An overview of the Taylor-Wiles Method

Sachin Kumar University of Waterloo, Faculty of Mathematics

April 2023

Generalities

Let $\overline{\mathbb{Q}}$ be the algebraic closure of \mathbb{Q} and $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ is called the absolute Galois group of \mathbb{Q} . Given a number field L, $\operatorname{Gal}(\overline{\mathbb{Q}}/L)$ is an open subgroup of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. As L ranges over all number fields, the groups $\operatorname{Gal}(\overline{\mathbb{Q}}/L)$ consist of a basis of open neigbourhoods of the identity. Given a prime number p, the ring of p-adic integers is the inverse limit $\mathbb{Z}_p = \lim_{\longleftarrow} \mathbb{Z}/p^n\mathbb{Z}$ and let \mathbb{Q}_p be the fraction field of \mathbb{Z}_p .

Galois Representation

Let V be a finite dimensional \mathbb{Q}_p -vector space equipped with a continuous action of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. This gives rise to a continuous Galois representation, $\rho_V : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_n(\mathbb{Q}_p)$. Here, $GL_n(\mathbb{Q}_p)$ is the automorphism group of $V \simeq \mathbb{Q}_p^n$. There is a \mathbb{Z}_p -linear lattice $L \simeq \mathbb{Z}_p^n$ contained in V which is Galois stable. The action of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ gives rise to an integral Galois representation, $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_n(\mathbb{Z}_p)$. Let E be an elliptic curve defined over \mathbb{Q} and p be a prime number. Given $N \in \mathbb{Z}_{\geq 1}$, set E[n] to denote the N-torsion subgroup of $E(\overline{\mathbb{Q}})$. Note that $E \simeq C/\Lambda$, where $\Lambda = \mathbb{Z} \oplus \mathbb{Z}\tau$ is a lattice in \mathbb{C} . As an abeian group the N-torsion subgroup E[n] is

$$N^{-1}\Lambda/\Lambda \simeq \Lambda/N\Lambda \simeq \mathbb{Z}/N\mathbb{Z} \oplus \mathbb{Z}/N\mathbb{Z}$$

Fix a prime p. Note that multiplication by p gives a map, $\times p : E[p^{n+1}] \to E[p^n]$. Consider the system of maps,

$$\xrightarrow{\times p} E[p^{n+1}] \xrightarrow{\times p} E[p^n] \xrightarrow{\times p} \dots \xrightarrow{\times p} E[p^2] \xrightarrow{\times p} E[p]$$

The p-adic Tate-module $T_p(E)$ is the inverse limit,

$$T_p(E) = \lim_{\longleftarrow} E[p^n]$$

We have that $T_p(E) \simeq \mathbb{Z}_p \otimes \mathbb{Z}_p$. Furthermore, $T_p(E)$ is equipped with an action of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$, which gives rise to a Galois representation,

$$\rho = \rho_{E,p} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\mathbb{Z}_p)$$

Let $\overline{\rho}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\mathbb{Z}/p\mathbb{Z})$ be the mod-p reduction of ρ . Given a prime ℓ , we set $G_{\ell} = \operatorname{Gal}(\overline{\mathbb{Q}}_{\ell}/\mathbb{Q}_{\ell})$. The inclusion $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_{\ell}$ gives rise to an injective homomorphism $G_{\ell} \hookrightarrow \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. We let $\rho_{|\ell}$ be the restriction of ρ to G_{ℓ} . Note that $\operatorname{Gal}(\overline{\mathbb{F}}_{\ell}/\mathbb{F}_{\ell}) \simeq \widehat{\mathbb{Z}}$, where $\widehat{\mathbb{Z}} = \lim_{\longleftarrow} \mathbb{Z}/m\mathbb{Z}$, generated by the Forbenius $\overline{\sigma}_{\ell}: x \mapsto x^{\ell}$. We shall fix a lift $\sigma_{\ell} \in G_{\ell}$ of $\overline{\sigma}_{\ell}$. The kernel of the reduction map $G_{\ell} \to \operatorname{Gal}(\overline{\mathbb{F}}_{\ell}/\mathbb{F}_{\ell})$ is the inertia subgroup and is denoted I_{ℓ} . We say that ρ is unramified at ℓ if $\rho_{|I_{\ell}}$ is the trivial representation. If this is the case, then $\rho(\sigma_{\ell})$ is independent of the choice of lift σ_{ℓ} . Given an elliptic curve E/\mathbb{Q} , we let $a_{\ell}(E) = \ell + 1 - \#E(\mathbb{F}_{\ell})$. The Galois representation $\rho = \rho_{E,p}$ is unramified at all primes $\ell \nmid N_p$. At a prime $\ell \nmid N_p$, the characteristic polynomial of $\rho(\sigma_{\ell}l)$ is $\det(x \cdot \operatorname{Id} - \rho(\sigma_{\ell})) = x^2 - a_{\ell}(E)x + \ell$

