3 + 𝐴𝑎𝑏2 − 𝐴𝑎𝑏′2 + 𝐴𝑎𝑏′2 − 𝐴𝑎′𝑏′2 + 𝐵𝑏3 − 𝐵𝑏′3

= (𝑎 − 𝑎′)
(
𝑎2 + 𝑎𝑎′ + 𝑎′2

)
+ 𝐴𝑎 (𝑏 − 𝑏′) (𝑏 + 𝑏′) + 𝐴𝑏′2 (𝑎 − 𝑎′) + 𝐵 (𝑏 − 𝑏′)

(
𝑏2 + 𝑏𝑏′ + 𝑏′2

)
,

it holds that

(𝑏 − 𝑏′)
(
1 − 𝐴𝑎 (𝑏 + 𝑏′) − 𝐵

(
𝑏2 + 𝑏𝑏′ + 𝑏′2

))
= (𝑎 − 𝑎′)

(
𝑎2 + 𝑎𝑎′ + 𝑎′2 + 𝐴𝑏′2

)
,

so (𝑏 − 𝑏′) ∕ (𝑎 − 𝑎′) = 𝜆 = 𝜆1 = 𝜆2 and 𝜇 = 𝜇1 = 𝜇2. Now 𝐿 ∶ 𝑠 = 𝜆𝑡 + 𝜇 intersects 𝐸′ at
(
1 + 𝐴𝜆2 + 𝐵𝜆3

)
𝑡3 +

(
2𝐴𝜆𝜇 + 3𝐵𝜆2𝜇

)
𝑡2 +

(
𝐴𝜇2 + 3𝐵𝜆𝜇2 − 𝜆

)
𝑡 −

(
𝜇 − 𝐵𝜇3

)
= 0.

Thus comparing coefficients gives −
(
2𝐴𝜆𝜇 + 3𝐵𝜆2𝜇

)
∕
(
1 + 𝐴𝜆2 + 𝐵𝜆3

)
= 𝑎 + 𝑎′ − 𝑎′′. 2

The above proof is brief but can be verified manually. Now let

𝐸 (𝑝𝑣) = {𝒪} ∪
{
(𝑎, 𝑏) ∈ 𝐸 (ℚ) ∣ 𝑣𝑝 (𝑎) ≤ −2𝑣, 𝑣𝑝 (𝑏) ≤ −3𝑣

}

be a subset of 𝐸 (ℚ). Rewriting coordinates accordingly gives 𝑣𝑝 (𝑎∕𝑏) ≥ 𝑣 and 𝑣𝑝 (1∕𝑏) ≥
3𝑣, so let

𝐸′ (𝑝𝑣) = {(0, 0)} ∪
{
(𝑎, 𝑏) ∈ 𝐸′ (ℚ) ∣ 𝑣𝑝 (𝑎) ≥ 𝑣, 𝑣𝑝 (𝑏) ≥ 3𝑣

}

be a subset of 𝐸′ (ℚ) bijective to 𝐸 (𝑝𝑣). These two sets induce two decreasing sequences of
subsets.

Definition 4.8 (Filtration). A filtration is a decreasing sequence of subsets 𝑆𝑖 such
that 𝑆𝑖 ⊇ 𝑆𝑗 for any 𝑖 ≤ 𝑗.

A simple rephrasal gives that 𝐸 (𝑝𝑣) and 𝐸′ (𝑝𝑣) induce two 𝑝-adic filtrations

𝐸 (ℚ) ⊇ 𝐸 (𝑝) ⊇ 𝐸
(
𝑝2
)
⊇ 𝐸

(
𝑝3
)
⊇ ⋯ ⊇ {𝒪} , 𝐸′ (ℚ) ⊇ 𝐸′ (𝑝) ⊇ 𝐸′ (𝑝2

)
⊇ 𝐸′ (𝑝3

)
⊇ ⋯ ⊇ {(0, 0)} .

The individual subsets in these filtrations are actually subgroups, giving a filtration of
subgroups, which will be proven in the following lemma.

Lemma 4.9. Let 𝑣 ∈ ℤ>0 and 𝑃 = (𝑎, 𝑏) ∈ 𝐸′ (𝑝𝑣) and 𝑄 = (𝑎′, 𝑏′) ∈ 𝐸′ (𝑝𝑣) be points such
that 𝑃 + 𝑄 = (𝑎′′, 𝑏′′) ∈ 𝐸′ (ℚ). Then −𝑃, 𝑃 + 𝑄 ∈ 𝐸′ (𝑝𝑣) and 𝑣𝑝 (𝑎 + 𝑎′ + 𝑎′′) ≥ 5𝑣.
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Proof. Since −𝑃 = (−𝑎,−𝑏), it holds that 𝑣𝑝 (−𝑎) = 𝑣𝑝 (𝑎), so −𝑃 ∈ 𝐸′ (𝑝𝑣). Since
𝐴, 𝐵 ∈ ℤ, it holds that 𝑣𝑝 (𝐴) , 𝑣𝑝 (𝐵) ≥ 0. Now the group law gives

𝑎′′ = 𝑎+𝑎′+2𝐴𝜆𝜇 + 3𝐵𝜆2𝜇
1 + 𝐴𝜆2 + 𝐵𝜆3 , 𝜆 = 𝑎2 + 𝑎𝑎′ + 𝑎′2 + 𝐴𝑏′2

1 − 𝐴𝑎 (𝑏 + 𝑏′) − 𝐵 (𝑏2 + 𝑏𝑏′ + 𝑏′2)
, 𝜇 = 𝑏−𝜆𝑎.

Then

𝑣𝑝
(
𝑎2 + 𝑎𝑎′ + 𝑎′2 + 𝐴𝑏′2

)
≥ min

{
2𝑣𝑝 (𝑎) , 𝑣𝑝 (𝑎) + 𝑣𝑝 (𝑎′) , 2𝑣𝑝 (𝑎′) , 𝑣𝑝 (𝐴) + 2𝑣𝑝 (𝑏′)

}
≥ 2𝑣,

𝑣𝑝 (𝐴𝑎 (𝑏 + 𝑏′)) ≥ min
{
𝑣𝑝 (𝑎) + 𝑣𝑝 (𝑎′) + 𝑣𝑝 (𝑏) , 𝑣𝑝 (𝑎) + 𝑣𝑝 (𝑎′) + 𝑣𝑝 (𝑏′)

}
≥ 5𝑣,

𝑣𝑝
(
𝐵
(
𝑏2 + 𝑏𝑏′ + 𝑏′2

))
≥ min

{
𝑣𝑝 (𝐵) + 2𝑣𝑝 (𝑏) , 𝑣𝑝 (𝐵) + 𝑣𝑝 (𝑏) + 𝑣𝑝 (𝑏′) , 𝑣𝑝 (𝐵) + 2𝑣𝑝 (𝑏′)

}
≥ 6𝑣,

so 𝑣𝑝 (𝜆) ≥ 2𝑣 − min {0, 5𝑣, 6𝑣} = 2𝑣 and 𝑣𝑝 (𝜇) ≥ min {3𝑣, 3𝑣} = 3𝑣. Hence

𝑣𝑝
(
2𝐴𝜆𝜇 + 3𝐵𝜆2𝜇

)
≥ min

{
𝑣𝑝 (2) + 𝑣𝑝 (𝐴) + 𝑣𝑝 (𝜆) + 𝑣𝑝 (𝜇) , 𝑣𝑝 (3) + 𝑣𝑝 (𝐵) + 2𝑣𝑝 (𝜆) + 𝑣𝑝 (𝜇)

}
≥ 5𝑣,

𝑣𝑝
(
1 + 𝐴𝜆2 + 𝐵𝜆3

)
= min

{
𝑣𝑝 (1) , 𝑣𝑝 (𝐴) + 2𝑣𝑝 (𝜆) , 𝑣𝑝 (𝐵) + 3𝑣𝑝 (𝜆)

}
= 0,

so 𝑣𝑝 (𝑎′′) ≥ min {𝑎, 𝑎′, 5𝑣} ≥ 𝑣. Thus 𝑃 + 𝑄 ∈ 𝐸′ (𝑝𝑣) and 𝑣𝑝 (𝑎 + 𝑎′ − 𝑎′′) ≥ 5𝑣. 2

Note that the second part of the lemma proves something stronger, that the 𝑥 co-
ordinates of three collinear points add to give a large 𝑝-adic valuation. Now let 𝑅 ={
𝑥 ∈ ℚ ∣ 𝑣𝑝 (𝑥) ≥ 0

}
be a unique factorisation domain such that ab𝑝𝑣 =

{
𝑥 ∈ ℚ ∣ 𝑣𝑝 (𝑥) ≥ 𝑣

}
⊆

𝑅 is a principal ideal. This also induces a filtration of subgroups

𝑅 ≥ ab𝑝 ≥ ab𝑝2 ≥ ab𝑝3 ≥ … {0} .

Then 𝑣𝑝 (𝑎 + 𝑎′ − 𝑎′′) ≥ 5𝑣 from the previous lemma can be rephrased as 𝑎 + 𝑎′ − 𝑎′′ ∈
ab𝑝5𝑣, or even better as ab𝑝5𝑣 + 𝑎 + 𝑎′ = ab𝑝5𝑣 + 𝑎′′. The following lemma attempts to
makes use of this fact.

Lemma 4.10. There is an injective group homomorphism

𝜙 ∶ 𝐸 (𝑝𝑣) ∕𝐸 (𝑝5𝑣) → ab𝑝𝑣∕ab𝑝5𝑣, 𝜙 (𝐸 (𝑝5𝑣) + 𝑃) =
⎧

⎨
⎩

ab𝑝5𝑣 + 𝑎
𝑏 𝑃 = (𝑎, 𝑏)

ab𝑝5𝑣 𝑃 = 𝒪
.

Proof. Let 𝜓 ∶ 𝐸 (𝑝𝑣) → ab𝑝𝑣∕ab𝑝5𝑣 be defined by

𝜓 (𝑃) =
⎧

⎨
⎩

ab𝑝5𝑣 + 𝑎
𝑏 𝑃 = (𝑎, 𝑏)

ab𝑝5𝑣 𝑃 = 𝒪
,

and let 𝑃,𝑄 ∈ 𝐸 (𝑝𝑣) be points. If 𝑃 = 𝒪, then

𝜓 (𝑃) + 𝜓 (𝑄) = ab𝑝5𝑣 + ab𝑝5𝑣 + 𝑎′
𝑏′ = ab𝑝5𝑣 + 𝑎′

𝑏′ = 𝜓 (𝑄) = 𝜓 (𝑃 + 𝑄) ,

or similar for 𝑄 = 𝒪. If 𝑃 = (𝑎, 𝑏) and 𝑄 = (𝑎,−𝑏), then

𝜓 (𝑃) + 𝜓 (𝑄) = ab𝑝5𝑣 + 𝑎
𝑏 + ab𝑝5𝑣 − 𝑎

𝑏 = ab𝑝5𝑣 = 𝜓 (𝒪) = 𝜓 (𝑃 + 𝑄) .
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Otherwise 𝑃 = (𝑎, 𝑏) and 𝑄 = (𝑎′, 𝑏′) such that 𝑃 + 𝑄 = (𝑎′′, 𝑏′′), then

𝜓 (𝑃) + 𝜓 (𝑄) = ab𝑝5𝑣 + 𝑎
𝑏 + ab𝑝5𝑣 + 𝑎′

𝑏′ = ab𝑝5𝑣 + 𝑎
𝑏 +

𝑎′
𝑏′ = ab𝑝5𝑣 + 𝑎′′

𝑏′′ = 𝜓 (𝑃 + 𝑄) .

Hence 𝜓 is a group homomorphism. Now 𝒪 ∈ 𝐾𝑒𝑟 (𝜓), and (𝑎, 𝑏) ∈ 𝐾𝑒𝑟 (𝜓) iff 𝑣𝑝 (𝑎∕𝑏) ≥
5𝑣. This holds iff (𝑎∕𝑏, 1∕𝑏) ∈ 𝐸′ (𝑝5𝑣) and (𝑎, 𝑏) ∈ 𝐸 (𝑝5𝑣), so 𝐾𝑒𝑟 (𝜓) = 𝐸 (𝑝5𝑣). Thus the
first isomorphism theorem gives a natural injective group homomorphism

𝜙 ∶ 𝐸 (𝑝𝑣)
𝐸 (𝑝5𝑣)

→ 𝐼𝑚 (𝜓) ⊆
ab𝑝𝑣
ab𝑝5𝑣 .

Now the subgroup𝐸 (𝑝) can be proven to be torsion-freewith a proof by contradiction in
the following lemma, from which the first part of the Nagell-Lutz theorem can be deduced.

Lemma 4.11. 𝐸 (𝑝) has no non-zero torsion points.

Proof. Let 𝑃 = (𝑎, 𝑏) ∈ 𝐸 (ℚ) be an 𝑛-torsion point. Suppose for a contradiction that
𝑃 ∈ 𝐸 (𝑝), so 𝑣𝑝 (𝑎) = −2𝑣 for some 𝑣 ∈ ℤ>0 and 𝑣𝑝 (𝑎∕𝑏) = 𝑣. Then

ab𝑝5𝑣 = 𝜙 (𝐸 (𝑝5𝑣)) = 𝜙 (𝐸 (𝑝5𝑣) + 𝑛𝑃) = 𝑛𝜙 (𝐸 (𝑝5𝑣) + 𝑃) = 𝑛 (ab𝑝5𝑣 + 𝑎
𝑏) = ab𝑝5𝑣+𝑛𝑎𝑏 ,

so 𝑛 (𝑎∕𝑏) ∈ ab𝑝5𝑣. Assume that 𝑝 ∤ 𝑛, so 𝑎∕𝑏 ∈ ab𝑝5𝑣 and 𝑣 = 𝑣𝑝 (𝑎∕𝑏) ≥ 5𝑣, which is
a contradiction. Hence 𝑃 ∉ 𝐸 (𝑝). Otherwise assume that 𝑝 ∣ 𝑛, then 𝑛 = 𝑚𝑝 for some
𝑚 ∈ ℤ>0. Now let 𝑄 = 𝑚𝑃 = (𝑎′, 𝑏′) ∈ 𝐸 (ℚ) be a 𝑝-torsion point. Since 𝑃 ∈ 𝐸 (𝑝), it
holds that 𝑄 ∈ 𝐸 (𝑝), so 𝑣𝑝 (𝑎′) = −2𝑣′ for some 𝑣′ ∈ ℤ>0 and 𝑣𝑝 (𝑎′∕𝑏′) = 𝑣′. Then

ab𝑝5𝑣′ = 𝜙
(
𝐸
(
𝑝5𝑣′

))
= 𝜙

(
𝐸
(
𝑝5𝑣′

)
+ 𝑝𝑄

)
= 𝑝𝜙

(
𝐸
(
𝑝5𝑣′

)
+ 𝑄

)
= 𝑝 (ab𝑝5𝑣′ + 𝑎′

𝑏′ ) = ab𝑝5𝑣+𝑝𝑎
′

𝑏′ ,

so 𝑝 (𝑎′∕𝑏′) ∈ ab𝑝5𝑣′ . Then 5𝑣′ ≤ 𝑣𝑝 (𝑝 (𝑎′∕𝑏′)) = 𝑣𝑝 (𝑝) + 𝑣𝑝 (𝑎′∕𝑏′) = 1 + 𝑣′, which is
again a contradiction. Hence 𝑄 ∉ 𝐸 (𝑝) and 𝑃 ∉ 𝐸 (𝑝). Thus 𝐸 (𝑝) has no non-zero torsion
points. 2

Both parts of the Nagell-Lutz theorem can finally be proven here, the second part a
corollary of the first.

Proof (Proof of Theorem 4.1). Let 𝑃 = (𝑎, 𝑏) ∈ 𝐸 (ℚ) be a non-zero 𝑛-torsion point.
(a) Since 𝑃 ∉ 𝐸 (𝑝) for any prime 𝑝 ∈ ℤ>0, it holds that 𝑣𝑝 (𝑎) ≥ 0 and 𝑣𝑝 (𝑏) ≥ 0. Thus

𝑎, 𝑏 ∈ ℤ.
(b) Assume that 𝑏 ≠ 0 and let 2𝑃 = (𝑎′, 𝑏′) ∈ 𝐸 (ℚ). By the duplication formula,

𝑎′ = 𝑎4 − 2𝐴𝑎2 − 8𝐵𝑎 + 𝐴2

4𝑏2 .

Since 𝑃 and 2𝑃 are torsion points, it holds that 𝑎, 𝑏, 𝑎′, 𝑏′ ∈ ℤ, so 𝑏2 ∣ 𝑎4 − 2𝐴𝑎2 −
8𝐵𝑎 + 𝐴2. Thus

𝑏2 ∣
(
𝑎4 − 2𝐴𝑎2 − 8𝐵𝑎 + 𝐴2) (3𝑎2 + 4𝐴

)
−
(
𝑎3 + 𝐴𝑎 + 𝐵

) (
3𝑎3 − 5𝐴𝑎 − 27𝐵

)
= 4𝐴3+27𝐵2 = ∆′

𝐸.
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b. Torsion computation
An application of the Nagell-Lutz theorem is as follows. Assuming the fundamental
theorem of finite abelian groups,

𝐸 (ℚ) ≅ ℤ𝑟 ⊕𝐸 (ℚ)𝑡𝑜𝑟𝑠 , 𝑟 ∈ ℤ≥0,

the Nagell-Lutz theorem can be used to compute the torsion subgroup 𝐸 (ℚ)𝑡𝑜𝑟𝑠, since
there are only finitely many torsion points (𝑎, 𝑏) ∈ 𝐸 (ℚ) such that 𝑏2 ∣ ∆′

𝐸. The following
example illustrates the full computation of the torsion subgroup of an elliptic curve.

Example 4.12. Let 𝐸 ∶ 𝑦2 = 𝑥3 + 4 be an elliptic curve over ℚ and 𝑃 = (𝑎, 𝑏) ∈
𝐸 (ℚ) be a torsion point. Then either 𝑏 = 0 or 𝑏2 ∣ 4 (0)3 + 27 (4)2 = 3 (12)2, so 𝑏 ∈
{0, ±1, ±2, ±3, ±4, ±6, ±12}, of which only 𝑃1 = (0, 2) ∈ 𝐸 (ℚ) and 𝑃2 = (0, −2) ∈ 𝐸 (ℚ).
Then

2𝑃1 = ( 0
4 (4)

, 2
2 − 3 (4)
2 (2) ) = (0, −2) = 𝑃2,

so 𝑜𝑟𝑑 (𝑃1) = 𝑜𝑟𝑑 (𝑃2) = 3. Thus the torsion subgroup is 𝐸 (ℚ)𝑡𝑜𝑟𝑠 = {𝒪, 𝑃1, 𝑃2} ≅ ℤ3.

