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Generalities

Let Q be the algebraic closure of Q and Gal(Q/Q) is called the absolute Galois group of Q. Given a
number field L, Gal(Q/L) is an open subgroup of Gal(Q/Q). As L ranges over all number fields, the
groups Gal(Q/L) consist of a basis of open neigbourhoods of the identity. Given a prime number p, the
ring of p-adic integers is the inverse limit Zp = lim←− Z/pnZ and let Qp be the fraction field of Zp.

Galois Representation

Let V be a finite dimensional Qp-vector space equipped with a continuous action of Gal(Q/Q). This
gives rise to a continuous Galois representation, ρV : Gal(Q/Q) → GLn(Qp). Here, GLn(Qp) is the
automorphism group of V ≃ Qn

p . There is a Zp-linear lattice L ≃ Zn
p contained in V which is Galois stable.

The action of Gal(Q/Q) gives rise to an integral Galois representation, ρ : Gal(Q/Q) → GLn(Zp). Let
E be an elliptic curve defined over Q and p be a prime number. Given N ∈ Z≥1, set E[n] to denote the
N -torsion subgroup of E(Q). Note that E ≃ C/Λ, where Λ = Z⊕Zτ is a lattice in C. As an abeian group
the N -torsion subgroup E[n] is

N−1Λ/Λ ≃ Λ/NΛ ≃ Z/NZ⊕ Z/NZ

Fix a prime p. Note that multiplication by p gives a map, ×p : E[pn+1] → E[pn]. Consider the system of
maps,

×p−→ E[pn+1]
×p−→ E[pn]

×p−→ . . .
×p−→ E[p2]

×p−→ E[p]

The p-adic Tate-module Tp(E) is the inverse limit,

Tp(E) = lim
←−

E[pn]

We have that Tp(E) ≃ Zp ⊗ Zp. Furthermore, Tp(E) is equipped with an action of Gal(Q/Q), which gives
rise to a Galois representation,

ρ = ρE,p : Gal(Q/Q) → GL2(Zp)

Let ρ : Gal(Q/Q) → GL2(Z/pZ) be the mod-p reduction of ρ. Given a prime ℓ, we set Gℓ = Gal(Qℓ/Qℓ).
The inclusion Q ↪→ Qℓ gives rise to an injective homomorphism Gℓ ↪→ Gal(Q/Q). We let ρ|ℓ be the

restriction of ρ to Gℓ. Note that Gal(Fℓ/Fℓ) ≃ Ẑ, where Ẑ = lim←− Z/mZ, generated by the Forbenius
σℓ : x 7→ xℓ. We shall fix a lift σℓ ∈ Gℓ of σℓ. The kernel of the reduction map Gℓ → Gal(Fℓ/Fℓ) is the
inertia subgroup and is denoted Iℓ. We say that ρ is unramified at ℓ if ρ|Iℓ is the trivial representation.
If this is the case, then ρ(σℓ) is independent of the choice of lift σℓ. Given an elliptic curve E/Q, we let
aℓ(E) = ℓ+1−#E(Fℓ). The Galois representation ρ = ρE,p is unramified at all primes ℓ ∤ Np. At a prime
ℓ ∤ Np, the characteristic polynomial of ρ(σell) is det(x · Id− ρ(σℓ)) = x2 − aℓ(E)x+ ℓ
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Modular Forms and Hecke Operators

Let h be the upper half plane consisting of all z ∈ C with ℑ(z) > 0. The group SL2(Z) acts on h by
fractional linear transformations, (

a b
c d

)
z =

az + b

cz + d

Given an integer N ≥ 1, we consider the congruence subgroups,

Γ0(N) =

{(
a b
c d

)
| c ≡ 0 (mod N)

}
Γ1(N) =

{(
a b
c d

)
| a, d ≡ 1 (mod N), c ≡ 0 (mod N)

}
We will now discuss some algebraic operators. Given k ≥ 2, let Sk(Γ1(N),C) be the space of cuspforms of
weight k on Γ1(N). There are 3 types of operators acting on Sk(Γ1(N),C):

• Tℓ for every prime ℓ ∤ N

• Uℓ for ℓ | N

• The diamond operators ⟨d⟩.

Let f(z) =
∑

n≥1 ane
2πinz be the normalized Hecke eigencuspform. The fourier coefficients an are all alge-

braic numbers and generate a field extension F of Q such that [F : Q] <∞, ie., finite. We will now see what
modularity of elliptic curves is. Let p be a prime and choose a prime p | p in OF . Set O to be the completion
OF at p. Deligne showed that there is a continuous Galois representation, ρf,p : Gal(Q/Q) → GL2(O),
associated to f and p. The Galois representation ρf,p, is unramified at all primes ℓ ∤ Np, and at any prime
ℓ ∤ Np, det(x · Id − ρf,p(σℓ)) = x2 − aℓx + ℓk−1ψ(ℓ). Given E/Q, we say that E is modular if there is a
Hecke eigencuspform f(z) of weight 2 on Γ0(N), with rational Fourier coefficients such that ρE,p ≃ ρf,p. If
the isomorphism ρE,p ≃ ρf,p holds for any one primes p, then it holds for all primes.