Modular Forms and Hecke Operators

Let \mathfrak{h} be the upper half plane consisting of all $z \in \mathbb{C}$ with $\Im(z) > 0$. The group $SL_2(\mathbb{Z})$ acts on \mathfrak{h} by fractional linear transformations,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}$$

Given an integer $N \geq 1$, we consider the congruence subgroups,

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid c \equiv 0 \pmod{N} \right\}$$

$$\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, d \equiv 1 \pmod{N}, \ c \equiv 0 \pmod{N} \right\}$$

We will now discuss some algebraic operators. Given $k \geq 2$, let $S_k(\Gamma_1(N), \mathbb{C})$ be the space of cuspforms of weight k on $\Gamma_1(N)$. There are 3 types of operators acting on $S_k(\Gamma_1(N), \mathbb{C})$:

- T_{ℓ} for every prime $\ell \nmid N$
- U_{ℓ} for $\ell \mid N$
- The diamond operators $\langle d \rangle$.

Let $f(z) = \sum_{n \geq 1} a_n e^{2\pi i n z}$ be the normalized Hecke eigencuspform. The fourier coefficients a_n are all algebraic numbers and generate a field extension F of \mathbb{Q} such that $[F:\mathbb{Q}] < \infty$, ie., finite. We will now see what modularity of elliptic curves is. Let p be a prime and choose a prime $\mathfrak{p} \mid p$ in \mathcal{O}_F . Set \mathcal{O} to be the completion \mathcal{O}_F at \mathfrak{p} . Deligne showed that there is a continuous Galois representation, $\rho_{f,\mathfrak{p}}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\mathcal{O})$, associated to f and \mathfrak{p} . The Galois representation $\rho_{f,\mathfrak{p}}$, is unramified at all primes $\ell \nmid N_p$, and at any prime $\ell \nmid N_p$, det $(x \cdot \operatorname{Id} - \rho_{f,\mathfrak{p}}(\sigma_\ell)) = x^2 - a_\ell x + \ell^{k-1}\psi(\ell)$. Given E/\mathbb{Q} , we say that E is modular if there is a Hecke eigencuspform f(z) of weight 2 on $\Gamma_0(N)$, with rational Fourier coefficients such that $\rho_{E,p} \simeq \rho_{f,p}$. If the isomorphism $\rho_{E,p} \simeq \rho_{f,p}$ holds for any one primes p, then it holds for all primes.

Theorem (Wiles, Taylor-Wiles). Every semistable elliptic curve E/\mathbb{Q} is modular.

Theorem (Breuil-Conrad-Diamond-Taylor). Every elliptic curve E/\mathbb{Q} is modular.

Jacobians of Modular Curves

Let $J_1(N)$ be the Jacobian of the modular curve $X_1(N)$. It is an abelian variety over \mathbb{Q} . We set $T_p(J_1(N))$ to be the p-adic Tate-module associated to $J_1(N)$, $T_p(J_1(N)) = \lim_{\longleftarrow} J_1(N)[p^n]$. Note that $T_p(J_1(N)) \simeq \mathbb{Z}_p^{2n}$ where $n = \dim J_1(N)$. This gives rise to a representation,

$$\rho: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_{2n}(\mathbb{Z}_p)$$

which in fact factors through $GSp_{2n}(\mathbb{Z}_p)$.