The following algorithm summarises the process and code in the appendix.

Algorithm 4.13 (Computation of the torsion subgroup). Input: an elliptic curve
𝐸 overℚ. Output: 𝐸 (ℚ)𝑡𝑜𝑟𝑠.
(a) Calculate ∆′

𝐸 and get all non-negative 𝑏 coordinates such that 𝑏2 ∣ ∆′
𝐸 .

(b) Get all 𝑎 coordinates for each non-negative 𝑏 coordinate such that 𝑏2 = 𝑎3 + 𝐴𝑎 + 𝐵.
(c) Add points (𝑎, 𝑏) with itself repeatedly and stop at 𝒪 or non-integer coordinates.
(d) Negate each point (𝑎, 𝑏) to (𝑎, −𝑏) and do the same.
(e) Insert 𝒪 into the list of all points that add to 𝒪.

The torsion subgroups of the following examples of elliptic curves given by the Weier-
strass equations 𝑦2 = 𝑥3 − 𝑝𝑥 for 𝑝 ∈ ℤ>0 can be computed similarly. This information
will be used in a later subsection.

Example 4.14. The elliptic curves 𝐸 ∶ 𝑦2 = 𝑥3 − 𝑥 has torsion subgroup 𝐸 (ℚ)𝑡𝑜𝑟𝑠 =
{𝒪, (0, 0) , (1, 0) , (−1, 0)} ≅ ℤ2

2, while the elliptic curves𝐸 ∶ 𝑦2 = 𝑥3−5𝑥, 𝐸 ∶ 𝑦2 = 𝑥3−17𝑥,
𝐸 ∶ 𝑦2 = 𝑥3 − 226𝑥 all have torsion subgroup 𝐸 (ℚ)𝑡𝑜𝑟𝑠 = {𝒪, (0, 0)} ≅ ℤ2.

The converse to the Nagell-Lutz theorem does not generally hold. It cannot be used to
prove that a certain point is a torsion point, but it can be used to show the contrapositive,
that a point is not a torsion point, by duplicating it until its coordinates are not integers.
The following example illustrates this.

Example 4.15. Let 𝐸 ∶ 𝑦2 = 𝑥3 − 4 be an elliptic curve over ℚ with torsion subgroup
𝐸 (ℚ)𝑡𝑜𝑟𝑠 = {𝒪} ≅ ℤ1. Now let 𝑃 = (2, 2) ∈ 𝐸 (ℚ) be a point. Then

2𝑃 = (5, −11) , 4𝑃 = (785484, −
5497
10648) .

Thus 𝑜𝑟𝑑 (𝑃) is infinite.
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These are several examples of different torsion subgroups. In fact, there are even elliptic
curves with as large as 12-torsion elements, but there are strangely none with 11-torsion
elements. The following difficult theorem was proven to be an exhaustive list of all possible
torsion subgroups of all elliptic curves.

Theorem 4.16 (Mazur). 𝐸 (ℚ) is isomorphic to one of

ℤ𝑛, 𝑛 ∈ {1, … , 10, 12} ,

ℤ2 × ℤ2𝑛, 𝑛 ∈ {1, … , 4} .

Proof. Omitted, see [9]. 2

As such, the torsion subgroup of an elliptic curve 𝐸 (ℚ) can be computed in a finite
number of steps. However, computations may still be intensive if ∆′

𝐸 has many squared
factors, as the computation involves solving a cubic equation. The next section provides an
alternative method for this.

c. Reduction modulo prime
Another method of computing the torsion subgroup is to reduce the elliptic curve over
rationals into one over a finite field, by applying isomorphisms that simplify theWeierstrass
equation, then applying a particular group homomorphism. The assumption of integer
coefficients in a previous subsection makes the Weierstrass equation integral, but a further
reduction can be done as follows.

Definition 4.17 (Minimal). A Weierstrass equation is minimal iff it is integral and
𝑔 ∈ {−1, 1} if 𝑔4 ∣ 𝐴 and 𝑔6 ∣ 𝐵.

A minimal Weierstrass equation is unique up to sign. The above definition reflects
the minimality of the integer coefficients after 𝑗-invariant affine transformations, which is
illustrated in the following example.

Example 4.18. Let𝐸 ∶ 𝑦2 = 𝑥3+𝑛4𝑥+𝑛6 be an elliptic curve overℚ for some 𝑛 ∈ ℚ. Since
there is a 𝑗-invariant affine transformation (𝑥, 𝑦) ↦→

(
𝑛2𝑥, 𝑛3𝑦

)
, there is an isomorphism

from 𝐸 to the curve given by the Weierstrass equation 𝑦2 = 𝑥3 + 𝑥 + 1, which is integral
and minimal.

Minimal Weierstrass equations can then be treated as if their coefficients are modulo a
prime, which is stated formally as a map in the following definition.

Definition 4.19 (Reduction map). The reductionmodulo𝑝map 𝑟𝑝 ∶ 𝐸 (ℚ) → 𝐸𝑝
(
𝔽𝑝
)

for some prime 𝑝 ∈ ℤ>0 is defined by

𝐸𝑝 ∶ 𝑦2 = 𝑥3 + 𝐴̃𝑥 + 𝐵̃, 𝑟𝑝 (𝑃) = {
(
𝑎̃, 𝑏̃

)
𝑃 = (𝑎, 𝑏)

𝒪 𝑃 = 𝒪
,

where ⋅̃ ∶ ℤ → 𝔽𝑝 denotes modulo 𝑝.



4 ELLIPTIC CURVES OVERℚ 54

There is a minor hiccup with this definition, since 𝐸𝑝 might not even define a smooth
Weierstrass curve. However, since 0 ≠ ∆𝐸 = 𝑝1…𝑝𝑛 for some primes 𝑝𝑖 ∈ ℤ>0 and ∆𝐸𝑝 = 0
only if any 𝑝𝑖 ∣ 𝑝, this issue can be easily fixed by considering only the primes that are not
𝑝𝑖, which is given in the following definition.

Definition 4.20 (Good reduction). A prime 𝑝 ∈ ℤ>0 is of good reduction iff 𝑝 ∤ ∆𝐸.

Hence 𝑟𝑝 has a well-defined codomain for infinitely many primes of good reduction,
while those of bad reduction will not be considered. Additionally since the discriminant
has a coefficient of 16, the prime 2 will always be considered one of bad reduction. Now 𝑟𝑝
is also well-defined, which is immediate considering the following lemma.

Lemma 4.21. Let𝑃 = [𝑎, 𝑏, 𝑐] ∈ 𝐸 (ℚ) be a point. Then𝑃 = [𝑎′, 𝑏′, 𝑐′] for some𝑎′, 𝑏′, 𝑐′ ∈ ℤ
such that gcd (𝑎′, 𝑏′, 𝑐′) = 1.

Proof. If 𝑐 = 0, then 𝑃 = 𝒪, so gcd (0, 1, 0) = 1. Otherwise 𝑐 ≠ 0, then 𝑃 = (𝑎∕𝑐, 𝑏∕𝑐).
Then 𝑎∕𝑐 = 𝑞∕𝑑2 and 𝑏∕𝑐 = 𝑟∕𝑑3 for some 𝑞, 𝑟 ∈ ℤ and some 𝑑 ∈ ℤ>0 such that
gcd (𝑞, 𝑑) = gcd (𝑟, 𝑑) = 1. Thus𝑃 =

(
𝑞∕𝑑2, 𝑟∕𝑑3

)
=
[
𝑞𝑑, 𝑟, 𝑑3

]
is such that gcd

(
𝑞𝑑, 𝑟, 𝑑3

)
=

1. 2

This integral and minimal condition will also be defined as follows.

Definition 4.22 (Normalised). A point 𝑃 ∈ 𝐸 (ℚ) has normalised coordinates iff it
satisfies Lemma 4.21.

With this representation, there must be one of 𝑎′, 𝑏′, 𝑐′ coprime to 𝑝 for any prime
𝑝 ∈ ℤ>0 of good reduction, so 𝑟𝑝 (𝑃) =

[
𝑎′, 𝑏′, 𝑐′

]
∈ 𝐸𝑝

(
𝔽𝑝
)
is well-defined. The normalised

coordinates of any point is unique up to sign, which is illustratedwith the following example.

Example 4.23. Let 𝑃 = (2∕5, −1∕3) ∈ 𝐸 (ℚ) be a point. Then

(25, −
1
3) = [25, −

1
3, 1] = [6, −5, 15] , [−6, 5, −15]

are its normalised coordinates.

Let 𝑝 ∈ ℤ>0 be a prime of good reduction. Then the following proposition characterises
𝑟𝑝.

Proposition 4.24. 𝑟𝑝 ∶ 𝐸 (ℚ) → 𝐸𝑝
(
𝔽𝑝
)
is a group homomorphism such that 𝐾𝑒𝑟

(
𝑟𝑝
)
=

𝐸 (𝑝).

Proof. Let 𝑃,𝑄 ∈ 𝐸 (ℚ) be points with normalised coordinates and

𝐿 ∶ 𝑙 (𝑋, 𝑌, 𝑍) = 𝑘𝑋 +𝑚𝑌 + 𝑛𝑍 = 0

be a line joining 𝑃 and 𝑄 with coefficients in ℚ such that 𝑃,𝑄,− (𝑃 + 𝑄) ∈ 𝐸 (ℚ) ∩ 𝐿.
Then normalising [𝑙, 𝑚, 𝑛] similarly gives [𝑙′, 𝑚′, 𝑛′] for some 𝑙′, 𝑚′, 𝑛′ ∈ ℤ such that
gcd (𝑙,𝑚, 𝑛) = 1. Hence the line

𝐿𝑝 ∶ 𝑙𝑝 (𝑋, 𝑌, 𝑍) = 𝑙𝑋 + 𝑚̃𝑌 + 𝑛̃𝑍 = 0
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with coefficients in 𝔽𝑝 is well-defined. Now let 𝑃 = [𝑎, 𝑏, 𝑐]. Then
𝑙𝑎 + 𝑚𝑏 + 𝑛𝑐 = 0 ⇐⇒ 𝑙𝑎̃ + 𝑚̃𝑏̃ + 𝑛̃𝑐 = 0,

so 𝑟𝑝 (𝑃) =
(
𝑎̃, 𝑏̃, 𝑐

)
∈ 𝐸𝑝

(
𝔽𝑝
)
∩ 𝐿𝑝. Similarly 𝑟𝑝 (𝑄) ∈ 𝐸𝑝

(
𝔽𝑝
)
∩ 𝐿𝑝. Since 𝑟𝑝 (−𝒪) =

𝑟𝑝 (𝒪) = −𝑟𝑝 (𝒪) and
𝑟𝑝 (− (𝑎, 𝑏)) = 𝑟𝑝 ((𝑎, −𝑏)) =

(
𝑎̃, −̃𝑏

)
=
(
𝑎̃, −𝑏̃

)
= −

(
𝑎̃, 𝑏̃

)
= −𝑟𝑝 ((𝑎, 𝑏))

for any point (𝑎, 𝑏) ∈ 𝐸 (ℚ), similarly −𝑟𝑝 (𝑃 + 𝑄) = 𝑟𝑝 (− (𝑃 + 𝑄)) ∈ 𝐸𝑝
(
𝔽𝑝
)
∩ 𝐿𝑝. Since

gcd
(
𝑒𝑝, 𝑙𝑝

)
= 1 where 𝑒𝑝 (𝑥, 𝑦) is the Weierstrass equation of 𝐸𝑝, Bézout’s theorem gives

that 𝐿𝑝 intersects 𝐸𝑝
(
𝔽𝑝
)
at three points up to multiplicity, so

𝐸𝑝
(
𝔽𝑝
)
∩ 𝐿𝑝 =

{
𝑟𝑝 (𝑃) , 𝑟𝑝 (𝑄) , −𝑟𝑝 (𝑃 + 𝑄)

}
.

Hence 𝑟𝑝 (𝑃) + 𝑟𝑝 (𝑄) = 𝑟𝑝 (𝑃 + 𝑄). Now let 𝑅 = (𝑎, 𝑏) ∈ 𝐸 (ℚ) be a point. Then 𝑎 = 𝑞∕𝑑2
and 𝑏 = 𝑟∕𝑑3 for some 𝑞, 𝑟 ∈ ℤ and some 𝑑 ∈ ℤ>0 such that gcd (𝑞, 𝑑) = gcd (𝑟, 𝑑) = 1.
Since𝑅 =

[
𝑞𝑑, 𝑟, 𝑑3

]
has normalised coordinates, it holds that 𝑟𝑝 (𝑅) =

[
𝑞𝑑, 𝑟, 𝑑3

]
∈ 𝐸𝑝

(
𝔽𝑝
)
.

Then 𝑅 ∈ 𝐾𝑒𝑟
(
𝑟𝑝
)
iff 𝑑3 = 0, or 𝑝 ∣ 𝑑. This holds iff 𝑣𝑝 (𝑎) ≤ −2 and 𝑣𝑝 (𝑏) ≤ −3, or

𝑅 ∈ 𝐸 (𝑝). Thus 𝐾𝑒𝑟
(
𝑟𝑝
)
= 𝐸 (𝑝). 2

Restricting 𝑟𝑝 into the torsion subgroup of its domain gives it a stronger property as
follows.
Theorem 4.25 (Reduction). 𝐸 (ℚ)𝑡𝑜𝑟𝑠 ≅ 𝐺 for some 𝐺 ≤ 𝐸𝑝

(
𝔽𝑝
)
.

Proof. Since𝐾𝑒𝑟
(
𝑟𝑝
)
= 𝐸 (𝑝), it holds that 𝑣𝑝 (𝑎) ≤ −2 and 𝑣𝑝 (𝑏) ≤ −3 for any point 𝑃 =

(𝑎, 𝑏) ∈ 𝐾𝑒𝑟
(
𝑟𝑝
)
, so𝑎, 𝑏 ∉ ℤ. Then theNagell-Lutz theoremgives that 𝑜𝑟𝑑 (𝑃) is infinite, so

𝑃 ∉ 𝐸 (ℚ)𝑡𝑜𝑟𝑠. Now let 𝑟′𝑝 = 𝑟𝑝
||||𝐸(ℚ)𝑡𝑜𝑟𝑠 and 𝐺 = 𝐼𝑚

(
𝑟′𝑝
)
, so𝐾𝑒𝑟

(
𝑟′𝑝
)
= 𝐾𝑒𝑟

(
𝑟𝑝
)
∩𝐸 (ℚ)𝑡𝑜𝑟𝑠 =

{𝒪}. Thus the first isomorphism theorem gives 𝐺 ≅ 𝐸 (ℚ)𝑡𝑜𝑟𝑠 ∕𝐾𝑒𝑟
(
𝑟′𝑝
)
≅ 𝐸 (ℚ)𝑡𝑜𝑟𝑠. 2

Lagrange’s theorem then gives ||||𝐸 (ℚ)𝑡𝑜𝑟𝑠
|||| ∣
||||𝐸𝑝

(
𝔽𝑝
)||||, which enforces a restriction of the

possible torsion subgroups. The following reignites a prior example, this time with the
reduction theorem.
Example 4.26. Let𝐸 ∶ 𝑦2 = 𝑥3+4 be an elliptic curve overℚ. Then∆𝐸 = −16

(
4 (0)3 + 27 (4)2

)
=

− (2)8 (3)3, so let 𝑝 = 5 be a prime of good reduction. Then the previous section gives
|||𝐸5 (𝔽5)||| = 6. Since ||||𝐸 (ℚ)𝑡𝑜𝑟𝑠

|||| ∣
|||𝐸5 (𝔽5)|||, it holds that

||||𝐸 (ℚ)𝑡𝑜𝑟𝑠
|||| ∈ {1, 2, 3, 6}. Since

𝑜𝑟𝑑 ((0, 2)) = 3 and there are no points 𝑃 ∈ 𝐸 (ℚ) such that 𝑜𝑟𝑑 (𝑃) = 2, it holds that
𝐸 (ℚ)𝑡𝑜𝑟𝑠 = {𝒪, (0, 2) , (0, −2)} ≅ ℤ3.

While this might not seem much of a timesave, the following example begs to differ.

Example 4.27. Let 𝐸 ∶ 𝑦2 = 𝑥3 + 1680 be an elliptic curve over ℚ. Then ∆′
𝐸 = 4 (0)3 +

27 (1680)2 = 3 (5040)2 = (2)8 (3)5 (5)2 (7)2 and ∆𝐸 = − (2)12 (3)5 (5)2 (7)2, so 𝑝 ≥ 11 are
primes of good reduction. Now 5040 is a colossally abundant number with exactly 120
positive and negative divisors, so more than 120 values of 𝑏 such that 𝑏2 ∣ ∆′

𝐸 needs to
be checked. Instead the previous section computes |||𝐸13 (𝔽13)||| = 9 and |||𝐸19 (𝔽19)||| = 28.
Since ||||𝐸 (ℚ)𝑡𝑜𝑟𝑠

|||| ∣
|||𝐸13 (𝔽13)||| and

||||𝐸 (ℚ)𝑡𝑜𝑟𝑠
|||| ∣

|||𝐸19 (𝔽19)|||, and gcd (9, 28) = 1, it holds that
||||𝐸 (ℚ)𝑡𝑜𝑟𝑠

|||| = 1. Thus 𝐸 (ℚ)𝑡𝑜𝑟𝑠 = {𝒪}.
Counting points over finite fields can generally be done very efficiently, so the reduction

theorem allows for an immediate answer. In any case, computation of the torsion subgroup
is relatively straightforward.
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d. Mordell’s theorem: descent
The following theorem is one of the most fundamental theorems of elliptic curves over the
rationals, as stated in a previous subsection.

Theorem 4.28 (Mordell). TheMordell-Weil group 𝐸 (ℚ) is finitely generated.

Remark 4.29. This is a special case of theMordell-Weil theorem, which states that 𝐸 (𝐾)
is finitely generated over any number field 𝐾.

Proof of Mordell’s theorem will be split into two distinct steps. The first step of the proof
develops some theory of a certain function that describes the size of points. The second
step of the proof is a weak variant of the theorem stating that the index of a subgroup is
finite. These two steps are then used in a variant of Fermat’s infinite descent, which can
be stated in full generalisation for arbitrary abelian groups as follows.

