An overview of the Taylor-Wiles Method

Sachin Kumar
University of Waterloo, Faculty of Mathematics

April 2023

Generalities

Let Q be the algebraic closure of Q and Gal(Q/Q) is called the absolute Galois group of Q. Given a
number field L, Gal(Q/L) is an open subgroup of Gal(Q/Q). As L ranges over all number fields, the
groups Gal(Q/L) consist of a basis of open neigbourhoods of the identity. Given a prime number p, the
ring of p-adic integers is the inverse limit Z, = lim,  Z/p"Z and let Q, be the fraction field of Z,.

Galois Representation

Let V' be a finite dimensional Q,-vector space equipped with a continuous action of Gal(Q/Q). This
gives rise to a continuous Galois representation, py : Gal(Q/Q) — GL,(Q,). Here, GL,(Q,) is the
automorphism group of V' ~ Q. There is a Z,-linear lattice L ~ Z; contained in V' which is Galois stable.

The action of Gal(Q/Q) gives rise to an integral Galois representation, p : Gal(Q/Q) — GL,(Z,). Let
E be an elliptic curve defined over Q and p be a prime number. Given N € Zsq, set E[n] to denote the

N-torsion subgroup of E(Q). Note that F ~ C'/A, where A = Z & Zr is a lattice in C. As an abeian group
the N-torsion subgroup E|n]| is

N*A/A~A/NA~7Z/NZ®Z/NZ
Fix a prime p. Note that multiplication by p gives a map, xp : E[p"™!] — E[p"]. Consider the system of
maps,
= E[p"] =5 Ep"] =5 ... =5 Ep’] =5 Ep)
The p-adic Tate-module T,,(E) is the inverse limit,
7,(E) = lim B[]

We have that T,(E) ~ Z, ® Z,. Furthermore, T,(E) is equipped with an action of Gal(Q/Q), which gives
rise to a Galois representation,

p=pep: Gal(Q/Q) — GLy(Z,)

Let p: Gal(Q/Q) — GLy(Z/pZ) be the mod-p reduction of p. Given a prime ¢, we set G, = Gal(Q,/Qy).
The inclusion Q@ — Q, gives rise to an injective homomorphism Gy — Gal(Q/Q). We let p, be the
restriction of p to Gy. Note that Gal(F,/F,) ~ Z where 7, = lim,  Z/mZ, generated by the Forbenius
Gy v x'. We shall fix a lift o, € Gy of 7,. The kernel of the reduction map G, — Gal(F,/F,) is the
inertia subgroup and is denoted I,. We say that p is unramified at ¢ if pj;, is the trivial representation.
If this is the case, then p(oy) is independent of the choice of lift o,. Given an elliptic curve E/Q, we let
ae(E) =0+ 1—#E(F,). The Galois representation p = pg, is unramified at all primes ¢ { N,. At a prime
(1 N, the characteristic polynomial of p(c.ll) is det(x - Id — p(0y)) = 2? — ay(E)x + ¢
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Modular Forms and Hecke Operators

Let b be the upper half plane consisting of all z € C with &(z) > 0. The group SLs(Z) acts on b by

fractional linear transformations,
a b az+b
7= —
c d cz+d

Given an integer N > 1, we consider the congruence subgroups,

FO(N):{<Z Z) lc=0 (mod N)}
Fl(N):{CL Z) la,d=1 (mod N), c=0 (mod N)}

We will now discuss some algebraic operators. Given k > 2, let S,(I'1(N), C) be the space of cuspforms of
weight k£ on I'y(N). There are 3 types of operators acting on Si(I'1 (IV), C):

e T, for every prime ¢t N
[ Ug for /¢ ‘ N
e The diamond operators (d).

Let f(2) =Y, @n€®™ be the normalized Hecke eigencuspform. The fourier coefficients a,, are all alge-
braic numbers and generate a field extension F of Q such that [F : Q] < oo, ie., finite. We will now see what
modularity of elliptic curves is. Let p be a prime and choose a prime p | p in Op. Set O to be the completion
O at p. Deligne showed that there is a continuous Galois representation, ps, : Gal(Q/Q) — GLy(O),
associated to f and p. The Galois representation py,, is unramified at all primes ¢ { N,, and at any prime
(Y Ny, det(z - Id — pyp(o0)) = 2% — apx + (F714p(¢). Given E/Q, we say that E is modular if there is a
Hecke eigencuspform f(z) of weight 2 on I'y(/N), with rational Fourier coefficients such that pg, >~ py,. If
the isomorphism pg, ~ py, holds for any one primes p, then it holds for all primes.