Choose a noncanonical isomorphism of fields $\mathbb{C} \simeq \overline{\mathbb{Q}}_p$, thus view \mathbb{Q}_p as a sub-algebra of \mathbb{C} . This isomorphism does not respect the topological structures of \mathbb{C} and $\overline{\mathbb{Q}}_p$ and is highly discontinuous. Let \mathbb{T}_N be the \mathbb{Z}_p -algebra generated by the endomorphisms of $S_2(\Gamma_1(N))$ which is generated by the Hecke operators:

- T_{ℓ} for $\ell \nmid N$
- U_{ℓ} for $\ell \mid N$

• $\langle d \rangle$, the diamond operators.

Each Hecke-operator $T \in \mathbb{T}_N$ gives rise to an endomorphism of the Jacobian $J_1(N)$, and hence an endomorphism of the Tate-module $T_p(J_1(N))$. As a result, $T_p(J_1(N))$ is viewed as a module over \mathbb{T}_N . A Hecke eigenform f of weight 2 gives rise to a homomorphism $\phi_f : \mathbb{T}_N \to \mathcal{O}$. Here, $T \in \mathbb{T}_N$ is sent to $\phi_f(T)$, subject to the relation, $T(f) = \phi_f(T)f$. We let \mathfrak{m} be the maximal ideal generated by the kernel of ϕ_f and the uniformizer ϖ of \mathcal{O} . We have an isomorphism, $T_p(J_1(N))_{\mathfrak{m}} \otimes_{\mathbb{T}_{\mathfrak{m}}} \mathcal{O} \simeq \mathcal{O} \oplus \mathcal{O}$. This gives rise to the Galois representation, $\rho_{f,\mathfrak{p}} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\mathcal{O})$.

Deformations

Let K be a finite extension of \mathbb{Q}_p , \mathcal{O} its valuation ring and $\mathbb{F} = \mathcal{O}/\varpi$ its residue field. Let $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\mathcal{O})$ be a continuous Galois representation and $\overline{\rho} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\mathbb{F})$ its residual representation, obtained after going modulo- ϖ . The representation ϖ lies in a family of Galois representations that are deformations of $\overline{\rho}$. A coefficient ring is a complete local noetherian \mathcal{O} -algebra R such that $R/\mathfrak{m}_R \simeq \mathbb{F}$. Such a ring has a presentation,

$$R \simeq \frac{\mathcal{O}[[X_1, \dots, X_m]]}{(g_1, \dots, g_k)}$$

A R-lift of $\overline{\rho}$ is a Galois representation, $\rho_R : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(R)$ such that after composing with,

$$GL_2(R) \xrightarrow{\operatorname{mod} \mathfrak{m}_R} GL_2(\mathbb{F})$$

we recover $\overline{\rho}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\mathbb{F})$. Two lifts $\rho_1, \rho_2: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\mathbb{F})$ are strictly equivalent if $\rho_1 = A\rho_2A^{-1}$, for some matrix $A \in \ker(GL_2(R) \to GL_2(\mathbb{F}))$. A deformation is a strict equivalence class of lifts. Fix a finite set of primes S such that $\overline{\rho}$ is unramified at all primes $\ell \notin S$. Let G_S be the maximal quotient of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ which is unramified at all primes $\ell \notin S$.

The Universal Deformation

Given such a choice S, there is a universal deformation of $\overline{\rho}$ which is unramified outside S. In other words, there is a deformation, $\rho^{\text{unv}}: G_S \to GL_2(R(\overline{\rho}))$ such that given any deformation $\rho_R: G_S \to GL_2(R)$, there exists unique map. $\phi: R(\overline{\rho}) \to R$ such that we recover ρ_R as the composite,

$$G_S \xrightarrow{\rho^{\mathrm{unv}}} GL_2(R(\overline{\rho})) \xrightarrow{\phi^*} GL_2(R)$$