Theorem 4.30 (Descent). Let 𝐺 be an abelian group such that the index [𝐺 ∶ 2𝐺] is finite,
and let ℎ ∶ 𝐺 → ℝ≥0 be such that:
⋄ the set {𝑃 ∈ 𝐺 ∣ ℎ (𝑃) ≤ 𝐶1} is finite for any 𝐶1 ∈ ℝ≥0,
⋄ for any 𝑄 ∈ 𝐺, there is a constant 𝐶2 ∈ ℝ≥0 such that ℎ (𝑃 + 𝑄) ≤ 2ℎ (𝑃) + 𝐶2 for any

𝑃 ∈ 𝐺, and
⋄ there is a constant 𝐶3 ∈ ℝ≥0 such that ℎ (2𝑃) ≥ 4ℎ (𝑃) − 𝐶3 for any 𝑃 ∈ 𝐺.

Then 𝐺 is finitely generated.

Proof. Let 𝑄1, … , 𝑄𝑛 ∈ 𝐺 be representatives such that 2𝐺 +𝑄𝑖 ∈ 𝐺∕2𝐺 are distinct cosets.
For any 𝑃 ∈ 𝐺, the upper bound gives each ℎ (𝑃 − 𝑄𝑖) ≤ 2ℎ (𝑃) + 𝐶𝑖 for some 𝐶𝑖 ∈ ℝ≥0, so

ℎ (𝑃 − 𝑄𝑖) ≤ 2ℎ (𝑃) + 𝐶, 𝑖 ∈ {1, … , 𝑛} , 𝐶 = max {𝐶𝑖} ∈ ℝ≥0.

For any 𝑃 ∈ 𝐺, the lower bound also gives

ℎ (2𝑃) ≥ 4ℎ (𝑃) − 𝐶′, 𝐶′ ∈ ℝ≥0.

Then there is a finite set
𝑆 = {𝑃 ∈ 𝐺 ∣ ℎ (𝑃) ≤ 𝐶 + 𝐶′} .

Now let 𝑃 ∈ 𝐺. Then 2𝐺 + 𝑃 = 2𝐺 + 𝑄𝑖0 for some 𝑖0 ∈ {1, … , 𝑛}, so 𝑃 = 2𝑃0 + 𝑄𝑖0
for some 𝑃0 ∈ 𝐺. By induction, for any 𝑗 ∈ ℤ>0, there is some 𝑖𝑗 ∈ {1, … , 𝑛} such that
2𝐺 + 𝑃𝑗−1 = 2𝐺 + 𝑄𝑖𝑗 , so

𝑃𝑗−1 = 2𝑃𝑗 + 𝑄𝑖𝑗 , 𝑃 = 2𝑗+1𝑃𝑗 +
𝑗∑

𝑘=0
2𝑘𝑄𝑖𝑘 , 𝑃𝑗 ∈ 𝐺.

Now for any 𝑗 ∈ ℤ>0,

4ℎ
(
𝑃𝑗
)
≤ ℎ

(
2𝑃𝑗

)
+ 𝐶′ = ℎ

(
𝑃𝑗−1 − 𝑄𝑖𝑗

)
+ 𝐶′ ≤ 2ℎ

(
𝑃𝑗−1

)
+ (𝐶 + 𝐶′) ,

so that

ℎ
(
𝑃𝑗
)
≤ 1

2
ℎ
(
𝑃𝑗−1

)
+ 1

4
(𝐶 + 𝐶′) = 3

4ℎ
(
𝑃𝑗−1

)
− 1

4

(
ℎ
(
𝑃𝑗−1

)
− (𝐶 + 𝐶′)

)
.



4 ELLIPTIC CURVES OVERℚ 57

If ℎ
(
𝑃𝑗−1

)
> 𝐶 + 𝐶′ for some 𝑗 ∈ ℤ>0, then ℎ

(
𝑃𝑗
)
< 3
4ℎ

(
𝑃𝑗−1

)
, so ℎ (𝑃𝑚) ≤ 𝐶 + 𝐶′ for

some𝑚 ∈ ℤ>0 such that𝑚 ≥ 𝑗 and 𝑃𝑚 ∈ 𝑆. Otherwise ℎ
(
𝑃𝑗−1

)
≤ 𝐶 + 𝐶′ for all 𝑗 ∈ ℤ>0,

so let𝑚 = 1 such that 𝑃𝑚 ∈ 𝑆 as well. Hence

𝑃 = 2𝑚+1𝑃𝑚 +
𝑚∑

𝑘=0
2𝑘𝑄𝑖𝑘 =

∑

𝑆𝑖∈𝑆
𝑛𝑖𝑆𝑖 +

𝑛∑

𝑖=1
𝑚𝑖𝑄𝑖, 𝑛𝑖, 𝑚𝑖 ∈ ℤ.

Thus 𝐺 is finitely generated by 𝑆 ∪ {𝑄𝑖}. 2

Mordell’s theorem is simply an application of the general descent procedure.

Proof (Proof of Theorem 4.28). The three properties of the function ℎ will be given in
Propositions 4.33, 4.34, 4.35 of the next section. The weak version of the theorem will be
given in Theorem 4.36 of the section after the next. Applying descent to 𝐺 = 𝐸 (ℚ) with ℎ
gives that 𝐸 (ℚ) is finitely generated. 2

The next subsections will be devoted to proving these claims.

e. Mordell’s theorem: heights
The function ℎ can be defined as follows.

Definition 4.31 (Height). Theheight of a point𝑃 ∈ 𝐸 (ℚ) is a function ℎ (𝑃) ∶ 𝐸 (ℚ) →
ℝ≥0 defined by ℎ (𝑃) = log2 (𝐻 (𝑃)), where

𝐻 (𝑃) =
⎧

⎨
⎩

max {|||𝑝||| , |||𝑞|||} 𝑃 = (𝑝𝑞 , 𝑦) , gcd (𝑝, 𝑞) = 1

1 𝑃 = 𝒪
.

Remark 4.32. The above definition for heights is chosen due to its simplicity, and is not
the canonical height in the general literature. The theory of height functions will not be
discussed here.

The three intended properties of height function will then be proven, the first of which
states that there are a finite number of points less than a given height. This property is
trivial and stated as follows.

Proposition 4.33. The set 𝑆 = {𝑃 ∈ 𝐸 (ℚ) ∣ ℎ (𝑃) ≤ 𝐶1} is finite for any 𝐶1 ∈ ℝ≥0.

Proof. Let 𝐶1 ∈ ℝ≥0 and 𝑃 ∈ 𝐸 (ℚ) be a point. If 𝑃 = 𝒪, then 𝑃 ∈ 𝑆. Otherwise
𝑃 = (𝑝∕𝑞, 𝑦), thenmax {|||𝑝||| , |||𝑞|||} ≤ 2𝐶1 , so −2𝐶1 ≤ 𝑝, 𝑞 ≤ 2𝐶1 . Thus |𝑆| ≤

(
2𝐶1+1 + 1

)2 + 1
is finite. 2

The second property provides an upper bound for the height of added points. This is
relatively easy and is stated in the following proposition.

Proposition 4.34. Let 𝑄 ∈ 𝐸 (ℚ). Then there is a constant 𝐶2 ∈ ℝ≥0 such that ℎ (𝑃 + 𝑄) ≤
2ℎ (𝑃) + 𝐶2 for any 𝑃 ∈ 𝐸 (ℚ).
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Proof. If 𝑃 = 𝒪 or 𝑄 = 𝒪 or 𝑃 + 𝑄 = 𝒪, let 𝐶2 = 2ℎ (𝑄) such that ℎ (𝑃 + 𝑄) ≤ 2ℎ (𝑃) +
2ℎ (𝑄). Otherwise 𝑃 = (𝑎, 𝑏) and 𝑄 = (𝑎′, 𝑏′) for 𝑎 ≠ 𝑎′ or 𝑎 = 𝑎′ and 𝑏 = 𝑏′ ≠ 0.
Assume that 𝑎 = 𝑎′ and 𝑏 = 𝑏′ ≠ 0, then let 𝐶2 = ℎ (2𝑄) such that ℎ (𝑃 + 𝑄) = ℎ (2𝑄) ≤
2ℎ (𝑃) + ℎ (2𝑄). Assume otherwise that 𝑎 ≠ 𝑎′, and let 𝐶2 = log2 (max {𝐾3, 𝐾2}), where

𝐾1 =
√
1 + |𝐴| + |𝐵|, 𝐾2 = 1 + |||𝑎′||| , 𝐾3 = (|𝐴| + |||𝑎′|||) 𝐾2 + 2 (|𝐵| + |||𝑏′||| 𝐾1) .

Then 𝑎 = 𝑝∕𝑑2 and 𝑏 = 𝑞∕𝑑3 for some 𝑝, 𝑞 ∈ ℤ and some 𝑑 ∈ ℤ>0 such that gcd (𝑝, 𝑑) =
gcd (𝑞, 𝑑) = 1, and 𝑞2 = 𝑝3 + 𝐴𝑝𝑑4 + 𝐵𝑑6. Since 𝐻 (𝑃) = max

{|||𝑝||| , |𝑑|
2}, it holds that

|||𝑝||| , |𝑑|
2 ≤ 𝐻 (𝑃), so |𝑑| ≤

√
𝐻 (𝑃) and

|||𝑞||| |𝑑| =
|||||
√
𝑝3 + 𝐴𝑝𝑑4 + 𝐵𝑑6||||| |𝑑| ≤

√
|||𝑝|||

3 |𝑑|2 + |𝐴| |||𝑝||| |𝑑|
6 + |𝐵| |𝑑|8 ≤ 𝐾1𝐻 (𝑃)2 .

Now let 𝑃 + 𝑄 = (𝑎′′, 𝑏′′). By the addition formula,

𝑎′′ = (𝐴 + 𝑎𝑎′) (𝑎 + 𝑎′) + 2 (𝐵 − 𝑏𝑏′)
(𝑎 − 𝑎′)2

=
(
𝐴𝑑2 + 𝑎′𝑝

) (
𝑝 + 𝑎′𝑑2

)
+ 2

(
𝐵𝑑4 − 𝑏′𝑞𝑑

)

(𝑝 − 𝑎′𝑑2)2
.

Thus

ℎ (𝑃 + 𝑄) ≤ log2 (max {
||||
(
𝐴𝑑2 + 𝑎′𝑝

) (
𝑝 + 𝑎′𝑑2

)
+ 2

(
𝐵𝑑4 − 𝑏′𝑞𝑑

)|||| ,
||||||
(
𝑝 − 𝑎′𝑑2

)2||||||
})

≤ log2 (max {
(
|𝐴| |𝑑|2 + |||𝑎′||| |||𝑝|||

) (|||𝑝||| + |||𝑎′||| |𝑑|
2) + 2

(
|𝐵| |𝑑|4 + |||𝑏′||| |||𝑞||| |𝑑|

)
,
(|||𝑝||| + |||𝑎′||| |𝑑|

2)2})

≤ log2
(
max

{
𝐾3𝐻 (𝑃)2 , 𝐾2𝐻 (𝑃)2

})
= log2

(
𝐻 (𝑃)2max {𝐾3, 𝐾2}

)
= 2ℎ (𝑃) + 𝐶2.2

The third property provides an lower bound for the height of doubled points. It is
more difficult as it involves seemingly arbitrary identities, and is stated in the following
proposition.

Proposition 4.35. There is a constant 𝐶3 ∈ ℝ≥0 such that ℎ (2𝑃) ≥ 4ℎ (𝑃) − 𝐶3 for any
𝑃 ∈ 𝐸 (ℚ).

Proof. If 𝑃 = 𝒪, let 𝐶3 = 0 such that ℎ (2𝑃) ≥ 4ℎ (𝑃). If 𝑃 = (𝑎, 0), let 𝐶3 = 4ℎ (𝑃) such
that ℎ (2𝑃) ≥ 0. Otherwise 𝑃 = (𝑎, 𝑏) for 𝑏 ≠ 0. Let 𝑎 = 𝑝∕𝑞 for some 𝑝 ∈ ℤ and some
𝑞 ∈ ℤ∗ such that gcd (𝑝, 𝑞) = 1, and let

𝑝′ = 𝑝4 − 2𝐴𝑝2𝑞2 − 8𝐵𝑝𝑞3 + 𝐴2𝑞4,
𝑞′ = 4𝑝3𝑞 + 4𝐴𝑝𝑞3 + 4𝐵𝑞4,
𝜆 = 12𝑝2𝑞 + 16𝐴𝑞3,
𝜇 = −3𝑝3 + 5𝐴𝑝𝑞2 + 27𝐵𝑞3,
𝜆′ =

(
16𝐴3 + 108𝐵2

)
𝑝3 − 4𝐴2𝐵𝑝2𝑞 +

(
12𝐴4 + 88𝐴𝐵2

)
𝑝𝑞2 +

(
12𝐴3𝐵 + 96𝐵3

)
𝑞3,

𝜇′ = 𝐴2𝐵𝑝3 +
(
5𝐴4 + 32𝐴𝐵2

)
𝑝2𝑞 +

(
26𝐴3𝐵 + 192𝐵3

)
𝑝𝑞2 −

(
3𝐴5 + 24𝐴2𝐵2

)
𝑞3,

𝐾1 = 4max {12, 16 |𝐴|} ,
𝐾2 = 4max {3, 5 |𝐴| , 27 |𝐵|} ,
𝐾3 = 4max

{
16 |𝐴|3 + 108𝐵2, 4𝐴2 |𝐵| , 12𝐴4 + 88 |𝐴| 𝐵2, 12 |𝐴|3 |𝐵| + 96 |𝐵|3

}
,

𝐾4 = 4max
{
𝐴2 |𝐵| , 5𝐴4 + 32 |𝐴| 𝐵2, 26 |𝐴|3 |𝐵| + 192 |𝐵|3 , 3 |𝐴|5 + 24𝐴2𝐵2

}
.
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Then it can be tediously verified that 𝜆𝑝′ + 𝜇𝑞′ = 4∆′
𝐸𝑞7 and 𝜆′𝑝′ + 𝜇′𝑞′ = 4∆′

𝐸𝑝7. Since
|||𝑝|||

2 |||𝑞||| and |||𝑝||| |||𝑞|||
2 are between |||𝑝|||

3 and |||𝑞|||
3, it holds thatmax

{|||𝑝|||
3 , |||𝑝|||

2 |||𝑞||| , |||𝑝||| |||𝑞|||
2 , |||𝑞|||

3} =
max

{|||𝑝|||
3 , |||𝑞|||

3}. Then it can also be verified that

|𝜆| ≤ 𝐾1𝑀, |||𝜇||| ≤ 𝐾2𝑀, |||𝜆′||| ≤ 𝐾3𝑀, |||𝜇′||| ≤ 𝐾4𝑀,

for𝑀 = max
{|||𝑝|||

3 , |||𝑞|||
3}, so let 𝐶3 = log2 (2max {𝐾1, 𝐾2, 𝐾3, 𝐾4}). Since

4 ||||∆
′
𝐸
||||max

{|||𝑝|||
3 , |||𝑞|||

3} (max {|||𝑝||| , |||𝑞|||})
4 = 4 ||||∆

′
𝐸
||||max

{|||𝑞|||
7 , |||𝑝|||

7} = max
{||||4∆

′
𝐸𝑞7

|||| ,
||||4∆

′
𝐸𝑝7

||||
}

≤ max {|𝜆| |||𝑝′||| + |||𝜇||| |||𝑞′||| , |||𝜆′||| |||𝑝′||| + |||𝜇′||| |||𝑞′|||}
≤ 2max {|𝜆| , |||𝜇||| , |||𝜆′||| , |||𝜇′|||}max {|||𝑝′||| , |||𝑞′|||}
≤ 2𝑀max {𝐾1, 𝐾2, 𝐾3, 𝐾4}max {|||𝑝′||| , |||𝑞′|||} ,

it holds that

4 ||||∆
′
𝐸
|||| 𝐻 (𝑃)4 = 4 ||||∆

′
𝐸
|||| (max {

|||𝑝||| , |||𝑞|||})
4 ≤ 2max {𝐾1, 𝐾2, 𝐾3, 𝐾4}max {|||𝑝′||| , |||𝑞′|||} .

Now let 2𝑃 = (𝑎′, 𝑏′). By the duplication formula,

𝑎′ = 𝑎4 − 2𝐴𝑎2 − 8𝐵𝑎 + 𝐴2

4𝑏2 = 𝑎4 − 2𝐴𝑎2 − 8𝐵𝑎 + 𝐴2

4𝑎3 + 4𝐴𝑎 + 4𝐵 = 𝑝′
𝑞′ .

Since 𝑔 = gcd (𝑝′, 𝑞′) ∣ gcd
(
4∆′

𝐸𝑝7, 4∆′
𝐸𝑞7

)
= 4∆′

𝐸, it holds that 1 ≤ |||𝑔||| ≤ 4 ||||∆
′
𝐸
||||. Thus

ℎ (2𝑃) = log2 (max {
|||||||
𝑝′
𝑔
|||||||
,
|||||||
𝑞′
𝑔
|||||||
}) = log2 (

max {|||𝑝′||| , |||𝑞′|||}
|||𝑔|||

)

≥ log2 (
max {|||𝑝′||| , |||𝑞′|||}

4 ||||∆
′
𝐸
||||

) ≥ log2 (
𝐻 (𝑃)4

2max {𝐾1, 𝐾2, 𝐾3, 𝐾4}
) ≥ 4ℎ (𝑃) − 𝐶3. 2

The properties of the height function ℎ are now verified.

f. Mordell’s theorem: Weak Mordell
The weak version of Mordell’s theorem, restricted to ℚ, states that the index of the normal
subgroup 2𝐸 (ℚ) = {2𝑃 ∣ 𝑃 ∈ 𝐸 (ℚ)} is finite.
Theorem 4.36 (Weak Mordell). |𝐸 (ℚ) ∶ 2𝐸 (ℚ)| is finite.

As full proofs of the weak theorem, such as in VIII.1 of ?, requires further prerequisites
on algebraic number theory, particularly finiteness of the ideal class group of number fields,
only an alternative proof is given, of which the special case of a rational 2-torsion point
(𝑎0, 0) is assumed. Since there is a 𝑗-invariant affine transformation (𝑥, 𝑦) ↦→ (𝑥 + 𝑎0, 𝑦),
there is an isomorphism from 𝐸 to the curve given by the Weierstrass equation

𝑦2 = (𝑥 + 𝑎0)
3 + 𝐴 (𝑥 + 𝑎0) + 𝐵 ⇐⇒ 𝑦2 = 𝑥3 + 3𝑎0𝑥2 +

(
3𝑎20 + 𝐴

)
𝑥.

Hence for this subsection and the next, assume without loss of generality that 𝑎0 = 0 and

𝑇 = (𝑎0, 0) = (0, 0) ∈ 𝐸 ∶ 𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝐵𝑥, 𝐴, 𝐵 ∈ ℤ.