Theorem (Wiles, Taylor-Wiles). Every semistable elliptic curve E/Q is modular.

Theorem (Breuil-Conrad-Diamond-Taylor). Every elliptic curve E/Q is modular.

Jacobians of Modular Curves

Let J1(N) be the Jacobian of the modular curve X; (V). It is an abelian variety over Q. We set T},(J1(V)) to
be the p-adic Tate-module associated to Ji(N), T,(J1(N)) = lim._ J;(N)[p"]. Note that T,(J1(N)) ~ Z2"
where n = dim J; (). This gives rise to a representation,

p: Gal(Q/Q) — GLan(Z,)

which in fact factors through GSpa,(Z,).

Choose a noncanonical isomorphism of fields C ~ @p, thus view Q, as a sub-algebra of C. This iso-
morphism does not respect the topological structures of C and @p and is highly discontinuous. Let Ty be
the Z,-algebra generated by the endomorphisms of Sy(I';(/V)) which is generated by the Hecke operators:

o T, for (N
o Uyfor /| N



e (d), the diamond operators.

Each Hecke-operator T' € T gives rise to an endomorphism of the Jacobian J;(/N), and hence an endo-
morphism of the Tate-module T,,(.J;(N)). As a result, T,(J;(N)) is viewed as a module over Ty. A Hecke
eigenform f of weight 2 gives rise to a homomorphism ¢y : Ty — O. Here, T" € Ty is sent to ¢s(7T),
subject to the relation, T'(f) = ¢4(T)f. We let m be the maximal ideal generated by the kernel of ¢ and
the uniformizer @ of O. We have an isomorphism, 7,(J1(N))m ®1,, O ~ O & O. This gives rise to the
Galois representation, pr, : Gal(Q/Q) — GLy(0O).

Deformations

Let K be a finite extension of Q,, O its valuation ring and F = O/w its residue field. Let p : Gal(Q/Q) —
G Ly(O) be a continuous Galois representation and p : Gal(Q/Q) — GLo(F) its residual representation,
obtained after going modulo-w. The representation w lies in a family of Galois representations that are
deformations of 5. A coefficient ring is a complete local noetherian O-algbera R such that R/mp ~ F.
Such a ring has a presentation,

O[[ X1, ..., Xu]]
(g1, >9k)

R~

A R-lift of p is a Galois representation, pg : Gal(Q/Q) — GLy(R) such that after composing with,
GLy(R) 2248, G Ly (F)

we recover p : Gal(Q/Q) — GLy(F). Two lifts pi, ps : Gal(Q/Q) — GLy(F) are strictly equivalent if
p1 = Apa AL, for some matrix A € ker(GLy(R) — GLy(F)). A deformation is a strict equivalence class of
lifts. Fix a finite set of primes S such that p is unramified at all primes ¢ ¢ S. Let Gg be the maximal
quotient of Gal(Q/Q) which is unramified at all primes ¢ ¢ S.

The Universal Deformation

Given such a choice S, there is a universal deformation of p which is unramified outside S. In other words,
there is a deformation, p"™ : Gg — GLo(R(p)) such that given any deformation pg : Gg — GLy(R), there
exists unique map. ¢ : R(p) — R such that we recover pg as the composite,

Gs “— GLy(R(p)) = GLa(R)

Local deformation conditions

We may also consider deformations of the Local Galois representation Ik Gy — GLo(F). Let CLNp be
the category of coefficient rings over O. In other words, it is the category of complete, local, noetherian
O-algebras R such that R/mgr ~ F. Consider the functor of deformations, Def, : C LNy — Sets, where
Defy(R) consists of all deformations of p, to R. A deformation condition C; is an subfunctor of Defy,
satisfying further conditions that make it representable. As a functor, it takes every coefficient ring R to a
set of local deformations Cy(R) C Def,(R) in a functorial way. We say that a deformation ¢ : G, — G Ly(R)
satisfies the deformation condition C; if pr € Co(R). A deformation type D = (X, {C/}sex) for p consists of
the following data:

1. A set of primes > outside of which p is unramified.

2. At each prime ¢ € ¥, a deformation condition C,.



The Taylor-Wiles method

Let £//Q be an elliptic curve and consider the prime p = 3. Then, there are 2 cases to consider:

1. p = pg 5 is absolutely irreducible. In this case, it is known that  is modular by the result of Langlands
and Tunnell.