Theorem (Wiles, Taylor-Wiles). Every semistable elliptic curve E/Q is modular.

Theorem (Breuil-Conrad-Diamond-Taylor). Every elliptic curve E/Q is modular.

Jacobians of Modular Curves

Let J1(N) be the Jacobian of the modular curveX1(N). It is an abelian variety overQ. We set Tp(J1(N)) to
be the p-adic Tate-module associated to J1(N), Tp(J1(N)) = lim←− J1(N)[pn]. Note that Tp(J1(N)) ≃ Z2n

p

where n = dim J1(N). This gives rise to a representation,

ρ : Gal(Q/Q) → GL2n(Zp)

which in fact factors through GSp2n(Zp).

Choose a noncanonical isomorphism of fields C ≃ Qp, thus view Qp as a sub-algebra of C. This iso-

morphism does not respect the topological structures of C and Qp and is highly discontinuous. Let TN be
the Zp-algebra generated by the endomorphisms of S2(Γ1(N)) which is generated by the Hecke operators:

• Tℓ for ℓ ∤ N

• Uℓ for ℓ | N
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• ⟨d⟩, the diamond operators.

Each Hecke-operator T ∈ TN gives rise to an endomorphism of the Jacobian J1(N), and hence an endo-
morphism of the Tate-module Tp(J1(N)). As a result, Tp(J1(N)) is viewed as a module over TN . A Hecke
eigenform f of weight 2 gives rise to a homomorphism ϕf : TN → O. Here, T ∈ TN is sent to ϕf (T ),
subject to the relation, T (f) = ϕf (T )f . We let m be the maximal ideal generated by the kernel of ϕf and
the uniformizer ϖ of O. We have an isomorphism, Tp(J1(N))m ⊗Tm O ≃ O ⊕ O. This gives rise to the
Galois representation, ρf,p : Gal(Q/Q) → GL2(O).

Deformations

Let K be a finite extension of Qp, O its valuation ring and F = O/ϖ its residue field. Let ρ : Gal(Q/Q) →
GL2(O) be a continuous Galois representation and ρ : Gal(Q/Q) → GL2(F) its residual representation,
obtained after going modulo-ϖ. The representation ϖ lies in a family of Galois representations that are
deformations of ρ. A coefficient ring is a complete local noetherian O-algbera R such that R/mR ≃ F.
Such a ring has a presentation,

R ≃ O[[X1, . . . , Xm]]

(g1, . . . , gk)

A R-lift of ρ is a Galois representation, ρR : Gal(Q/Q) → GL2(R) such that after composing with,

GL2(R)
mod mR−−−−→ GL2(F)

we recover ρ : Gal(Q/Q) → GL2(F). Two lifts ρ1, ρ2 : Gal(Q/Q) → GL2(F) are strictly equivalent if
ρ1 = Aρ2A

−1, for some matrix A ∈ ker(GL2(R) → GL2(F)). A deformation is a strict equivalence class of
lifts. Fix a finite set of primes S such that ρ is unramified at all primes ℓ /∈ S. Let GS be the maximal
quotient of Gal(Q/Q) which is unramified at all primes ℓ /∈ S.

The Universal Deformation

Given such a choice S, there is a universal deformation of ρ which is unramified outside S. In other words,
there is a deformation, ρunv : GS → GL2(R(ρ)) such that given any deformation ρR : GS → GL2(R), there
exists unique map. ϕ : R(ρ) → R such that we recover ρR as the composite,

GS
ρunv−−→ GL2(R(ρ))

ϕ∗
−→ GL2(R)

Local deformation conditions

We may also consider deformations of the Local Galois representation ρ|ℓ : Gℓ → GL2(F). Let CLNO be
the category of coefficient rings over O. In other words, it is the category of complete, local, noetherian
O-algebras R such that R/mR ≃ F. Consider the functor of deformations, Defℓ : CLNO → Sets, where
Defℓ(R) consists of all deformations of ρ|ℓ to R. A deformation condition Cℓ is an subfunctor of Defℓ,
satisfying further conditions that make it representable. As a functor, it takes every coefficient ring R to a
set of local deformations Cℓ(R) ⊆ Defℓ(R) in a functorial way. We say that a deformation ϱ : Gℓ → GL2(R)
satisfies the deformation condition Cℓ if ϱR ∈ Cℓ(R). A deformation type D = (Σ, {Cℓ}ℓ∈Σ) for ρ consists of
the following data:

1. A set of primes Σ outside of which ρ is unramified.

2. At each prime ℓ ∈ Σ, a deformation condition Cℓ.
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The Taylor-Wiles method

Let E/Q be an elliptic curve and consider the prime p = 3. Then, there are 2 cases to consider:

1. ρ = ρE,3 is absolutely irreducible. In this case, it is known that ρ is modular by the result of Langlands
and Tunnell.