The modified discriminant and group law is then given in the following lemma.
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Lemma 4.37. The following properties hold:
(a) 𝐵 ≠ 0 and 𝐴2 − 4𝐵 ≠ 0.
(b) Let 𝑃 = (𝑎, 𝑏) ∈ 𝐸 (ℚ) and 𝑄 = (𝑎′, 𝑏′) ∈ 𝐸 (ℚ) be points such that 𝑎 ≠ 𝑎′ and

𝑃 + 𝑄 = (𝑎′′, 𝑏′′) ∈ 𝐸 (ℚ). Then 𝑎𝑎′𝑎′′ = 𝜇2 for some 𝜇 ∈ ℚ.
(c) Let 𝑃 = (𝑎, 𝑏) ∈ 𝐸 (ℚ) be a point such that 𝑏 ≠ 0. Then

2𝑃 =
⎛
⎜
⎝

(
𝑎2 − 𝐵

)2

4𝑏2 ,
(
𝑎2 − 𝐵

) (
𝑎4 + 𝐵2 + 2𝐴𝑎3 + 2𝐴𝐵𝑎 + 6𝐵𝑎2

)

8𝑏3
⎞
⎟
⎠
∈ 𝐸 (ℚ) .

Proof. The negation formula remains unmodified, so − (𝑎, 𝑏) = (𝑎, −𝑏) for any point
(𝑎, 𝑏) ∈ 𝐸.
(a) Since 𝐸 is smooth and the discriminant is

∆𝐸 = 9 (4𝐴) (2𝐵) (0)− 1
4
(4𝐴)2

(
(4𝐴) (0) − (2𝐵)2

)
−8 (2𝐵)3−27 (0)2 = 16𝐵2

(
𝐴2 − 4𝐵

)
,

16𝐵2
(
𝐴2 − 4𝐵

)
≠ 0. Thus 𝐵 ≠ 0 and 𝐴2 − 4𝐵 ≠ 0.

(b) The line joining 𝑃 and 𝑄 is

𝐿 ∶ 𝑦 = 𝜆𝑥 + 𝜇, 𝜆 = 𝑏 − 𝑏′
𝑎 − 𝑎′ , 𝜇 = 𝑎𝑏′ − 𝑎′𝑏

𝑎 − 𝑎′ ,

which intersects𝐸 at𝑥3−
(
𝜆2 − 𝐴

)
𝑥2+(𝐵 − 2𝜆𝜇) 𝑥−𝜇2 = 0. Let𝑃 ∗ 𝑄 = − (𝑃 + 𝑄) =

(𝑎′′, −𝑏′′). Thus comparing coefficients gives 𝜇2 = 𝑎𝑎′𝑎′′.
(c) The tangent at 𝑃 is

𝐿 ∶ 𝑦 = 𝜆𝑥 + 𝜇, 𝜆 = 3𝑎2 + 2𝐴𝑎 + 𝐵
2𝑏 , 𝜇 = 𝑏2 − 𝐴𝑎2 − 2𝐵𝑎

2𝑏 ,

which intersects 𝐸 at 𝑥3 −
(
𝜆2 − 𝐴

)
𝑥2 + (𝐵 − 2𝜆𝜇) 𝑥 − 𝜇2 = 0. Let 𝑃 ∗ 𝑃 = −2𝑃 =

(𝑎′, −𝑏′), so comparing coefficients gives 𝜆2 − 𝐴 = 2𝑎 + 𝑎′. Thus

2𝑃 =
(
𝜆2 − 𝐴 − 2𝑎, 𝜇 − 𝜆

(
𝜆2 − 𝐴 − 2𝑎

))
∈ 𝐸 (ℚ) .

The above proof is brief but can be verified manually. Let a related curve be

𝐸′ ∶ 𝑦2 = 𝑥3 + 𝐴′𝑥2 + 𝐵′𝑥, 𝐴′ = −2𝐴, 𝐵′ = 𝐴2 − 4𝐵,

such that 𝑇 ∈ 𝐸′ and 𝐵′ ≠ 0. Then𝐴′2−4𝐵′ = (−2𝐴)2−4
(
𝐴2 − 4𝐵

)
= 16𝐵, and the group

law is similar to that of 𝐸 but with 𝐴′ and 𝐵′ instead of 𝐴 and 𝐵. Now let the two maps
𝜙 ∶ 𝐸 → 𝐸′ and 𝜓 ∶ 𝐸′ → 𝐸 be defined by

𝜙 (𝑃) =
⎧

⎨
⎩

(𝑏
2

𝑎2 ,
𝑏
(
𝑎2 − 𝐵

)

𝑎2 ) 𝑃 = (𝑎, 𝑏) ≠ 𝑇

𝒪 𝑃 ∈ {𝒪, 𝑇}
, 𝜓 (𝑃) =

⎧

⎨
⎩

( 𝑏
2

4𝑎2 ,
𝑏
(
𝑎2 − 𝐵′

)

8𝑎2 ) 𝑃 = (𝑎, 𝑏) ≠ 𝑇

𝒪 𝑃 ∈ {𝒪, 𝑇}
.

These two maps are related in the obvious way, where one can be seen as the scaling of the
other. They also relate the two elliptic curves, as seen in the following lemma.
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Lemma 4.38. 𝜙 ∶ 𝐸 → 𝐸′ and 𝜓 ∶ 𝐸′ → 𝐸 are isogenies such that 𝜓◦𝜙 = [2]𝐸 and
𝜙◦𝜓 = [2]𝐸′ .

Remark 4.39. Preserving the point at infinity induces a group homomorphism, but the
full property can be tediously verified in III.4 of ? for each case of the group law.

Proof. For any point 𝑃 = (𝑎, 𝑏) ∈ 𝐸,

(𝑏
2

𝑎2)
3

+𝐴′ (𝑏
2

𝑎2)
2

+𝐵′ 𝑏
2

𝑎2 =
𝑏2
𝑎4

⎛
⎜
⎝

(
𝑏2 − 𝐴𝑎2

)2 − 4𝐵𝑎4

𝑎2
⎞
⎟
⎠
= 𝑏2
𝑎4

⎛
⎜
⎝

(
𝑎3 + 𝐵𝑎

)2 − 4𝐵𝑎4

𝑎2
⎞
⎟
⎠
= (

𝑏
(
𝑎2 − 𝐵

)

𝑎2 )
2

,

so 𝜙 (𝑃) ∈ 𝐸′. Since 𝜙 (𝑇) = 𝜙 (𝒪) = 𝒪, it holds that 𝜙 is a well-defined non-constant
morphism, and hence an isogeny. Since 𝜓 can be seen as applying 𝜒◦𝜙 to 𝐸, where 𝜒 is
the 𝑗-invariant affine transformation (𝑥, 𝑦) ↦→ (𝑥∕4, 𝑦∕8), it is also a well-defined non-
constant morphism, and hence an isogeny. Now let 𝑃 ∈ 𝐸. If 𝑃 = 𝒪 or 𝑃 = (𝑎, 0), then
(𝜓◦𝜙) (𝑃) = 𝒪 = 2𝑃. Otherwise 𝑃 = (𝑎, 𝑏) such that 𝑎 ≠ 0 and 𝑏 ≠ 0, then

(𝜓◦𝜙) (𝑃) =
⎛
⎜
⎜
⎝

(
𝑏
(
𝑎2 − 𝐵

)
∕𝑎2

)2

4 (𝑏2∕𝑎2)2
,

(
𝑏
(
𝑎2 − 𝐵

)
∕𝑎2

) ((
𝑏2∕𝑎2

)2 − 𝐵′
)

8 (𝑏2∕𝑎2)2

⎞
⎟
⎟
⎠

=
⎛
⎜
⎝

(
𝑎2 − 𝐵

)2

4𝑏2 ,
(
𝑎2 − 𝐵

) (
𝑏4 −

(
𝐴2 − 4𝐵

)
𝑎4
)

8𝑏3𝑎2
⎞
⎟
⎠

=
⎛
⎜
⎝

(
𝑎2 − 𝐵

)2

4𝑏2 ,
(
𝑎2 − 𝐵

) (
𝑎4 + 𝐵2 + 2𝐴𝑎3 + 2𝐴𝐵𝑎 + 6𝐵𝑎2

)

8𝑏3
⎞
⎟
⎠
= 2𝑃.

Hence 𝜓◦𝜙 = [2]𝐸. Similarly let 𝑃′ ∈ 𝐸′. If 𝑃′ = 𝒪 or 𝑃′ = (𝑎, 0), then (𝜙◦𝜓) (𝑃′) = 𝒪 =
2𝑃′. Otherwise 𝑃′ = (𝑎, 𝑏) such that 𝑎 ≠ 0 and 𝑏 ≠ 0, then

(𝜙◦𝜓) (𝑃′) =
⎛
⎜
⎜
⎝

(
𝑏
(
𝑎2 − 𝐵′

)
∕8𝑎2

)2

(𝑏2∕4𝑎2)2
,

(
𝑏
(
𝑎2 − 𝐵′

)
∕8𝑎2

) ((
𝑏2∕4𝑎2

)2 − 𝐵
)

(𝑏2∕4𝑎2)2

⎞
⎟
⎟
⎠

=
⎛
⎜
⎝

(
𝑎2 − 𝐵′

)2

4𝑏2 ,
(
𝑎2 − 𝐵′

) (
𝑏4 − 16

((
𝐴′2 − 4𝐵′

)
∕16

)
𝑎4
)

8𝑏3𝑎2
⎞
⎟
⎠

=
⎛
⎜
⎝

(
𝑎2 − 𝐵′

)2

4𝑏2 ,
(
𝑎2 − 𝐵′

) (
𝑎4 + 𝐵′2 + 2𝐴′𝑎3 + 2𝐴′𝐵′𝑎 + 6𝐵′𝑎2

)

8𝑏3
⎞
⎟
⎠
= 2𝑃′.

Thus 𝜙◦𝜓 = [2]𝐸′ . 2

Hence the multiplication by 2map can be decomposed into two isogenies 𝜙 and 𝜓. As
only the image of these isogenies will be used, their standard forms will not be used to
prevent confusion.
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Remark 4.40. These two isogenies are dual isogenies to each other. Any isogeny of degree
𝑛 ∈ ℤ>0 has a dual isogeny, which composes with it to give two multiplication by 𝑛maps
in their respective domains.

The image of the isogeny 𝜓 depends on whether 𝐵 is a perfect square or whether 𝑥
coordinates are in the normal subgroup (ℚ∗)2 =

{
𝑞2 ∣ 𝑞 ∈ ℚ∗}. In particular, the equation

𝑥3 + 𝐴′𝑥 + 𝐵′ = 0 with discriminant 16
(
𝐴′2 − 4𝐵′

)
= 16𝐵 has two solutions in ℚ∗ iff

16𝐵 ∈ (ℤ∗)2, or 𝐵 ∈ (ℤ∗)2, stated as follows.

Lemma 4.41. The image 𝐼𝑚 (𝜓) is such that:
⋄ 𝒪 ∈ 𝐼𝑚 (𝜓),
⋄ 𝑇 ∈ 𝐼𝑚 (𝜓) iff 𝐵 ∈ (ℤ∗)2, and
⋄ (𝑎, 𝑏) ≠ 𝑇 ∈ 𝐼𝑚 (𝜓) iff 𝑎 ∈ (ℚ∗)2.

Proof. Since 𝜓 (𝒪) = 𝒪, it holds that 𝒪 ∈ 𝐼𝑚 (𝜓). Now 𝑇 ∈ 𝐼𝑚 (𝜓) iff there is a point
𝑃 = (𝑎, 𝑏) ∈ 𝐸′ (ℚ) such that 𝜓 (𝑃) = 𝑇 and 0 = 𝑏2∕4𝑎2. This holds iff 𝑎 ∈ ℚ∗ and
𝑏 = 0, or 𝐵 ∈ (ℤ∗)2. Now assume that 𝑃 = (𝑎, 𝑏) ≠ 𝑇 ∈ 𝐼𝑚 (𝜓). Then there is a point
𝑄 = (𝑎′, 𝑏′) ∈ 𝐸′ (ℚ) such that 𝜓 (𝑄) = 𝑃, so 𝑎 = 𝑏′2∕4𝑎′2 = (𝑏′∕2𝑎)2 ∈ (ℚ∗)2. Conversely
assume that 𝑃 = (𝑎, 𝑏) ≠ 𝑇 ∈ 𝐸 (ℚ) and 𝑎 ∈ (ℚ∗)2. Then 𝑎 = 𝑐2 for some 𝑐 ∈ ℚ∗, so

𝑏2 = 𝑐6 − 𝐴′𝑐4
2 + 𝐴′2 − 4𝐵′

16 𝑐2 ⇐⇒ 𝐵′ = (2𝑐2 − 𝐴′

2 + 2𝑏
𝑐 ) (2𝑐

2 − 𝐴′

2 − 2𝑏
𝑐 ) .

Now let 𝑄 = (𝑎′, 𝑏′), where 𝑎′ = 2𝑐2 − 𝐴′∕2 + 2𝑏∕𝑐 and 𝑏′ = 2𝑎′𝑐, such that 𝐵′ =
𝑎′ (𝑎′ − 4𝑏∕𝑐). Then

𝑎′3 + 𝐴′𝑎′2 + 𝐵′𝑎′ = 𝑎′3 + 𝐴′𝑎′2 + 𝑎′2 (𝑎′ − 2𝑏
𝑐 ) = 2𝑎′2 (𝑎′ + 𝐴′

2 − 4𝑏
𝑐 ) = 4𝑎′2𝑐2 = 𝑏′2,

so 𝑄 ∈ 𝐸′ (ℚ), and

𝜓 (𝑄) = ( 𝑏
′2

4𝑎′2 ,
𝑏′
(
𝑎′2 − 𝐵′

)

8𝑎′2 ) = (4𝑎
′2𝑐2

4𝑎′2 ,
2𝑎′𝑐

(
𝑎′2 − 𝑎′ (𝑎′ − 4𝑏∕𝑐)

)

8𝑎′2 ) = (𝑐2,
𝑐 (4𝑎′𝑏∕𝑐)

4𝑎′ ) = (𝑎, 𝑏) = 𝑃.

Thus 𝑃 ∈ 𝐼𝑚 (𝜓). 2

The image of the isogeny 𝜙 can be characterised analogously, and will not be explicitly
stated here. Now let another map be defined as

𝛼 ∶ 𝐸 (ℚ) → ℚ∗∕ (ℚ∗)2 , 𝛼 (𝑃) =
⎧

⎨
⎩

(ℚ∗)2 𝑎 𝑃 = (𝑎, 𝑏) ≠ 𝑇
(ℚ∗)2 𝐵 𝑃 = 𝑇
(ℚ∗)2 𝑃 = 𝒪

.

Then 𝜓 and 𝛼 induce an exact sequence 𝐸′ (ℚ)
𝜓
,→ 𝐸 (ℚ)

𝛼
,→ ℚ∗∕ (ℚ∗)2, which can be stated

more concretely in the following lemma.

Lemma 4.42. 𝛼 ∶ 𝐸 (ℚ) → ℚ∗∕ (ℚ∗)2 is a group homomorphism such that 𝐼𝑚 (𝜓) =
𝐾𝑒𝑟 (𝛼).



4 ELLIPTIC CURVES OVERℚ 63

Proof. Let 𝑃,𝑄 ∈ 𝐸 (ℚ) be points. If 𝑃 = 𝒪,

𝛼 (𝑃) 𝛼 (𝑄) = (ℚ∗)2 𝛼 (𝑄) = 𝛼 (𝑄) = 𝛼 (𝑃 + 𝑄) ,

or similar for 𝑄 = 𝒪. If 𝑃 = (𝑎, 𝑏) and 𝑄 = (𝑎′, 𝑏′) such that 𝑎 ≠ 𝑎′ and 𝑃+𝑄 = (𝑎′′, 𝑏′′) ∈
𝐸 (ℚ), then

𝛼 (𝑃) 𝛼 (𝑄) = (ℚ∗)2 𝑎 (ℚ∗)2 𝑎′ = (ℚ∗)2 𝑎𝑎′ = (ℚ∗)2
𝜇2
𝑎′′ = (ℚ∗)2 𝜇2𝑎′′ = (ℚ∗)2 𝑎′′ = 𝛼 (𝑃 + 𝑄) .

Otherwise 𝑃 = (𝑎, 𝑏) and 𝑄 = (𝑎, 𝑏′), then

𝛼 (𝑃) 𝛼 (𝑄) = (ℚ∗)2 𝑎 (ℚ∗)2 𝑎 = (ℚ∗)2 𝑎2 = (ℚ∗)2 = (ℚ∗)2
(
𝑎2 − 𝐵

)2

4𝑏2 = 𝛼 (𝑃 + 𝑄) .

Hence 𝛼 is a group homomorphism. Now𝒪 ∈ 𝐾𝑒𝑟 (𝛼), the point 𝑇 ∈ 𝐾𝑒𝑟 (𝛼) iff 𝐵 ∈ (ℚ∗)2,
and a point (𝑎, 𝑏) ≠ 𝑇 ∈ 𝐾𝑒𝑟 (𝛼) iff 𝑎 ∈ (ℚ∗)2. Thus 𝐼𝑚 (𝜓) = 𝐾𝑒𝑟 (𝛼). 2

The image of the group homomorphism𝛼 can again be characterised, as being contained
in a finite subgroup of ℚ∗∕ (ℚ∗)2. Now let 𝑆 (𝐵) be the set of primes 𝑝 ∈ ℤ>0 such that
𝑝 ∣ 𝐵, and let

𝐺 (𝐵) =
⎧

⎨
⎩

(ℚ∗)2
⎛
⎜
⎝

∏

𝑝∈𝑆
𝑝
⎞
⎟
⎠

|||||||||
𝑆 ⊆ 𝑆 (𝐵)

⎫

⎬
⎭

∪
⎧

⎨
⎩

(ℚ∗)2
⎛
⎜
⎝
−
∏

𝑝∈𝑆
𝑝
⎞
⎟
⎠

|||||||||
𝑆 ⊆ 𝑆 (𝐵)

⎫

⎬
⎭

.

Recalling the fact that for any point (𝑎, 𝑏) ∈ 𝐸 (ℚ),

𝑎 = 𝑝∕𝑑2, 𝑏 = 𝑞∕𝑑3, 𝑝, 𝑞 ∈ ℤ, 𝑑 ∈ ℤ>0,

such that gcd (𝑝, 𝑑) = gcd (𝑞, 𝑑) = 1, the following lemma characterises 𝛼.