2. p is not absolutely irreducible. In this case the prime 3 may be replaced by the prime 5 and the
representation py, 5 is absolutely irreducible.

Let Ny be the prime to p part of the Artin-conductor of p. Let Ty be the Hecke algbera at minimal
level Ny localized at an appropriate maximal ideal (associated to p). On the other hand, there is a
minimal deformation type Duin = (S, {Cr}res). Here, S = {primes ¢ : ¢ | Nyp}. Let Ry be the universal
deformation ring Rp_, . Note that from the Jacobian, we have a Galois representation associated with
To, ¢ : Gal(Q/Q) — GLy(Ty). The representation p’ satisfies all deformation conditions C, prescribed
by the type Duin. By the universal property, we obtain a map g : Ry — Ty. The goal is to prove that
o is an isomorphism. Such a result needs to be proven at non-minimal levels as well, but this requires
a slightly more involved argument. An result establishing an isomorphism between a deformation ring R
and a localized Hecke algebra T is known as an "R = T” theorem. The representation p associated with an
elliptic curve coincides with a map R — Z,. Since R ~ T, it follows that this map is the same as a map
T — Z,. Finally, it is not hard to prove that any homomorphism T — Z, is one associated to a Hecke
eigenform f, taking a Hecke operator 1" to the eigenvalue ¢ (7).

Taylor-Wiles primes

A prime number ¢ is a Taylor-Wiles primes if ¢ ¢ S, ¢ =1 (mod p) and p(o,) is semisimple with distinct
eigenvalues. Let @ = {q1,...,¢ -} be a finite set of Taylor-Wiles primes. Define a new deformation
condition Dy = (SUQ, {Cr}resug) by allowing ramification at the primes ¢ € Q). Let Rg be the associated
deformation ring. We will now compare deformation rings. The universal deformation of type-Dy is also of
type Dg. Hence, there is a natural homomorphism, Ry — Ry. Let A, be the p-primary part of (Z/qZ)*.
Set Ag to be the product,

AQZHAq

q€Q

The deformation ring R associated to Dy is an O[Ag]-algebra. Letting ag be the augementation ideal in
O[Ag], there is an isomorphism, Rg/agRg ~ Ry. Likewise, there is a localized Hecke algbera associated
wuth the type D¢, which we denote by Rg. As in the case with deformation rings, Ty is an O[Ag|-algebra
and there is an isomorphism, Tq/agTqg ~ Ty. There is a natural map g : Rg — Tg, such that the
following square commutes,

Ry —25 T,

I

ROTTO

Patching

There exists » > 1 such that for every n > 1, there is a set @),, of r Taylor-Wiles primes such that ¢ = 1
(mod P"). Set R, = Rg, and T, = Tq,. Given @, the set of primes ),,11 can be constructed in a way



so that there are natural maps R, ,; — R, and T, ; — T, so that the following diagram commutes,

Ry —— Tona

| |

R, —— T,
A set A, = Ag,. Note that R,, and T, are algberas over,

N O[Sy, ..., 5S,]
OlA,] ~ (T+ S —1,....,(1+ S,)r —1)

Taking the inverse limit O, = lim,  O[A,] is a formal power series ring over O in r-variables,
Ooo ~ O[[Sl, ceey ST]]

Set R, =lim, R, and R, =lim,_ T,. Let ¢, : Roc — T4 be the inverse limit of the maps ¢, : R, —
T,. Note that Ry = Ry/(S1,...,S,) and Tog = Too /(S1, ..., S,). If it is shown that ¢ : Reo — Too is an
isomorphism, then it shall follow that ¢y : Ry — Ty is an isomorphism as well. Each Hecke-algebra T,, acts
faithfully on a space of modular forms M,, which is finitely generated and free as an O[A,]-module. Letting
My, = lim._ M, we find that M, is a finitely generated free Oy = O[[S},. .., S;]]-module. It follows
from this that T, is also a finitely generated and faithful O,,-module. On the other hand, it follows from
Galois theoretic arguments that R, is a quotient of O[[Xy,...,X,]]. By the dimension considerations,
R, = O[[Xy,...,X,]]. Since Ry, — T is a surjective and T, is faithful over O][S1,..., S]], this implies
that ¢, must be an isomorphism.