Local deformation conditions

We may also consider deformations of the Local Galois representation $\overline{\rho}_{|\ell}: G_{\ell} \to GL_2(\mathbb{F})$. Let $CLN_{\mathcal{O}}$ be the category of coefficient rings over \mathcal{O} . In other words, it is the category of complete, local, noetherian \mathcal{O} -algebras R such that $R/\mathfrak{m}_R \simeq \mathbb{F}$. Consider the functor of deformations, $\mathrm{Def}_{\ell}: CLN_{\mathcal{O}} \to \mathrm{Sets}$, where $\mathrm{Def}_{\ell}(R)$ consists of all deformations of $\overline{\rho}_{|\ell}$ to R. A deformation condition \mathcal{C}_{ℓ} is an subfunctor of Def_{ℓ} , satisfying further conditions that make it representable. As a functor, it takes every coefficient ring R to a set of local deformations $\mathcal{C}_{\ell}(R) \subseteq \mathrm{Def}_{\ell}(R)$ in a functorial way. We say that a deformation $\varrho: G_{\ell} \to GL_2(R)$ satisfies the deformation condition \mathcal{C}_{ℓ} if $\varrho_R \in \mathcal{C}_{\ell}(R)$. A deformation type $\mathcal{D} = (\Sigma, \{\mathcal{C}_{\ell}\}_{\ell \in \Sigma})$ for $\overline{\rho}$ consists of the following data:

- 1. A set of primes Σ outside of which $\overline{\rho}$ is unramified.
- 2. At each prime $\ell \in \Sigma$, a deformation condition \mathcal{C}_{ℓ} .

The Taylor-Wiles method

Let E/\mathbb{Q} be an elliptic curve and consider the prime p=3. Then, there are 2 cases to consider:

- 1. $\overline{\rho} = \overline{\rho}_{E,3}$ is absolutely irreducible. In this case, it is known that $\overline{\rho}$ is modular by the result of Langlands and Tunnell.
- 2. $\overline{\rho}$ is not absolutely irreducible. In this case the prime 3 may be replaced by the prime 5 and the representation $\overline{\rho}_{E,5}$ is absolutely irreducible.

Let N_0 be the prime to p part of the Artin-conductor of \overline{p} . Let \mathbb{T}_0 be the Hecke algebra at minimal level N_0 localized at an appropriate maximal ideal (associated to \overline{p}). On the other hand, there is a minimal deformation type $\mathcal{D}_{\min} = (S, \{\mathcal{C}_\ell\}_{\ell \in S})$. Here, $S = \{\text{primes } q : q \mid N_0 p\}$. Let R_0 be the universal deformation ring $R_{\mathcal{D}_{\min}}$. Note that from the Jacobian, we have a Galois representation associated with \mathbb{T}_0 , $\rho' : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\mathbb{T}_0)$. The representation ρ' satisfies all deformation conditions \mathcal{C}_ℓ prescribed by the type \mathcal{D}_{\min} . By the universal property, we obtain a map $\varphi_0 : R_0 \to \mathbb{T}_0$. The goal is to prove that φ_0 is an isomorphism. Such a result needs to be proven at non-minimal levels as well, but this requires a slightly more involved argument. An result establishing an isomorphism between a deformation ring R and a localized Hecke algebra \mathbb{T} is known as an " $R = \mathbb{T}$ " theorem. The representation ρ associated with an elliptic curve coincides with a map $R \to \mathbb{Z}_p$. Since $R \simeq \mathbb{T}$, it follows that this map is the same as a map $\mathbb{T} \to \mathbb{Z}_p$. Finally, it is not hard to prove that any homomorphism $\mathbb{T} \to \mathbb{Z}_p$ is one associated to a Hecke eigenform f, taking a Hecke operator T to the eigenvalue $\phi_f(T)$.

Taylor-Wiles primes

A prime number q is a Taylor-Wiles primes if $q \notin S$, $q \equiv 1 \pmod{p}$ and $\overline{\rho}(\sigma_q)$ is semisimple with distinct eigenvalues. Let $Q = \{q_1, \ldots, q_r\}$ be a finite set of Taylor-Wiles primes. Define a new deformation condition $\mathcal{D}_Q = (S \cup Q, \{\mathcal{C}_\ell\}_{\ell \in S \cup Q})$ by allowing ramification at the primes $q \in Q$. Let R_Q be the associated deformation ring. We will now compare deformation rings. The universal deformation of type- \mathcal{D}_0 is also of type \mathcal{D}_Q . Hence, there is a natural homomorphism, $R_Q \to R_0$. Let Δ_q be the p-primary part of $(\mathbb{Z}/q\mathbb{Z})^{\times}$. Set Δ_Q to be the product,