Lemma 4.43. 𝐺 (𝐵) is a group such that |𝐺 (𝐵)| = 2|𝑆(𝐵)|+1 and 𝐼𝑚 (𝛼) ≤ 𝐺 (𝐵) ≤ ℚ∗∕ (ℚ∗)2.

Proof. Since ∅ ⊆ 𝑆 (𝐵), it holds that (ℚ∗)2 ∈ 𝐺 (𝐵). Let 𝑎, 𝑏 ∈ 𝐺 (𝐵). Then

𝑎 = (ℚ∗)2 𝑗𝑝1…𝑝𝑛𝑝′1…𝑝′𝑛′ , 𝑏 = (ℚ∗)2 𝑗′𝑝1…𝑝𝑛𝑝′′1 …𝑝′′𝑛′′

for some 𝑗, 𝑗′ ∈ {−1, 1} and some distinct primes 𝑝𝑖, 𝑝′𝑖 , 𝑝′′𝑖 ∈ 𝑆 (𝐵), so

𝑎
𝑏 =

(ℚ∗)2 𝑗𝑝1…𝑝𝑛𝑝′1…𝑝′𝑛′
(ℚ∗)2 𝑗′𝑝1…𝑝𝑛𝑝′′1 …𝑝′′𝑛′′

= (ℚ∗)2
𝑗𝑝′1…𝑝′𝑛′
𝑗′𝑝′′1 …𝑝′′𝑛′′

= (ℚ∗)2 𝑗𝑗′𝑝′1…𝑝′𝑛′𝑝
′′
1 …𝑝′′𝑛′′ ∈ 𝐺 (𝐵) .

Hence 𝐺 (𝐵) ≤ ℚ∗∕ (ℚ∗)2 and |𝐺 (𝐵)| = 2|𝑆(𝐵)| + 2|𝑆(𝐵)| = 2|𝑆(𝐵)|+1. Now let 𝑃 ∈ 𝐸 (ℚ) be
a point. If 𝑃 = 𝒪, then 𝛼 (𝑃) = (ℚ∗)2 ∈ 𝐺 (𝐵). If 𝑃 = 𝑇, then 𝛼 (𝑃) = (ℚ∗)2 𝐵 ∈ 𝐺 (𝐵).
Otherwise 𝑃 = (𝑎, 𝑏) ≠ 𝑇, then 𝑎 = 𝑟∕𝑑2 and 𝑏 = 𝑠∕𝑑3 for some 𝑟, 𝑠 ∈ ℤ and some 𝑑 ∈ ℤ>0
such that gcd (𝑟, 𝑑) = gcd (𝑠, 𝑑) = 1 and 𝑠2 = 𝑟3+𝐴𝑟2𝑑2+𝐵𝑟𝑑4 = 𝑟

(
𝑟2 + 𝐴𝑟𝑑2 + 𝐵𝑑4

)
. Let

𝑔 = gcd
(
𝑟, 𝑟2 + 𝐴𝑟𝑑2 + 𝐵𝑑4

)
, then 𝑟 = 𝑐𝑔 and 𝑟2 + 𝐴𝑟𝑑2 + 𝐵𝑑4 = 𝑐′𝑔 for some 𝑐, 𝑐′ ∈ ℤ≥0

such that gcd (𝑐, 𝑐′) = 1. Since 𝑠2 = (𝑐𝑔) (𝑐′𝑔) = 𝑐𝑐′𝑔2, it holds that (𝑠∕𝑔)2 = 𝑐𝑐′, so
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𝑐 = 𝑘𝑞21⋯𝑞2𝑚 for some 𝑘 ∈ {−1, 1} and some primes 𝑞𝑖 ∈ ℤ>0. Since 𝑔 ∣ 𝑟 and 𝑔 ∣ 𝐵𝑑4, it
also holds that 𝑔 ∣ 𝐵, so 𝑔 = 𝑘′𝑞′1…𝑞′𝑚′ for some 𝑘′ ∈ {−1, 1} and some primes 𝑞′𝑖 ∈ ℤ>0
such that 𝑞′𝑖 ∣ 𝐵, and hence 𝑞′𝑖 ∈ 𝑆 (𝐵). Hence

𝛼 (𝑃) = (ℚ∗)2 𝑎 = (ℚ∗)2 𝑟
𝑑2 = (ℚ∗)2

𝑘𝑘′𝑞21⋯𝑞2𝑚𝑞′1…𝑞′𝑚′

𝑑2 = (ℚ∗)2 𝑘𝑘′𝑞′1…𝑞′𝑚′ ∈ 𝐺 (𝐵) .

Thus 𝐼𝑚 (𝛼) ≤ 𝐺 (𝐵). 2

A similar group homomorphism 𝛼′ ∶ 𝐸′ (ℚ) → ℚ∗∕ (ℚ∗)2 can again be characterised
analogously, and will not be explicitly stated here. The weak theorem can then be proven
here, for the special case of a rational 2-torsion point.

Proof (Proof of Theorem 4.36). The first isomorphism theorem with the preceding
lemmas give two inclusions

𝐸 (ℚ)
𝐼𝑚 (𝜓)

= 𝐸 (ℚ)
𝐾𝑒𝑟 (𝛼)

≅ 𝐼𝑚 (𝛼) ≤ 𝐺 (𝐵) ,
𝐸′ (ℚ)
𝐼𝑚 (𝜙)

= 𝐸′ (ℚ)
𝐾𝑒𝑟 (𝛼′)

≅ 𝐼𝑚 (𝛼′) ≤ 𝐺 (𝐵′) ,

which give finite indices

𝑛 = |||𝐸 (ℚ) ∶ 𝐼𝑚 (𝜓)||| ≤ |𝐺 (𝐵)| = 2|𝑆(𝐵)|+1, 𝑚 = |||𝐸′ (ℚ) ∶ 𝐼𝑚 (𝜙)||| ≤ |||𝐺 (𝐵′)||| = 2|𝑆(𝐵′)|+1.

Let 𝑃1, … , 𝑃𝑛 ∈ 𝐸 (ℚ) be representative points such that 𝐼𝑚 (𝜓) + 𝑃𝑖 ∈ 𝐸 (ℚ) ∕𝐼𝑚 (𝜓) are
distinct cosets, and let 𝑄1, … , 𝑄𝑚 ∈ 𝐸′ (ℚ) be representative points such that 𝐼𝑚 (𝜙) + 𝑄𝑖 ∈
𝐸′ (ℚ) ∕𝐼𝑚 (𝜙) are distinct cosets. Now let 𝑃 ∈ 𝐸 (ℚ) be a point. Then 𝐼𝑚 (𝜓) + 𝑃 =
𝐼𝑚 (𝜓)+𝑃𝑗 for some 𝑗 ∈ {1, … , 𝑛}, so𝑃 = 𝜓 (𝑄)+𝑃𝑗 for some𝑄 ∈ 𝐸′ (ℚ) and𝜓 (𝑄) ∈ 𝐼𝑚 (𝜓).
Similarly 𝐼𝑚 (𝜙) + 𝑄 = 𝐼𝑚 (𝜙) + 𝑄𝑘 for some 𝑘 ∈ {1, … ,𝑚}, so 𝑄 = 𝜙 (𝑃′) + 𝑄𝑘 for some
𝑃′ ∈ 𝐸 (ℚ) and 𝜙 (𝑃′) ∈ 𝐼𝑚 (𝜙). Hence

𝑃 = 𝜓 (𝑄) + 𝑃𝑗 = 𝜓 (𝜙 (𝑃′) + 𝑄𝑘) + 𝑃𝑗 = 𝜓 (𝜙 (𝑃′)) + 𝜓 (𝑄𝑘) + 𝑃𝑗 ∈ 2𝐸 (ℚ) + 𝜓 (𝑄𝑘) + 𝑃𝑗,

and 𝜓 (𝑄𝑘) + 𝑃𝑗 ∈ 𝐸 (ℚ) represent all cosets in 𝐸 (ℚ) ∕2𝐸 (ℚ). Thus

|𝐸 (ℚ) ∶ 2𝐸 (ℚ)| ≤ 𝑛𝑚 = 2(|𝑆(𝐵)|+1)(|𝑆(𝐵′)|+1)

is finite. 2

The proof of Mordell’s theorem is now complete.

g. Rank computation
A direct application of Mordell’s theorem would be the fundamental theorem of finite
abelian groups,

𝐸 (ℚ) ≅ ℤ𝑟 ⊕
𝑚⨁

𝑖=1
ℤ𝑛𝑖 , 𝑟,𝑚 ∈ ℤ≥0, 𝑛𝑖 ∈ ℤ>1,
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such that each 𝑛𝑖 ∣ 𝑛𝑖+1. Thus for any point 𝑃 ∈ 𝐸 (ℚ),

𝑃 =
𝑟∑

𝑖=1
𝑟𝑖𝑃𝑖 +

𝑚∑

𝑖=1
𝑚𝑖𝑄𝑖, 𝑟𝑖 ∈ ℤ, 𝑚𝑖 ∈ ℤ𝑛𝑖 , 𝑃𝑖, 𝑄𝑖 ∈ 𝐸 (ℚ) .

While the torsion subgroup can be easily computed, the rank 𝑟 is generally difficult to
compute, and can only be made slightly easier with Mordell’s theorem. Noting that⨁

𝑖 (𝐺𝑖∕𝐻𝑖) ≅
(⨁

𝑖 𝐺𝑖
)
∕
(⨁

𝑖𝐻𝑖
)
for any groups 𝐺𝑖, 𝐻𝑖, the following proposition gives

a direct formula for the rank.

Proposition 4.44. The rank 𝑟 = 𝑟𝑘 (𝐸 (ℚ)) is such that

2𝑟 = 1
4
|𝐼𝑚 (𝛼)| |||𝐼𝑚 (𝛼′)||| .

Proof. The fundamental theorem of finite abelian groups gives

𝐸 (ℚ)
2𝐸 (ℚ)

≅
ℤ𝑟 ⊕⨁𝑚

𝑖=1ℤ𝑛𝑖

𝑟2ℤ ⊕⨁𝑚
𝑖=1 2ℤ𝑛𝑖

≅ 𝑟 ( ℤ2ℤ) ⊕
𝑚⨁

𝑖=1

ℤ𝑛𝑖
2ℤ𝑛𝑖

.

Then ℤ∕2ℤ ≅ ℤ2. If 𝑛𝑖 ∤ 2, then 2−1 ∈ ℤ𝑛𝑖 , so ℤ𝑛𝑖 ≅ 2ℤ𝑛𝑖 and ℤ𝑛𝑖∕2ℤ𝑛𝑖 ≅ 0, otherwise
𝑛𝑖 ∣ 2. Now 𝑃 ∈ 𝐸 (ℚ) [2] iff 2𝑃 = 0, or each 𝑟𝑖 = 0 and each 2𝑚𝑖 = 0 mod 𝑛𝑖, which holds
iff𝑚𝑖 = 0 or 𝑛𝑖 ∣ 2, so 𝐸 (ℚ) [2] =

⨁
𝑛𝑖 ∣2

ℤ𝑛𝑖 . Hence

𝐸 (ℚ)
2𝐸 (ℚ)

≅ ℤ𝑟
2 ⊕𝐸 (ℚ) [2] ⇐⇒ |𝐸 (ℚ) ∶ 2𝐸 (ℚ)| = 2𝑟 |𝐸 (ℚ) [2]| .

Now let 𝜃 ∶ 𝐸′ (ℚ) → 𝐼𝑚 (𝜓) ∕2𝐸 (ℚ) be a surjective group homomorphism defined by
𝜃 (𝑃) = 2𝐸 (ℚ) + 𝜓 (𝑃). Then 𝑃 ∈ 𝐾𝑒𝑟 (𝜃) iff 𝜓 (𝑃) ∈ 2𝐸 (ℚ), or 𝜓 (𝑃) = 𝜓 (𝜙 (𝑄)) for some
𝑄 ∈ 𝐸 (ℚ). This holds iff𝜓 (𝑃 − 𝜙 (𝑄)) = 0, or𝑃−𝜙 (𝑄) ∈ 𝐾𝑒𝑟 (𝜓) and𝑃 ∈ 𝐾𝑒𝑟 (𝜓)+𝐼𝑚 (𝜙).
Then the three isomorphism theorems with 𝐾𝑒𝑟 (𝜃) = 𝐾𝑒𝑟 (𝜓) + 𝐼𝑚 (𝜙) give

𝐼𝑚 (𝜓)
2𝐸 (ℚ)

≅ 𝐸′ (ℚ)
𝐾𝑒𝑟 (𝜓) + 𝐼𝑚 (𝜙)

≅

𝐸′ (ℚ)
𝐼𝑚 (𝜙)

𝐾𝑒𝑟 (𝜓) + 𝐼𝑚 (𝜙)
𝐼𝑚 (𝜙)

≅

𝐸′ (ℚ)
𝐼𝑚 (𝜙)
𝐾𝑒𝑟 (𝜓)

𝐾𝑒𝑟 (𝜓) ∩ 𝐼𝑚 (𝜙)

.

Hence

|𝐸 (ℚ) ∶ 2𝐸 (ℚ)| =
|||𝐸 (ℚ) ∶ 𝐼𝑚 (𝜓)||| |||𝐸′ (ℚ) ∶ 𝐼𝑚 (𝜙)|||
|||𝐾𝑒𝑟 (𝜓) ∶ 𝐾𝑒𝑟 (𝜓) ∩ 𝐼𝑚 (𝜙)|||

= |𝐼𝑚 (𝛼)| |||𝐼𝑚 (𝛼′)|||
|||𝐾𝑒𝑟 (𝜓) ∶ 𝐾𝑒𝑟 (𝜓) ∩ 𝐼𝑚 (𝜙)|||

.

Now 𝐵′ ∈ (ℤ∗)2 iff 𝑇 ∈ 𝐼𝑚 (𝜙) and the equation 𝑥2 + 𝐴𝑥 + 𝐵 = 0 with discriminant
16
(
𝐴2 − 4𝐵2

)
= 16𝐵′ has solutions in ℤ∗. Since 𝐾𝑒𝑟 (𝜓) = {𝒪, 𝑇} and 𝒪 ∈ 𝐼𝑚 (𝜙), this

holds iff𝐾𝑒𝑟 (𝜓)∩𝐼𝑚 (𝜙) = {𝒪, 𝑇}. Since𝒪, 𝑇 ∈ 𝐸 (ℚ) [2], this also holds iff (𝑎, 0) , (𝑎′, 0) ∈
𝐸 (ℚ) [2] for the solutions 𝑎, 𝑎′ ∈ ℚ∗ of 𝑥2 + 𝐴𝑥 + 𝐵 = 0. Hence

𝐸 (ℚ) [2] = {{𝒪, 𝑇, (𝑎, 0) , (𝑎
′, 0)} 𝐵′ ∈ (ℤ∗)2

{𝒪, 𝑇} 𝐵′ ∉ (ℤ∗)2
, 𝐾𝑒𝑟 (𝜓)

𝐾𝑒𝑟 (𝜓) ∩ 𝐼𝑚 (𝜙)
= {{𝒪} 𝐵′ ∈ (ℤ∗)2

{𝒪, 𝑇} 𝐵′ ∉ (ℤ∗)2
,

so |||𝐾𝑒𝑟 (𝜓) ∶ 𝐾𝑒𝑟 (𝜓) ∩ 𝐼𝑚 (𝜙)||| |𝐸 (ℚ) [2]| = 4. Thus

2𝑟 = |𝐼𝑚 (𝛼)| |||𝐼𝑚 (𝛼′)|||
|||𝐾𝑒𝑟 (𝜓) ∶ 𝐾𝑒𝑟 (𝜓) ∩ 𝐼𝑚 (𝜙)||| |𝐸 (ℚ) [2]|

= 1
4
|𝐼𝑚 (𝛼)| |||𝐼𝑚 (𝛼′)||| .
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Computation of the rank simply reduces to determining images of 𝛼 and 𝛼′. This in
turn can be rephrased as a question of Diophantine equations.

Proposition 4.45. The image 𝐼𝑚 (𝛼) is such that

𝐼𝑚 (𝛼) =
{
(ℚ∗)2 𝛽 ||||| 𝛽, 𝐵∕𝛽 ∈ ℤ∗, (𝑋, 𝑌, 𝑍) ∈ ℤ3 ⧵ {(0, 0, 0)} , 𝑌2 = 𝛽𝑋4 + 𝐴𝑋2𝑍2 + (𝐵∕𝛽) 𝑍4

}
.

Proof. Since (ℚ∗)2 ∈ 𝐼𝑚 (𝛼), there is a solution (𝑋, 𝑌, 𝑍) = (1, 1, 0) for 𝛽 = 1. Since
(ℚ∗)2 𝐵 ∈ 𝐼𝑚 (𝛼), there is also a solution (𝑋, 𝑌, 𝑍) = (0, 1, 1) for 𝛽 = 𝐵. Let 𝑃 = (𝑎, 𝑏) ≠
𝑇 ∈ 𝐸 (ℚ) such that (ℚ∗)2 𝑎 ∈ 𝐼𝑚 (𝛼). Then 𝑎 = 𝑟∕𝑍2

0 and 𝑏 = 𝑠∕𝑍3
0 for some 𝑟, 𝑠 ∈ ℤ

and some 𝑍0 ∈ ℤ>0 such that gcd (𝑟, 𝑍0) = gcd (𝑠, 𝑍0) = 1. Now let 𝑟 = 𝑋2
0𝛽0, where

𝑋0 = 𝑝1…𝑝𝑛 ∈ ℤ>0 for some primes 𝑝𝑖 ∈ ℤ>0 and 𝛽0 = 𝑗𝑞1…𝑞𝑛 for some 𝑗 ∈ {−1, 1} and
some distinct primes 𝑞𝑖 ∈ ℤ>0. Since (ℚ∗)2 𝛽0 = (ℚ∗)2𝑋2

0𝛽0∕𝑍2
0 = (ℚ∗)2 𝛽0 ∈ 𝐺 (𝐵), each

𝑞𝑖 ∣ 𝐵, so 𝛽0 ∣ 𝐵 and hence 𝐵∕𝛽0 ∈ ℤ∗. Then

( 𝑠
𝑍3
0
)
2

= (
𝑋2
0𝛽0
𝑍2
0
)
3

+𝐴(
𝑋2
0𝛽0
𝑍2
0
)
2

+𝐵
𝑋2
0𝛽0
𝑍2
0

⇐⇒ 𝑠2 = 𝛽20𝑋2
0
(
𝛽0𝑋4

0 + 𝐴𝑋2
0𝑍2

0 + (𝐵∕𝛽0) 𝑍4
0
)
,

so let 𝑌0 = 𝑠2∕𝛽20𝑋2
0 ∈ ℤ such that 𝑌2

0 = 𝛽0𝑋4
0 + 𝐴𝑋2

0𝑍2
0 + (𝐵∕𝛽0) 𝑍4

0 . Hence there is a non-
zero solution (𝑋, 𝑌, 𝑍) = (𝑋0, 𝑌0, 𝑍0) for 𝛽 = 𝛽0. Conversely let (𝑋, 𝑌, 𝑍) = (𝑋0, 𝑌0, 𝑍0)
be a non-zero solution for some 𝛽 = 𝛽0 ∈ ℤ∗, so 𝑌2

0 = 𝛽0𝑋4
0 + 𝐴𝑋2

0𝑍2
0 + (𝐵∕𝛽0) 𝑍4

0 . Then
𝑃 =

(
𝛽0𝑋2

0∕𝑍2
0 , 𝛽0𝑋0𝑌0∕𝑍3

0
)
is such that

(
𝛽0𝑋0𝑌0

𝑍3
0

)
2

=
𝛽20𝑋2

0
(
𝛽0𝑋4

0 + 𝐴𝑋2
0𝑍2

0 + (𝐵∕𝛽0) 𝑍4
0
)

𝑍6
0

= (
𝛽0𝑋2

0

𝑍2
0
)
3

+ 𝐴(
𝛽0𝑋2

0

𝑍2
0
)
2

+ 𝐵
𝛽0𝑋2

0

𝑍2
0
,

so 𝑃 ∈ 𝐸 (ℚ) and 𝛼 (𝑃) = (ℚ∗)2
(
𝛽0𝑋2

0∕𝑍2
0
)
= (ℚ∗)2 𝛽0. Thus any non-zero solution is in

𝐼𝑚 (𝛼). 2

Again, the image of 𝛼′ is similar to that of 𝛼 but with 𝐵′ instead of 𝐵. The following
example illustrates the full computation of the rank of a simple elliptic curve.