2. ρ is not absolutely irreducible. In this case the prime 3 may be replaced by the prime 5 and the
representation ρE,5 is absolutely irreducible.

Let N0 be the prime to p part of the Artin-conductor of ρ. Let T0 be the Hecke algbera at minimal
level N0 localized at an appropriate maximal ideal (associated to ρ). On the other hand, there is a
minimal deformation type Dmin = (S, {Cℓ}ℓ∈S). Here, S = {primes q : q | N0p}. Let R0 be the universal
deformation ring RDmin

. Note that from the Jacobian, we have a Galois representation associated with
T0, ρ

′ : Gal(Q/Q) → GL2(T0). The representation ρ′ satisfies all deformation conditions Cℓ prescribed
by the type Dmin. By the universal property, we obtain a map φ0 : R0 → T0. The goal is to prove that
φ0 is an isomorphism. Such a result needs to be proven at non-minimal levels as well, but this requires
a slightly more involved argument. An result establishing an isomorphism between a deformation ring R
and a localized Hecke algebra T is known as an ”R = T” theorem. The representation ρ associated with an
elliptic curve coincides with a map R → Zp. Since R ≃ T, it follows that this map is the same as a map
T → Zp. Finally, it is not hard to prove that any homomorphism T → Zp is one associated to a Hecke
eigenform f , taking a Hecke operator T to the eigenvalue ϕf (T ).

Taylor-Wiles primes

A prime number q is a Taylor-Wiles primes if q /∈ S, q ≡ 1 (mod p) and ρ(σq) is semisimple with distinct
eigenvalues. Let Q = {q1, . . . , qr} be a finite set of Taylor-Wiles primes. Define a new deformation
condition DQ = (S ∪Q, {Cℓ}ℓ∈S∪Q) by allowing ramification at the primes q ∈ Q. Let RQ be the associated
deformation ring. We will now compare deformation rings. The universal deformation of type-D0 is also of
type DQ. Hence, there is a natural homomorphism, RQ → R0. Let ∆q be the p-primary part of (Z/qZ)×.
Set ∆Q to be the product,

∆Q =
∏
q∈Q

∆q

The deformation ring RQ associated to DQ is an O[∆Q]-algebra. Letting aQ be the augementation ideal in
O[∆Q], there is an isomorphism, RQ/aQRQ ≃ R0. Likewise, there is a localized Hecke algbera associated
wuth the type DQ, which we denote by RQ. As in the case with deformation rings, TQ is an O[∆Q]-algebra
and there is an isomorphism, TQ/aQTQ ≃ T0. There is a natural map φQ : RQ → TQ, such that the
following square commutes,

RQ TQ

R0 T0

φQ

φ0

Patching

There exists r ≥ 1 such that for every n ≥ 1, there is a set Qn of r Taylor-Wiles primes such that q ≡ 1
(mod P n). Set Rn = RQn and Tn = TQn . Given Qn, the set of primes Qn+1 can be constructed in a way
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so that there are natural maps Rn+1 → Rn and Tn+1 → Tn so that the following diagram commutes,

Rn+1 Tn+1

Rn Tn

A set ∆n = ∆Qn . Note that Rn and Tn are algberas over,

O[∆n] ≃
O[S1, . . . , Sr]

((1 + S1)p
n − 1, . . . , (1 + Sr)p

n − 1)

Taking the inverse limit O∞ = lim←−O[∆n] is a formal power series ring over O in r-variables,

O∞ ≃ O[[S1, . . . , Sr]]

Set R∞ = lim←−Rn and R∞ = lim←− Tn. Let φ∞ : R∞ → T∞ be the inverse limit of the maps φn : Rn →
Tn. Note that R0 = R∞/(S1, . . . , Sr) and T0 = T∞/(S1, . . . , Sr). If it is shown that φ∞ : R∞ → T∞ is an
isomorphism, then it shall follow that φ0 : R0 → T0 is an isomorphism as well. Each Hecke-algebra Tn acts
faithfully on a space of modular formsMn which is finitely generated and free as an O[∆n]-module. Letting
M∞ = lim←−Mn, we find that M∞ is a finitely generated free O∞ = O[[S1, . . . , Sr]]-module. It follows
from this that T∞ is also a finitely generated and faithful O∞-module. On the other hand, it follows from
Galois theoretic arguments that R∞ is a quotient of O[[X1, . . . , Xr]]. By the dimension considerations,
R∞ = O[[X1, . . . , Xr]]. Since R∞ → T∞ is a surjective and T∞ is faithful over O[[S1, . . . , Sr]], this implies
that φ∞ must be an isomorphism.
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