$$\Delta_Q = \prod_{q \in Q} \Delta_q$$

The deformation ring R_Q associated to \mathcal{D}_Q is an $\mathcal{O}[\Delta_Q]$ -algebra. Letting \mathfrak{a}_Q be the augementation ideal in $\mathcal{O}[\Delta_Q]$, there is an isomorphism, $R_Q/\mathfrak{a}_Q R_Q \simeq R_0$. Likewise, there is a localized Hecke algebra associated with the type \mathcal{D}_Q , which we denote by \mathbb{R}_Q . As in the case with deformation rings, \mathbb{T}_Q is an $\mathcal{O}[\Delta_Q]$ -algebra and there is an isomorphism, $\mathbb{T}_Q/\mathfrak{a}_Q\mathbb{T}_Q \simeq \mathbb{T}_0$. There is a natural map $\varphi_Q: R_Q \to \mathbb{T}_Q$, such that the following square commutes,

$$R_Q \xrightarrow{\varphi_Q} \mathbb{T}_Q$$

$$\downarrow \qquad \qquad \downarrow$$

$$R_0 \xrightarrow{\varphi_0} \mathbb{T}_0$$

Patching

There exists $r \geq 1$ such that for every $n \geq 1$, there is a set Q_n of r Taylor-Wiles primes such that $q \equiv 1 \pmod{P^n}$. Set $R_n = R_{Q_n}$ and $\mathbb{T}_n = \mathbb{T}_{Q_n}$. Given Q_n , the set of primes Q_{n+1} can be constructed in a way

so that there are natural maps $R_{n+1} \to R_n$ and $\mathbb{T}_{n+1} \to \mathbb{T}_n$ so that the following diagram commutes,

$$\begin{array}{ccc} R_{n+1} & \longrightarrow & \mathbb{T}_{n+1} \\ \downarrow & & \downarrow \\ R_n & \longrightarrow & \mathbb{T}_n \end{array}$$

A set $\Delta_n = \Delta_{Q_n}$. Note that R_n and \mathbb{T}_n are algebras over,

$$\mathcal{O}[\Delta_n] \simeq \frac{\mathcal{O}[S_1, \dots, S_r]}{((1+S_1)^{p^n} - 1, \dots, (1+S_r)^{p^n} - 1)}$$

Taking the inverse limit $\mathcal{O}_{\infty} = \lim_{\longleftarrow} \mathcal{O}[\Delta_n]$ is a formal power series ring over \mathcal{O} in r-variables,

$$\mathcal{O}_{\infty} \simeq \mathcal{O}[[S_1, \dots, S_r]]$$

Set $R_{\infty} = \lim_{\longleftarrow} R_n$ and $\mathbb{R}_{\infty} = \lim_{\longleftarrow} \mathbb{T}_n$. Let $\varphi_{\infty} : R_{\infty} \to \mathbb{T}_{\infty}$ be the inverse limit of the maps $\varphi_n : R_n \to \mathbb{T}_n$. Note that $R_0 = R_{\infty}/(S_1, \ldots, S_r)$ and $\mathbb{T}_0 = \mathbb{T}_{\infty}/(S_1, \ldots, S_r)$. If it is shown that $\varphi_{\infty} : R_{\infty} \to \mathbb{T}_{\infty}$ is an isomorphism, then it shall follow that $\varphi_0 : R_0 \to \mathbb{T}_0$ is an isomorphism as well. Each Hecke-algebra \mathbb{T}_n acts faithfully on a space of modular forms M_n which is finitely generated and free as an $\mathcal{O}[\Delta_n]$ -module. Letting $M_{\infty} = \lim_{\longleftarrow} M_n$, we find that M_{∞} is a finitely generated free $\mathcal{O}_{\infty} = \mathcal{O}[[S_1, \ldots, S_r]]$ -module. It follows from this that \mathbb{T}_{∞} is also a finitely generated and faithful \mathcal{O}_{∞} -module. On the other hand, it follows from Galois theoretic arguments that R_{∞} is a quotient of $\mathcal{O}[[X_1, \ldots, X_r]]$. By the dimension considerations, $R_{\infty} = \mathcal{O}[[X_1, \ldots, X_r]]$. Since $R_{\infty} \to \mathbb{T}_{\infty}$ is a surjective and \mathbb{T}_{∞} is faithful over $\mathcal{O}[[S_1, \ldots, S_r]]$, this implies that φ_{∞} must be an isomorphism.