Example 4.46. Let𝐸 ∶ 𝑦2 = 𝑥3−𝑥 be an elliptic curve overℚ. Then 𝛽 ∈ {±1}. Since 𝛽 = 1
and 𝛽 = −1 = 𝐵 have solutions, it holds that |𝐼𝑚 (𝛼)| = 2. Now 𝐸′ ∶ 𝑦2 = 𝑥3 + 4𝑥 gives
𝛽 ∈ {±1, ±2, ±4}. Since (ℚ∗)2 (±1) = (ℚ∗)2 (±4), the Diophantine equations to consider
are:
(a) 𝛽 = 1 gives 𝑌2 = 𝑋4 + 4𝑍4, which has a solution (𝑋, 𝑌, 𝑍) = (0, 2, 1).
(b) 𝛽 = 2 gives 𝑌2 = 2𝑋4 + 2𝑍4, which has a solution (𝑋, 𝑌, 𝑍) = (1, 2, 1).
(c) 𝛽 = −1 gives 𝑌2 = −𝑋4 − 4𝑍4, which has no solutions by sign disparity.
(d) 𝛽 = −2 gives 𝑌2 = −2𝑋4 − 2𝑍4, which has no solutions by sign disparity.

Hence |||𝐼𝑚 (𝛼′)||| = 2 and 2𝑟 = 1
4
(2) (2) = 1. Thus 𝑟𝑘 (𝐸 (ℚ)) = 0 and 𝐸 (ℚ) = 𝐸 (ℚ)𝑡𝑜𝑟𝑠 ≅

ℤ2.

The following algorithm summarises the process and code in the appendix.

Algorithm 4.47 (Computation of the rank). Input: an elliptic curve 𝐸 over ℚ. Out-
put: 𝑟𝑘 (𝐸 (ℚ)).
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(a) Get all positive 𝛽 such that 𝛽 ∣ 𝐵 and free the squares from each 𝛽.
(b) Print all Diophantine equations of the form 𝑌2 = 𝛽𝑋4 + 𝐴𝑋2𝑍2 + (𝐵∕𝛽) 𝑍4.
(c) Write down the elliptic curve 𝐸′ ∶ 𝑦2 = 𝑥3 − 2𝐴𝑥2 +

(
𝐴2 − 4𝐵

)
𝑥 and do the same.

(d) Check if there are non-zero solutions to the systems of Diophantine equations.
(e) Compute the rank with the formula 𝑟𝑘 (𝐸 (ℚ)) = log2 |𝐼𝑚 (𝛼)| + log2 |||𝐼𝑚 (𝛼′)||| − 2.

Unfortunately, there are no known effective method for the second to last step. In
contrast to attempting at a number theoretic algorithm like in ?, only ad-hoc congruences
will be used to complete the computations in the following examples of elliptic curves given
by theWeierstrass equations 𝑦2 = 𝑥3−𝑝𝑥 for 𝑝 ∈ ℤ>0. The following example is an elliptic
curve of rank one.

Example 4.48. Let 𝐸 ∶ 𝑦2 = 𝑥3 −5𝑥 be an elliptic curve overℚ, which gives 𝛽 ∈ {±1, ±5}.
Since 𝛽 = 1 and 𝛽 = −5 have trivial solutions, the Diophantine equations to consider
are 𝑌2 = −𝑋4 + 5𝑍4, which has a solution (𝑋, 𝑌, 𝑍) = (1, 2, 1), and 𝑌2 = 5𝑋4 − 𝑍4,
which has a solution by symmetry. Hence |𝐼𝑚 (𝛼)| = 4. Now 𝐸′ ∶ 𝑦2 = 𝑥3 + 20𝑥 gives
𝛽 ∈ {±1, ±2, ±5, ±10}. If 𝛽 < 0, there are no solutions by sign disparity. Since 𝛽 = 1 and
𝛽 = 5 have trivial solutions, the Diophantine equations to consider are 𝑌2 = 2𝑋4 + 10𝑍4

and 𝑌2 = 10𝑋4 + 2𝑍4. Since gcd (𝑋0, 𝑌0) = 1, if the first has a solution (𝑋, 𝑌, 𝑍) =
(𝑋0, 𝑌0, 𝑍0), then 𝑌2

0 ≡ 2𝑋4
0 ≡ 2 mod 5 gives no solutions for 𝑌0, so both equations have

no solutions. Hence |||𝐼𝑚 (𝛼′)||| = 2. Thus 𝑟𝑘 (𝐸 (ℚ)) = log2 (4) + log2 (2) − 2 = 1 and
𝐸 (ℚ) ≅ ℤ⊕ 𝐸 (ℚ)𝑡𝑜𝑟𝑠 ≅ ℤ × ℤ2.

The following example is an elliptic curve of rank two.

Example 4.49. Let 𝐸 ∶ 𝑦2 = 𝑥3 − 17𝑥 be an elliptic curve over ℚ, which gives 𝛽 ∈
{±1, ±17}. Since 𝛽 = 1 and 𝛽 = −17 have trivial solutions, the Diophantine equations
to consider are 𝑌2 = −𝑋4 + 17𝑍4, which has a solution (𝑋, 𝑌, 𝑍) = (1, 4, 1), and 𝑌2 =
17𝑋4−𝑍4, which has a solution by symmetry. Hence |𝐼𝑚 (𝛼)| = 4. Now 𝐸′ ∶ 𝑦2 = 𝑥3+68𝑥
gives 𝛽 ∈ {±1, ±2, ±17, ±34}. If 𝛽 < 0, there are no solutions by sign disparity. Since
𝛽 = 1 and 𝛽 = 17 have trivial solutions, the Diophantine equations to consider are
𝑌2 = 2𝑋4+34𝑍4, which has a solution (𝑋, 𝑌, 𝑍) = (1, 6, 1), and𝑌2 = 34𝑋4+2𝑍4, which has
a solution by symmetry. Hence |||𝐼𝑚 (𝛼′)||| = 4. Thus 𝑟𝑘 (𝐸 (ℚ)) = log2 (4) + log2 (4) − 2 = 2
and 𝐸 (ℚ) ≅ ℤ2 ⊕𝐸 (ℚ)𝑡𝑜𝑟𝑠 ≅ ℤ2 × ℤ2.

The following example is an elliptic curve of rank three.

Example 4.50. Let 𝐸 ∶ 𝑦2 = 𝑥3 − 226𝑥 be an elliptic curve over ℚ, which gives 𝛽 ∈
{±1, ±2, ±113, ±226}. Since 𝛽 = 1 and 𝛽 = −226 have trivial solutions, the Diophantine
equations to consider are 𝑌2 = −𝑋4 + 226𝑍4, 𝑌2 = 2𝑋4 − 113𝑍4, 𝑌2 = −2𝑋4 + 113𝑍4,
𝑌2 = 113𝑋4−2𝑍4,𝑌2 = −113𝑋4+2𝑍4, and𝑌2 = 226𝑋4−𝑍4. The first three have solutions
(𝑋, 𝑌, 𝑍) = (1, 15, 1), (𝑋, 𝑌, 𝑍) = (3, 7, 1), and (𝑋, 𝑌, 𝑍) = (1, 9, 2) respectively, while the
last three have solutions by symmetry. Hence |𝐼𝑚 (𝛼)| = 8. Now 𝐸′ ∶ 𝑦2 = 𝑥3 + 904𝑥 gives
𝛽 ∈ {±1, ±2, ±113, ±226}. If 𝛽 < 0, there are no solutions by sign disparity. Since 𝛽 = 1 and
𝛽 = 226 have trivial solutions, the Diophantine equations to consider are𝑌2 = 2𝑋4+452𝑍4,
which has a solution (𝑋, 𝑌, 𝑍) = (1, 22, 2), and 𝑌2 = 113𝑋4 + 8𝑍4, which has a solution
(𝑋, 𝑌, 𝑍) = (1, 11, 1). Hence |||𝐼𝑚 (𝛼′)||| = 4. Thus 𝑟𝑘 (𝐸 (ℚ)) = log2 (8) + log2 (4) − 2 = 3
and 𝐸 (ℚ) ≅ ℤ3 ⊕𝐸 (ℚ)𝑡𝑜𝑟𝑠 ≅ ℤ3 × ℤ2.
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The ranks of elliptic curves above are relatively small in value and easy to compute, but
there are elliptic curves with larger rank values. The record as of 2018 in ? for the elliptic
curve with the largest rank was discovered by Elkies in 2006, and is given by theWeierstrass
curve

𝐸 ∶ 𝑦2+𝑥𝑦+𝑦 = 𝑥3−𝑥2−20067762415575526585033208209338542750930230312178956502𝑥

+34481611795030556467032985690390720374855944359319180361266008296291939448732243429,
which is proven to have rank at least 28. There are also elliptic curves with relatively large
ranks known exactly, the largest of which was also discovered by Elkies in 2009, and is
given by the Weierstrass curve

𝐸 ∶ 𝑦2 + 𝑥𝑦 + 𝑦 = 𝑥3 − 𝑥2 + 31368015812338065133318565292206590792820353345𝑥

+302038802698566087335643188429543498624522041683874493555186062568159847,
which has rank 19. In fact, it is conjectured that the rank of an elliptic curve does not have
an upper bound.

Conjecture 4.51. There are elliptic curves overℚ of arbitrary large rank.

However, while they exist, elliptic curves of rank greater than one are rare. This notion
of rarity is measured by the average rank of all elliptic curves, of which is conjectured to
exist as a quantity.

Conjecture 4.52. The average rank of all elliptic curves overℚ is 1
2
.

In particular, rank zero constitute a half and rank one constitute the other half, while all
higher ranks constitute zero percent, of all elliptic curves. While it has not been definitely
proven, Bhargava and Shankar showed in ? that the average rank of all elliptic curves is at
most 7∕6.

h. Birch and Swinnerton-Dyer conjecture
Ultimately, the rank of an elliptic curve is not completely understood. It was greatly studied
for decades, and had lead mathematicians to formalise one of the most influential conjec-
tures in number theory, which is also deemed worthy of being called one of the Millennium
Prize Problems. The problem, now commonly known as the Birch and Swinnerton-Dyer
conjecture, relates the rank with Taylor expansion of a particular complex series. Letting
𝑡𝑝 denote the trace in Hasse’s theorem applied to 𝐸𝑝

(
𝔽𝑝
)
for any prime 𝑝 ∈ ℤ>0 of good

reduction, the series can be given as follows.

Definition 4.53 (Incomplete Hasse-Weil 𝐿-series). The incomplete Hasse-Weil 𝐿-
series is defined for anyℜ(𝑠) > 3∕2 as the Euler product

𝐿 (𝐸, 𝑠) =
∏

𝑝

1
1 − 𝑡𝑝𝑝−𝑠 + 𝑝1−2𝑠

over all primes 𝑝 ∈ ℤ>0 of good reduction, and extended to ℂ by analytic continuation.
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This analytic continuation, as well as a functional equation similar to that of the Rie-
mann zeta function, was originally known as theHasse-Weil conjecture, but was subse-
quently implied by themodularity theorem.

Remark 4.54. The complete Hasse-Weil 𝐿-series is defined over all primes 𝑝 ∈ ℤ>0 as
the Euler product

𝐿∗ (𝐸, 𝑠) =
∏

𝑝∣∆𝐸

1
1 − 𝑡𝑝𝑝−𝑠

∏

𝑝∤∆𝐸

1
1 − 𝑡𝑝𝑝−𝑠 + 𝑝1−2𝑠 =

∞∑

𝑛=1

𝑎𝑛
𝑛𝑠 .

Now 𝐸might be a singular cubic curve, so that 𝑡𝑝 can be defined for primes of bad reduction
as either 𝑡𝑝 = ±1 or 𝑡𝑝 = 0, depending on whether 𝐸 has split or non-split multiplicative
reduction or additive reduction, which corresponds to whether 𝐸𝑝 has a node or a cusp
respectively.

Due to analyticity in ℂ, it makes sense to consider the Taylor expansion of 𝐿 (𝐸, 𝑠) given
by

𝐿 (𝐸, 𝑠) =
∞∑

𝑖=0
𝑐𝑖 (𝑠 − 𝑠0)

𝑖 , 𝑠0 ∈ ℂ, 𝑐𝑖 ∈ ℂ,

as well its order of vanishing 𝑜𝑟𝑑𝑠=𝑠0 or order of zero at 𝑠0, a value 𝑖 such that 𝑐𝑖 ≠ 0 but
𝑐𝑗 = 0 for any 𝑗 < 𝑖. A different notion of rank can then be defined for 𝐸, as follows.

Definition 4.55 (Analytic rank). The analytic rank of𝐸 is 𝑟𝑘𝑎𝑛 (𝐸 (ℚ)) = 𝑜𝑟𝑑𝑠=1𝐿 (𝐸, 𝑠).

The conjecture then relates both notions of ranks as follows.

Conjecture 4.56 (Birch and Swinnerton-Dyer). 𝑟𝑘 (𝐸 (ℚ)) = 𝑟𝑘𝑎𝑛 (𝐸 (ℚ)).

Remark 4.57. There is also a refined version of the conjecture that involves the Tate-
Shafarevich group, which is omitted for further discussion. Proving this strong version
will then indirectly lead to efficient algorithms for rank computation.

A direct consequence of the conjecture is that 𝐸 (ℚ) is infinite iff its ranks 𝑟𝑘 (𝐸 (ℚ)) and
𝑟𝑘𝑎𝑛 (𝐸 (ℚ)) are positive. This holds iff 𝐿 (𝐸, 𝑠) does not have a constant term, or iff 𝐿 (𝐸, 1)
computes to give a value of 0. In other words, the finiteness of 𝐸 (ℚ) holds iff 𝐿 (𝐸, 1) ≠ 0.
Now the conjecture has been supported with much numerical evidence in ?, and can also
be verified by prior examples with the Sage programming language as follows.

Example 4.58. Let 𝐸 ∶ 𝑦2 = 𝑥3 − 𝑥 be an elliptic curve over ℚ. Then 𝑟𝑘 (𝐸 (ℚ)) = 0 and

𝐿 (𝐸, 𝑠) ≈ 0.655514388573030+0.447208159472739𝑠−0.233131198781643𝑠2+0.0342258563577268𝑠3+… ,

Hence 𝐿 (𝐸, 1) ≈ 0.655514388573030 ≠ 0. Now let 𝐸′ ∶ 𝑦2 = 𝑥3 − 5𝑥 be an elliptic curve
over ℚ. Then 𝑟𝑘 (𝐸′ (ℚ)) = 1 and

𝐿 (𝐸′, 𝑠) ≈ 0.000000000000000+2.22876814774675𝑠−2.06654309593994𝑠2+0.549852427979257𝑠3+… .

Thus 𝐿 (𝐸′, 1) ≈ 0.000000000000000 = 0.
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However, only special cases of the conjecture have been proven to date. The first general
result, proven by Coates and Wiles, states that an elliptic curve 𝐸 with 𝐿 (𝐸, 1) ≠ 0 and
complex multiplication, or when |𝐸𝑛𝑑 (𝐸)| is strictly larger than ℤ, has finite 𝐸 (ℚ), and
hence 𝑟𝑘 (𝐸 (ℚ)) = 0. A later result, proven byGross andZagierwithHeegner points, states
that amodular elliptic curve 𝐸 with 𝐿 (𝐸, 1) = 0 and (𝑑∕𝑑𝑠) 𝐿 (𝐸, 1) ≠ 0, or equivalently
𝑟𝑘𝑎𝑛 (𝐸 (ℚ)) = 1, has a non-torsion rational point in 𝐸 (ℚ), and hence 𝑟𝑘 (𝐸 (ℚ)) > 0.
Subsequently, Kolyvagin extended this proof by showing that 𝑟𝑘 (𝐸 (ℚ)) = 1 must hold
for this latter case, and that 𝑟𝑘 (𝐸 (ℚ)) = 0 if 𝐿 (𝐸, 1) ≠ 0 instead. With the modularity
theorem proven by Breuil et al, it is now known that any elliptic curve overℚ is modular,
hence proving the following special case of the Birch and Swinnerton-Dyer conjecture.

Theorem 4.59 (Breuil, Coates, Conrad, Diamond, Gross, Kolyvagin, Taylor, Wiles, Zagier).
𝑟𝑘 (𝐸 (ℚ)) = 𝑟𝑘𝑎𝑛 (𝐸 (ℚ)) for 𝑟𝑘𝑎𝑛 (𝐸 (ℚ)) ∈ {0, 1}.

Proof. Omitted, see [15], [16], [17], and [18]. 2

The very recent result due to Bhargava and Shankar in ? also showed that a large
proportion of all elliptic curves must have either rank zero or one, but the conjecture still
remain unproven for elliptic curves with higher ranks. Now as a Millenium Prize Problem,
the Birch and Swinnerton-Dyer conjecture has significant implications in number theory,
particularly on finiteness of the Tate-Shafarevich group, but it also proves other more
elementary results, one of which concerns integers with the following property.

Definition 4.60 (Congruent number). 𝑛 ∈ ℤ>0 is a congruent number iff it is the
area of some right triangle with sides in ℚ>0.

Congruent numbers can be illustrated with the following example.

Example 4.61. 5 = 1
2
(3∕2) (20∕3) is a congruent number since it is the area of the right

triangle with sides 3∕2, 20∕3, 41∕6 ∈ ℚ>0, while 10 is not a congruent number.

An open problem is the classification of all congruent numbers, known as the congruent
number problem, which boils down to obtaining simultaneous solutions for 𝑎2 + 𝑏2 = 𝑐2
and 2𝑛 = 𝑎𝑏, for some 𝑛 ∈ ℤ>0 and some 𝑎, 𝑏, 𝑐 ∈ ℚ>0. Considering the non-zero inverse
transformations

(𝑥, 𝑦) = (𝑛 (𝑎 + 𝑐)
𝑏 , 2𝑛

2 (𝑎 + 𝑐)
𝑏2 ) , (𝑎, 𝑏, 𝑐) = (

(
𝑥2 − 𝑛2

)

𝑦 , 2𝑛𝑥𝑦 ,
(
𝑥2 + 𝑛2

)

𝑦 ) ,

the system of equations can be transformed with a bijective correspondence to the Weier-
strass equation 𝑦2 = 𝑥3 − 𝑛2𝑥. Hence checking whether 𝑛 is a congruent number is in
turn equivalent to determining whether an affine rational point with non-zero coordinates
exists in the elliptic curve 𝐸 ∶ 𝑦2 = 𝑥3 − 𝑛2𝑥 over ℚ. This prompts the following theorem
that further classify the conditions for being a congruent number.

Theorem 4.62 (Tunnell). Let 𝑛 ∈ ℤ>0 be a square-free congruent number. If 𝑛 is odd,
then

2 ||||
{
(𝑥, 𝑦, 𝑧) ∈ ℤ3 ∣ 𝑛 = 2𝑥2 + 𝑦2 + 32𝑧2

}|||| =
||||
{
(𝑥, 𝑦, 𝑧) ∈ ℤ3 ∣ 𝑛 = 2𝑥2 + 𝑦2 + 8𝑧2

}|||| .

Otherwise 𝑛 is even, then

2 ||||
{
(𝑥, 𝑦, 𝑧) ∈ ℤ3 ∣ 𝑛 = 2

(
4𝑥2 + 𝑦2 + 32𝑧2

)}|||| =
||||
{
(𝑥, 𝑦, 𝑧) ∈ ℤ3 ∣ 𝑛 = 2

(
4𝑥2 + 𝑦2 + 8𝑧2

)}|||| .
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Proof. Omitted, see [19]. 2

The Birch and Swinnerton-Dyer conjecture, on the other hand, provides the converse
to Tunnell’s theorem, hence giving a single criterion for any congruent number that can
be checked by enumerating the four sets involved. The following example illustrates the
process, assuming the conjecture.

Example 4.63. Since 5 is an odd square-free congruent number, it holds that

2 ||||
{
(𝑥, 𝑦, 𝑧) ∈ ℤ3 ∣ 5 = 2𝑥2 + 𝑦2 + 32𝑧2

}|||| = 0 = ||||
{
(𝑥, 𝑦, 𝑧) ∈ ℤ3 ∣ 5 = 2𝑥2 + 𝑦2 + 8𝑧2

}|||| .

Conversely, since 10 is an even square-free non-congruent number, it holds that

2 ||||
{
(𝑥, 𝑦, 𝑧) ∈ ℤ3 ∣ 𝑛 = 2

(
4𝑥2 + 𝑦2 + 32𝑧2

)}|||| = 8 ≠ 4 = ||||
{
(𝑥, 𝑦, 𝑧) ∈ ℤ3 ∣ 𝑛 = 2

(
4𝑥2 + 𝑦2 + 8𝑧2

)}|||| .

As such, the conjecture, if proven even only for elliptic curves given by the Weierstrass
equation 𝑦2 = 𝑥3 − 𝑛2𝑥, would allow the congruence number problem to be fully resolved.
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5 Elliptic curves over ℂ
We have viewed elliptic curves from an algebraist perspective (which is method I prefer
and do!). Now let’s look at the function, the derives an elliptic curves from an analyst
perspective using techniques from complex analysis.

Evaluation of the integral giving are length on a circle, namely,

∫ 1
√
1 − 𝑥2

𝑑𝑥

leads to an inverse trigonometric function. The analogous problem for the arc length of an
ellipse yields an integral that is not computable in terms of so-called elementary functions.
The indeterminacy of the sign of the square root means that such integrals are not well-
defined on ℂ; instead, they are more naturally studied on an associated Riemann surface.
For the arc length integral of an ellipse, this Riemann surface turns out to be the set of
complex points on an elliptic curve 𝐸. We thus begin our study of elliptic curves over ℂ
by studying certain elliptic integrals, which are line integrals on 𝐸(ℂ). Indeed, the reason
that elliptic curves are so named is because they are the Riemann surfaces associated to are
length integrals of ellipses.

a. Elliptic integrals
Let 𝐸 be an elliptic curve defined over ℂ. Since char(ℂ) = 0 and ℂ is algebraically closed,
there is a Weierstrass equation for 𝐸 in Legendre form (III.1.7),

𝐸 ∶ 𝑦2 = 𝑥(𝑥 − 1)(𝑥 − 𝜆)

The natural map,

𝐸(ℂ) → ℙ1(ℂ)
(𝑥, 𝑦) ↦→ 𝑥

is a double cover ramified over precisely the four points 0, 1, 𝜆,∞ ∈ ℙ1(ℂ). We know from
(III.1.5) that 𝜔 = 𝑑𝑥∕𝑦 is a holomorphic differential form on 𝐸. Suppose that we try to
define a map by the rule,

𝐸(ℂ)∗
?
,→ ℂ

𝑃 ↦→ ∫
𝑃

𝑂
𝜔

where the integral is along some path connecting 𝑂 to 𝑃. Unfortunately, this map is not
well-defined, since it depends on the choice of path. We let 𝑃 = (𝑥, 𝑦) ∈ 𝐸(ℂ) and look
more closely at what is happening in ℙ1(ℂ). We are attempting to compute the complex
line integral,

∫
𝑥

∞

1
√
𝑡(𝑡 − 1)(𝑡 − 𝜆)

𝑑𝑥
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This line integral is not path-independent, because the square root is not singlevalued.
Thus in the below figure, the three integral,

∫
𝛼
𝜔, ∫

𝛽
𝜔, ∫

𝛾
𝜔

need not be equal. In order to make the integral well-defined, it is necessary to make branch
cuts. For example, the integral will be path-independent on the complement of the branch
cuts illustrated in the figure, because in this region it is possible to define a single-valued
branch of

√
𝑡(𝑡 − 1)(𝑡 − 𝜆). More generally, since the square root is double-valued, we

should take two copies of ℙ1(ℂ), make branch cuts as indicated in the figure, and glue
them together along the branch cuts to form the Riemann surface illustrated in the figure.
(Note that ℙ1(ℂ) = ℂ ∪∞ is topologically a 2-sphere.) It is readily seen that the resulting
Riemann surface is a torus, and it is on this surface that we should study the integral,

∫ 1
√
𝑡(𝑡 − 1)(𝑡 − 𝜆)

𝑑𝑡

Returning now to our hypothetical map,

𝐸(ℂ) → ℂ

𝑃 ↦→ ∫
𝑃

𝑂
𝜔

we see that the indeterminacy comes from integrating across branch cuts in ℙ1(ℂ), or
equivalently around non-contractible loops on the torus. The figure illustrates two closed
paths 𝛼 and 𝛽 for which the integrals ∫𝛼 𝜔 and ∫𝛽 𝜔may be nonzero. We thus obtain two
complex numbers, which are called periods of 𝐸, 𝜔1 = ∫𝛼 𝜔 and 𝜔2 = ∫𝛽 𝜔. Notice that the
paths 𝛼 and 𝛽 generate the first homology group of the torus. Thus any two paths from 𝑂
to 𝑃 differ by a path that is homologous to 𝑛1𝛼 +𝑛2𝛽 for some 𝑛1, 𝑛2 ∈ ℤ. Thus the integral
∫ 𝑃
𝑂 𝜔 is well-defined up to addition of a number of the form 𝑛1𝜔1 + 𝑛2𝜔2, which suggests
that we should look at the set Λ = {𝑛1𝜔1 + 𝑛2𝜔2 ∶ 𝑛1, 𝑛2 ∈ ℤ}. The preceding discussion
shows that there is a well-defined map,

𝐹 ∶ 𝐸(ℂ) → ℂ∕Λ

𝑃 ↦→ ∫
𝑃

𝑂
𝜔 (mod Λ)

The set Λ is clearly a subgroup of ℂ, so the quotient ℂ∕Λ is a group. Using the translation
invariance of 𝜔 that we proved in (III.5.1), we easily verify that 𝐹 is a homomorphism:

∫
𝑃+𝑄

𝑂
𝜔 ≡ ∫

𝑃

𝑂
𝜔 + ∫

𝑃+𝑄

𝑃
𝜔 ≡ ∫

𝑃

𝑂
𝜔 + ∫

𝑄

𝑂
𝜏∗𝑃𝜔 ≡ ∫

𝑃

𝑂
𝜔 + ∫

𝑄

𝑂
𝜔 (mod Λ)

The quotient spaceℂ∕Λwill be a compact Riemann surface, i.e., a compact one-dimensional
complex manifold, if and only if Λ is a lattice, or equivalently, if and only if the periods 𝜔1
and 𝜔2 that generate Λ are linearly independent over ℝ. This turns out to be the case, and
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further, the map 𝐹 is a complex analytic isomorphism from 𝐸(ℂ) to ℂ∕Λ. However, rather
than proving these statements here, we instead turn to the study of the space ℂ∕Λ for a
given lattice Λ. we construct the inverse to the map 𝐹 and prove that ℂ∕Λ is analytically
isomorphic to 𝐸Λ(ℂ) for a certain elliptic curve 𝐸Λ∕ℂ. We then apply the uniformization
theorem (VI.5.1), which says that every elliptic curve 𝐸∕ℂ is isomorphic to some 𝐸Λ, to
deduce (VI.5.2) that the periods of 𝐸∕ℂ areℝ-linearly independent and that 𝐹 is a complex
analytic isomorphism. (For a direct proof of the ℝ-linear independence of 𝜔1 and 𝜔2 using
only Stokes’s theorem in ℝ2).

Let Λ ⊂ ℂ be a lattice, ie., Λ is a discrete subgroup of ℂ that contains an ℝ-basis for
ℂ. In this section we study meromorphic functions on the quotient space ℂ∕Λ, or equiva-
lently, meromorphic functions on ℂ that are periodic with respect to the lattice Λ.

Elliptic Function. An elliptic function (relative to the latticeΛ) is a meromorphic function
𝑓(𝑧) on ℂ that satisfies, 𝑓(𝑧 + 𝜔) = 𝑓(𝑧), for all 𝑧 ∈ ℂ and all 𝜔 ∈ Λ.

The set of all such functions is denoted by ℂ(Λ). It is clear that ℂ(Λ) is a field.

Fundamental Parallelogram. A fundamental parallelogram for Λ is a set of the form
𝐷 = {𝑎 + 𝑡1𝜔1 + 𝑡2𝜔2 ∶ 0 ≤ 𝑡1, 𝑡2 < 1}, where 𝑎 ∈ ℂ and {𝜔1, 𝜔2} is a basis for Λ.

b. Elliptic Functions
Proposition. A holomorphic elliptic function, i.e., an elliptic function with no poles, is
constant. Similarly, an elliptic function with no zeros is constant.

Proof. Suppose that 𝑓(𝑧) ∈ ℂ(Λ) is holomorphic. Let 𝐷 be a fundamental parallelogram
for Λ. The periodicity of 𝑓 implies that,

sup
𝑧∈ℂ

|𝑓(𝑧)| = sup
𝑧∈𝐷

|𝑓(𝑧)|

The function 𝑓 is continuous and the set 𝐷 is compact, so |𝑓(𝑧)| is bounded on 𝐷. Hence 𝑓
is bounded on all of ℂ, so Liouville’s theorem tells us that 𝑓 is constant. This proves the
first statement. Finally, if 𝑓 has no zeros, then 1∕𝑓 is holomorphic, hence constant. 2

Let 𝑓 be an elliptic function and let 𝑤 ∈ ℂ. Then, just as for any meromorphic function,
we can look at its order of vanishing and its residue, which we denote by

ord𝑤(𝑓) = order of vanishing of 𝑓 at 𝑤
res𝑤(𝑓) = residue of 𝑓 at 𝑤

The fact that 𝑓 is elliptic implies that the order and the residue of 𝑓 do not change if we
replace 𝑤 by 𝑤 + 𝜔 for any 𝜔 ∈ Λ. This prompts the following convention,

∑

𝑤∈ℂ∕Λ
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denotes a sum over 𝑤 ∈ 𝐷, where 𝐷 is a fundamental parallelogram for Λ. By implication,
the value of the sum is independent of the choice of 𝐷 and only finitely many terms of
the sum are nonzero. Notice that (VI.2.1) is the complex analogue of (II.1.2), which says
that an algebraic function that has no poles is constant. The next theorem and corollary
continue this theme by proving for ℂ∕Λ results that are analogous to (II.3.1) and (III.3.5).

Theorem. Let 𝑓 ∈ ℂ(Λ) be an elliptic function relative to Λ.
(a)

∑
𝑤∈ℂ∕Λ res𝑤(𝑓) = 0

(b)
∑

𝑤∈ℂ∕Λ ord𝑤(𝑓) = 0
(c)

∑
𝑤∈ℂ∕Λ ord𝑤(𝑓)𝑤 ∈ Λ

Proof. Let 𝐷 be a fundamental parallelogram for Λ such that 𝑓(𝑧) has no zeros or poles
on the boundary 𝜕𝐷 of 𝐷.
(a) The residue theorem tells us that,

∑

𝑤∈ℂ∕Λ
res𝑤(𝑓) =

1
2𝜋𝑖 ∫𝜕𝐷

𝑓(𝑧) 𝑑𝑧

The periodicity of 𝑓 implies that the integrals along the opposite sides of the parallel-
ogram cancel, so the total integral around the boundary of 𝐷 is zero.

(b) The periodicity of 𝑓(𝑧) implies that 𝑓′(𝑧) is also periodic, so applying (1) to the elliptic
function 𝑓′(𝑧)∕𝑓(𝑧) gives,

∑

𝑤∈ℂ∕Λ
res𝑤(𝑓′∕𝑓) = 0

since res𝑤(𝑓′∕𝑓) = ord𝑤(𝑓), this is the desired result.
(c) We apply the residue theorem to the function, 𝑧𝑓′(𝑧)∕𝑓(𝑧) to obtain,

∑

𝑤∈ℂ∕Λ
ord𝑤(𝑓)𝑤 = 1

2𝜋𝑖 ∫𝜕𝐷
𝑧𝑓′(𝑧)
𝑓(𝑧)

𝑑𝑧

= 1
2𝜋𝑖 (∫

𝑎+𝜔1

𝑎
+∫

𝑎+𝜔1+𝜔2

𝑎+𝜔1
+∫

𝑎+𝜔2

𝑎+𝜔1+𝜔2
+∫

𝑎

𝑎+𝜔2
)
𝑧𝑓′(𝑧)
𝑓(𝑧)

𝑑𝑧

In the second (respectively third) integral wemake the change of variable 𝑧 ↦→ 𝑧+𝜔1
(respectively 𝑧 ↦→ 𝑧 + 𝜔2). Then the periodicity of 𝑓′(𝑧)∕𝑓(𝑧) yields,

∑

𝑤∈ℂ∕Λ
ord𝑤(𝑓)𝑤 = − 𝜔2

2𝜋𝑖 ∫
𝑎+𝜔1

𝑎

𝑓′(𝑧)
𝑓(𝑧)

𝑑𝑧 + 𝜔1
2𝜋𝑖 ∫

𝑎+𝜔2

𝑎

𝑓′(𝑧)
𝑓(𝑧)

𝑑𝑧

If 𝑔(𝑧) is any meromorphic function, then the integral,

1
2𝜋𝑖 ∫

𝑏

𝑎

𝑔′(𝑧)
𝑔(𝑧)

𝑑𝑧

is the winding number around 0 of the path.

[0, 1] → ℂ
𝑡 ↦→ 𝑔((1 − 𝑡)𝑎 + 𝑡𝑏)
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In particular, if 𝑔(𝑎) = 𝑔(𝑏), then the integral is an integer. Thus the periodicity of
𝑓′(𝑧)∕𝑓(𝑧) implies that∑ ord𝑤(𝑓)𝑤 has the form, −𝜔2𝑛2 + 𝜔1𝑛1 for 𝑛1, 𝑛2 ∈ ℤ, so it
is in Λ.

Hence, we have proved the theorem. 2

Order. The order of an elliptic function is its number of poles (counted with multiplicity)
in a fundamental parallelogram. Equivalently, (VI.2.2b) says that the order is the number
of zeros.

Corollary. A non-constant elliptic function has order at least 2.

If 𝑓(𝑧) has a single simple pole, then (VI.2.2a) tells us that the residue at that pole is
0, so 𝑓(𝑧) is actually holomorphic. We now define the divisor group of ℂ∕Λ, denoted by
Div(ℂ∕Λ), to be the group of formal linear combinations,

∑

𝑤∈ℂ∕Λ
𝑛𝑤(𝑤)

with 𝑛𝑤 ∈ ℤ and 𝑛𝑤 = 0 for all but finitely many 𝑤. Then for 𝐷 = ∑𝑛𝑤(𝑤) ∈ Div(ℂ∕Λ),
we define and deg𝐷 = ∑𝑛𝑤, Div

0(ℂ∕Λ) = {𝐷 ∈ Div(ℂ∕Λ) ∶ deg𝐷 = 0}. Further, for any
𝑓 ∈ ℂ(Λ)∗ we define the divisor of 𝑓 to be,

div(𝑓) =
∑

𝑤∈ℂ∕Λ
ord𝑤(𝑓)(𝑤)

We see from (VI.2.2b) that div(𝑓) ∈ Div0(ℂ∕Λ). The map, div ∶ ℂ(Λ)∗ → Div0(ℂ∕Λ) is
clearly a homomorphism, since each ord𝑤 is a valuation. Finally, we define a summation
map, sum ∶ Div0(ℂ∕Λ) → ℂ∕Λ, sum(∑𝑛𝑤(𝑤)) =

∑𝑛𝑤𝑤 (mod Λ). The next result gives
an exact sequence that encompasses our main results so far for ℂ∕Λ, plus one fact (VI.3.4)
that will be proven in the next section.

Theorem. The following is an exact sequence:

1 ,→ ℂ∗ ,→ ℂ(Λ)∗
div
,,→ Div0(ℂ∕Λ)

sum
,,,→ ℂ∕Λ ,→ 0

c. Construction of Elliptic Functions
We saw the theory behind elliptic functions, but how do we construct there special complex
functions? In order to show that the results, we saw are not vacuous, we must construct
some non-constant elliptic functions. We know from (VI.2.3) that any such function has
order at least 2. FollowingWeierstrass, we look for a function with a pole of order 2 at 𝑧 = 0.

Weierstrass℘-function. Let Λ ⊂ ℂ be a lattice. The Weierstrass℘-function (relative to
Λ) is defined by the series,

℘(𝑧, Λ) = 1
𝑧2 +

∑

𝜔∈Λ, 𝜔≠0
( 1
(𝑧 − 𝜔)2

− 1
𝜔2)
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The Eisenstein series of weight 2𝑘 (for Λ) is the series,

𝐺2𝑘(Λ) =
∑

𝜔∈Λ, 𝜔≠0
𝜔−2𝑘

For notational convenience, we write℘(𝑧) and 𝐺2𝑘 if the lattice Λ has been fixed.

Theorem. Let Λ ⊂ ℂ be a lattice.
(a) The Eisenstein series 𝐺2𝑘(Λ) is absolutely convergent for all 𝑘 > 1.
(b) The series defining the Weierstrass℘-function converges absolutely and uniformly

on every compact subset of ℂ∕Λ. The series defines a meromorphic function on ℂ
having a double pole with residue 0 at each lattice point and no other poles.

(c) The Weierstrass℘-function is an even elliptic function.

Proof. (a) Since Λ is discrete in ℂ, it is not hard to see that there is a constant 𝑐 = 𝑐(Λ)
such that for all 𝑁 ≥ 1, the number of points in an annulus satisfies,

#{𝜔 ∈ Λ ∶ 𝑁 ≤ |𝜔| < 𝑁 + 1} < 𝑐𝑁

This allows us to estimate,

∑

𝜔∈Λ, |𝜔|≥1

1
|𝜔|2𝑘 ≤

∞∑

𝑁=1

#{𝜔 ∈ Λ ∶ 𝑁 ≤ |𝜔| < 𝑁 + 1}
𝑁2𝑘 <

∞∑

𝑁=1

𝑐
𝑁2𝑘−1 < ∞

(b) If |𝜔| > 2|𝑧|, then
|||||||

1
(𝑧 − 𝜔)2

− 1
𝜔2

|||||||
=
|||||||
𝑧(2𝜔 − 𝑧)
𝜔2(𝑧 − 𝜔)2

|||||||
≤ |𝑧|(2|𝜔| + |𝑧|)
|𝜔|2(|𝜔| − |𝑧|)2

≤ 10|𝑧|
|𝜔|3

It follows from (1) that the series for℘(𝑧) is absolutely convergent for all 𝑧 ∈ ℂ∕Λ,
and that it is uniformly convergent on every compact subset of ℂ∕Λ. Therefore
the series defines a holomorphic function on ℂ∕Λ, and it is clear from the series
expansion that℘(𝑧) has a double pole with residue 0 at each point in Λ.

(c) Replacing 𝜔 by −𝜔 in the series for℘ it is clear that℘(𝑧) = ℘(−𝑧), so℘ is an even
function. We know from (2) that the series for℘ is uniformly convergent, so we can
compute its derivative by differentiating term by term,

℘′(𝑧) = −2
∑

𝜔∈Λ

1
(𝑧 − 𝜔)3

It is clear from this expression that℘′ is an elliptic function, so℘′(𝑧 +𝜔) = ℘′(𝑧) for
all 𝜔 ∈ Λ. Integrating this equality with respect to 𝑧, yields℘(𝑧 + 𝜔) = ℘(𝑧) + 𝑐(𝜔)
for all 𝑧 ∈ ℂ and 𝑐(𝜔) ∈ ℂ is independent of 𝑧. Setting, 𝑧 = − 1

2
𝜔 and using the

evenness of℘(𝑧) proves that 𝑐(𝜔) = 0, so℘ is an elliptic function.
Hence proved. 2
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Next we show that every elliptic function is a rational function of theWeierstrsss℘-function
and its derivative. This result is the analytic analogue of (III.3.1.1).

Theorem. Let Λ ⊂ ℂ be a lattice. Then

ℂ(Λ) = ℂ(℘(𝑧),℘′(𝑧))

ie., every elliptic function is a rational combination of℘ and℘′.

Proof. Let 𝑓(𝑧) = ℂ(Λ). Writing,

𝑓(𝑧) = 𝑓(𝑧) + 𝑓(−𝑧)
2 + 𝑓(𝑧) − 𝑓(−𝑧)

2
we see that it suffices to prove the theorem for functions that are either odd or even. Further,
if 𝑓(𝑧) is odd, then 𝑓(𝑧)℘′(𝑧) is even, so we are reduced to the case that 𝑓 is an even elliptic
function. The assumption that 𝑓 is even implies that,

ord𝑤𝑓 = ord−𝑤𝑓

for every 𝑤 ∈ ℂ. Further, we claim that if 2𝑤 ∈ Λ, then ord𝑤𝑓 is even. To see this, we
differentiate 𝑓(𝑧) = 𝑓(−𝑧) epeatedly to obtain,

𝑓(𝑖)(𝑧) = (−1)𝑖𝑓(𝑖)(−𝑧)

If 2𝑤 ∈ Λ, then 𝑓(𝑖)(𝑧) has the same value at 𝑤 and −𝑤, so

𝑓(𝑖)(𝑤) = 𝑓(𝑖)(−𝑤) = (−1)𝑖𝑓(𝑖)(𝑤)

Thus, 𝑓(𝑖)(𝑤) = 0 for odd values of 𝑖, so ord𝑤𝑓 is even. 2

Let 𝐷 be a fundamental parallelogram for Λ, and let 𝐻 be 1
2
𝐷. In other words, 𝐻 is a

fundamental domain for (ℂ∕Λ) ⧵ {±1}, or equivalently, ℂ is a disjoint union,

ℂ = (𝐻 + Λ) ∪ (−𝐻 + Λ)

as illustrated in the figure. The above discussion implies that the divisor of 𝑓 has the form,
∑

𝑤∈𝐻
𝑛𝑤((𝑤) + (−𝑤))

for certain 𝑛𝑤 ∈ ℤ. Note that for 2𝑤 ∈ Λ, we are using the fact that ord𝑤𝑓 is even. Consider
the function,

𝑔(𝑧) =
∏

𝑤∈𝐻⧵{0}
(℘(𝑧) − ℘(𝑤))𝑛𝑤

The divisor of℘(𝑧) − ℘(𝑤) is (𝑤) + (−𝑤) − 2(0), so we see that 𝑓 and 𝑔 have exactly the
same zeros and poles except possibly at 𝑤 = 0. But then (VI.2.2b) implies that they have
the same order at 0, too. Thus, 𝑓(𝑧)∕𝑔(𝑧) is a holomorphic elliptic function, hence it is
constant from (VI.2.1).
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The Weierstrass 𝜎-function. The Weierstrass 𝜎-function relative to Λ is the function
defined by the product,

𝜎(𝑧) = 𝜎(𝑧, Λ) =
∏

𝜔∈Λ, 𝜔≠0

(
1 + 𝑧

𝜔
)
𝑒(𝑧∕𝜔)+

1
2
(𝑧∕𝜔)2

The next lemma describes the basic facts about 𝜎(𝑧) that are needed for our applications.

Lemma. 𝜎(𝑧) follows these basic facts:
(a) The infinite product for 𝜎(𝑧) defines a holomorphic function on all ofℂ. It has simple

zeros at each 𝑧 ∈ Λ and no other zeros.
(b) For all 𝑧 ∈ ℂ ⧵ Λ,

𝑑2
𝑑𝑧2 log 𝜎(𝑧) = −℘(𝑧)

(c) For every 𝜔 ∈ Λ, there exists 𝑎, 𝑏 ∈ ℂ, depending on 𝜔, such that

𝜎(𝑧 + 𝜔) = 𝑒𝑎𝑧+𝑏𝜎(𝑧)

for all 𝑧 ∈ ℂ.

Proof. (a) The absolute and uniform convergence of the infinite product on ℂ follows
from (VI.3.1a) and standard facts about convergence of infinite products. The location
and order of the zeros is clear by inspection.

(b) The logarithm of 𝜎(𝑧) is,

log 𝜎(𝑧) = log 𝑧 +
∑

𝜔∈Λ, 𝜔≠0
{log

(
1 + 𝑧

𝜔
)
+ 𝑧
𝜔 + 1

2
( 𝑧
𝜔
)2
}

and (1) tells us that we may differentiate term by term. The second derivative, up to
sign, is exactly the series defining℘(𝑧).

(c) The Weierstrass ℘-function is elliptic (VI.3.1c), so ℘(𝑧 + 𝜔) = ℘(𝑧). Integrating
twice with respect to 𝑧 and using (2) yields,

log 𝜎(𝑧 + 𝜔) = log 𝜎(𝑧) + 𝑎𝑧 + 𝑏

for constants of integration 𝑎, 𝑏 ∈ ℂ. 2

Proposition. Let 𝑛1, … , 𝑛𝑟 ∈ ℤ and 𝑧1, … , 𝑧𝑟 ∈ ℂ satsify,
∑

𝑛𝑖 = 0,
∑

𝑛𝑖𝑧𝑖 ∈ Λ

Then there exists an elliptic function 𝑓(𝑧) ∈ ℂ(Λ) satisfying,

div(𝑓) =
∑

𝑛𝑖(𝑧𝑖)

More precisely, if we choose the 𝑛𝑖 and 𝑧𝑖 to satisfy
∑𝑛𝑖𝑧𝑖 = 0, then we may take

𝑓(𝑧) =
∏

𝜎(𝑧 − 𝑧𝑖)𝑛𝑖
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Proof. Let 𝜆 = ∑𝑛𝑖𝑧𝑖 ∈ Λ. Replacing,

𝑛1(𝑧1) +⋯+ 𝑛𝑟(𝑧𝑟) → 𝑛1(𝑧1) +⋯+ 𝑛𝑟(𝑧𝑟) + (0) − (𝜆)

we may assume that
∑𝑛𝑖𝑧𝑖 = 0. Then (VI.3.3a) implies that,

𝑓(𝑧) =
∏

𝜎(𝑧 − 𝑧𝑖)𝑛𝑖 2

We next derive the Laurent series expansions for℘(𝑧) around 𝑧 = 0, from which we will
deduce the fundamental algebraic relation satisfied by℘(𝑧) and℘′(𝑧).

Theorem.
(a) The Laurent series for℘(𝑧) around 𝑧 = 0 is given by,

℘(𝑧) = 1
𝑧2 +

∞∑

𝑘=1
(2𝑘 + 1)𝐺2𝑘+2𝑧2𝑘

(b) For all 𝑧 ∈ ℂ ⧵ Λ, the Weierstrass℘-function and its derivative satisfy the relation,

℘′(𝑧)2 = 4℘(𝑧)3 − 60𝐺4℘(𝑧) − 140𝐺6

Proof. (a) For all 𝑧 with |𝑧| < |𝜔| we have,

1
(𝑧 − 𝜔)2

− 1
𝜔2 =

1
𝜔2 (

1
(1 − 𝑧∕𝜔)2

− 1) =
∞∑

𝑛=1
(𝑛 + 1) 𝑧𝑛

𝜔𝑛+2

(b) We write out the first few terms of various Laurent expansions:

℘′(𝑧)2 = 4𝑧−6 − 24𝐺4𝑧−2 − 80𝐺6 + …
℘(𝑧)3 = 𝑧−6 + 9𝐺4𝑧−2 + 15𝐺6 + …
℘(𝑧) = 𝑧−2 + 3𝐺4𝑧2 + …

Comparing these expansions, we see that the function,

𝑓(𝑧) = ℘′(𝑧)2 − 4℘(𝑧)3 + 60𝐺4℘(𝑧) + 140𝐺6

is holomorphic at 𝑧 = 0 and satisfies 𝑓(0) = 0. But 𝑓(𝑧) is an elliptic function relative
to Λ, and from (VI.3.1b) it is holomorphic away from Λ, so 𝑓(𝑧) is a holomorphic
elliptic function. Then (VI.2.1) says that 𝑓(𝑧) is constant, and the fact that 𝑓(0) = 0
implies that 𝑓 is identically zero. 2

Remark 3.5.1. It is standard notation to set,

𝑔2 = 𝑔2(Λ) = 60𝐺4(Λ)
𝑔3 = 𝑔3(Λ) = 140𝐺6(Λ)

Then the algebraic relation satisfied by℘(𝑧) and℘′(𝑧) reads,

℘′(𝑧)2 = 4℘(𝑧)3 − 𝑔2℘℘(𝑧) − 𝑔3



5 ELLIPTIC CURVES OVER ℂ 81

Let 𝐸∕ℂ be an elliptic curve. The group law 𝐸 × 𝐸 → 𝐸 is given by everywhere locally
defined rational functions (III.3.6), so we see in particular that 𝐸 = 𝐸(ℂ) is a complex Lie
group, i.e., it is a complex manifold with a group law given locally by complex analytic
functions. Similarly, if Λ ⊂ ℂ is a lattice, then ℂ∕Λ with its natural addition is a complex
Lie group. The next result says that ℂ∕Λ is always complex analytically isomorphic to an
elliptic curve.

Proposition. Let 𝑔2 = 𝑔2(Λ) and 𝑔3 = 𝑔3(Λ) be the quantities associated to a lattice
Λ ⊂ ℂ.
(a) The polynomial 𝑓(𝑥) = 4𝑥3 − 𝑔2𝑥 − 𝑔3 has distinct roots, so its discriminant ∆(Λ) =

𝑔32 − 27𝑔23 is nonzero.
(b) Let 𝐸∕ℂ be the curve, where 𝐸 ∶ 𝑦2 = 4𝑥3 − 𝑔2𝑥 − 𝑔3, which from (1) is an elliptic

curve. Then the map, 𝜙 ∶ ℂ∕Λ → 𝐸(ℂ) ⊂ ℙ2(ℂ), 𝑧 ↦→ [℘(𝑧),℘′(𝑧), 1], is a complex
analytic isomorphism of complex Lie groups, i.e., it is an isomorphism of Riemann
surfaces that is also a group homomorphism.

Proof. (a) Let 𝜔1, 𝜔2 be a basis for Λ and 𝜔3 = 𝜔1 + 𝜔2. Then, since ℘′(𝑧) is an odd
elliptic function, we see that

℘′(𝑧) (𝜔𝑖2 ) = −℘′(𝑧) (−𝜔𝑖2 ) = −℘′(𝑧) (𝜔𝑖2 )

so℘′(𝑧)(𝜔𝑖∕2) = 0. It follows from (VI.3.5b) that 𝑓(𝑥) vanishes at each of the values
𝑥 = ℘(𝜔𝑖∕2), so it suffices to show that these three values are distinct. The function
℘(𝑧) − ℘(𝜔𝑖∕2) is even, so it has at least a double zero at 𝑧 = 𝜔𝑖∕2. However, it is an
elliptic function of order 2 , so it has only these zeros in an appropriate fundamental
parallelogram. Hence℘(𝜔𝑗∕2) ≠ ℘(𝜔𝑖∕2) for 𝑗 ≠ 𝑖.

(b) The image of 𝜙 is contained in 𝐸(ℂ) from (VI.3.5b). To see that 𝜙 is surjective, let
(𝑥, 𝑦) ∈ 𝐸(ℂ). Then℘(𝑧)−𝑥 is a nonconstant elliptic function, so from(VI.2.1) it has
a zero, say 𝑧 = 𝑎. It follows that℘′(𝑎)2 = 𝑦2, so replacing 𝑎 by −𝑎 if necessary, we
obtain℘′(𝑎) = 𝑦. Then 𝜙(𝑎) = (𝑥, 𝑦). Next suppose that 𝜙(𝑧1) = 𝜙(𝑧2). Assume first
that 2𝑧1 ∈∉ Λ. Then the function,℘(𝑧) −℘(𝑧1) is an elliptic function of order 2 that
vanishes at 𝑧1, −𝑧1 and 𝑧2. It follows that two of these values are congruent modulo
Λ, so the assumption that 2𝑧1 ∉ Λ tells us that, 𝑧2 ≡ ±𝑧1 (mod Λ) for some choice
of sign. Then, ℘′(𝑧1) = ℘′(𝑧2) = ℘′(±𝑧1) = ±℘′(𝑧) implies that 𝑧2 ≡ 𝑧1 (mod Λ)
(Note that℘′(𝑧2) ≠ 0 from the proof of (1)). Similarly if 2𝑧1 ∈ Λ, then℘(𝑧) − ℘(𝑧1)
has a double zero at 𝑧1 and vanishes at 𝑧2, so we again conclude that 𝑧2 ≡ 𝑧1 (mod Λ).
This proves that 𝜙 is injective. Next we show that 𝜙 is an analytic isomorphism by
computing its effect on the cotangent spaces of ℂ∕Λ and 𝐸(ℂ). At every point of
𝐸(ℂ) , the differential form 𝑑𝑥∕𝑦 is holomorphic and nonvanishing. Finally, we
must check that 𝜙 is a homomorphism. Let 𝑧1, 𝑧2 ∈ ℂ. Using (VI.3.4), we can find a
function 𝑓(𝑧) ∈ ℂ(Λ)with divisor, div(𝑓) = (𝑧1+𝑧2)−(𝑧1)−(𝑧2)+(0). Then (VI.3.2)
allows us to write 𝑓(𝑧) = 𝐹(℘(𝑧),℘′(𝑧)) for a rational function 𝐹(𝑋, 𝑌) ∈ ℂ(𝑋, 𝑌).
Treating, 𝐹(𝑥, 𝑦) as an element of ℂ(𝑥, 𝑦) = ℂ(𝐸), we have div(𝐹) = (𝜙(𝑧1 + 𝑧2)) −
(𝜙(𝑧1)) − (𝜙(𝑧2)) + (𝜙(0)). It follows from (III.3.5) that, 𝜙(𝑧1 + 𝑧2) = 𝜙(𝑧1) + 𝜙(𝑧2).
Hence a homorphism.

Hence completing the proof of the proposition. 2
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