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Every description of this sort is necessarily biased and reflects personal tastes of me. With this dis-
claimer, here are some concepts and ideas that we consider as milestones in the development of Theoretical
Computer Science.

The focus of the field changed from the study of computability in finite (but unbounded) time, to the
more practical (but mathematically subtle) study of efficient computation. The fundamental notion
of NP-completeness was formulated, and its near-universal impact was gradually understood. Long
term goals, such as the P vs. NP question, were set.

The theory of algorithms was developed, with the fundamental focus on asymptotic and worst-case
analysis. Numerous techniques, of increasing mathematical sophistication, were invented to efficiently
solve major computational problems.

A variety of computational models, designed to explain and sometimes anticipate existing computer
systems, were developed and studied. Among them are parallel and distributed models, asynchronous
and fault-tolerant computation, on-line algorithms and competitive analysis.

Randomness was introduced as a key tool and resource. This revolutionized the theory of algo-
rithms. In many cases, probabilistic algorithms and protocols can achieve goals which are impossible
deterministically. In other cases they enable much more efficient solutions than deterministic ones.
Following this, a series of derandomization techniques developed to convert in general cases proba-
bilistic algorithms to deterministic ones.

The emergence of the notion of one-way functions (which are "easy to compute” but "hard to invert”),
together with the use of randomness, has lead to the development of modern cryptography. This
theory has provided essential ideas for secure communication and computation over networks, and
has played a crucial role in the evolution of electronic commerce.

The notion of interactive proof systems, in which knowledge is gained through interaction with un-
trusted parties, has been pivotal to both computational complexity theory and cryptography. Proba-
bilistic proof systems, with their many variants — zero knowledge, Arthur-Merlin, multi-prover, and
probabilistically checkable proofs (PCPs), have enriched to a tremendous extent our understanding of
many basic computational problems, including ones which superficially have nothing to do with ran-
domness or interaction. As a prime example, our understanding of PCPs has led to enormous strides
in our knowledge of the difficulty of finding approximate solutions to many natural optimization
problems.

The theory of pseudo-randomness has revealed intimate connections between computational difficulty
and the task of derandomizing algorithms, and has brought us closer to understanding the power of
randomness in various computational settings.



e Complexity theory, attempting to classify problems according to their computational difficulty, has
integrated many of the ideas above, and has become much more mature and intricate. There were
many nontrivial successes in proving lower bounds on restricted models of computation. The failure
to do so for general models (towards the P vs. NP question) has motivated the introspective field
of proof complexity, which tries to quantify the resource requirements of proofs and the intrinsic
difficulty of proving various mathematical statements.

Derandomization and Pseudo-Randomness

The P = BPP question and related questions about the power of randomness in computation have given
rise to the notion of pseudo-random generator, a deterministic process that in some sense looks random
to the computational model at hand. The fundamental insight here is that a hard function for that
computational model can (sometimes) be efficiently converted into a pseudo-random number generator for
the same model.

This insight, that hardness can be turned into randomness, has led to some surprising and deep con-
nections between the complexity of randomness, cryptography, circuit complexity and combinatorics. And
once we have such a generator at hand, it results in a derandomization procedure for all probabilistic
algorithms in that model - simply try out all possible seeds of the generator (which are much fewer than
all possible random strings the algorithm used).

The techniques for implementing this paradigm have improved tremendously in the two decades of
its existence. For BPP (which is the class of algorithmic problems solvable by probabilistic polynomial
time algorithms), such non-trivial derandomization is possible already if BPP is different from the class
of problems solvable by deterministic exponential algorithms, EXP. Moreover, if EXP contains functions
requiring exponential circuit size, then BPP = P (namely, randomness can be always eliminated from
polynomial time computations). This brings up the problem of unconditionally separating BPP from EXP
as a natural "next step”, which may be feasible even with the current technology. The extensive technical
progress of the last couple of years on different ways of constructing pseudo-random generators still has to
be fully understood, simplified and generalized to realize its potential impact on this and related problems.

The analogous techniques developed for fooling probabilistic logarithmic space computations (again,
some only very recently) seem to put us quite close to deciding unconditionally that randomness is useless
in that context as well, e.g that RL = L (L stands for "logarithmic space”, and R stands for "randomized”).
But "en-route”, there are many seemingly simpler problems that still remain challenges like derandomizing
constant-width probabilistic computations or even combinatorial rectangles. Interestingly, the connection
between pseudo-randomness and lower bounds is not as explicit in space bounded models as in time
bounded models, and has yet to be clarified.

Finally, it seems that we have precious few ways of generating randomness from hardness. It will
be extremely interesting to find drastically different pseudo-random generators, (even if these will not
improve current results), or find that current constructions (like Nisan-Wigderson generators) are somehow
universal.

Another line of research in the area is more combinatorial in nature and is aimed at improving sources
of imperfect randomness so that after this improvement the outcome can be used for derandomizing
various classes of algorithms. Combinatorial constructions like expanders , extractors and condensers were
identified for the purpose, and the ultimate goal here is to be able to build explicit constructions of such
objects that match the performance of randomly chosen objects. There has been a constant progress in
this direction over several last years, but much still remains to be done.

Contributions

As we already mentioned in Introduction, this section can be viewed as annotations to some of the papers
linked or referenced at our paper page, and for a more complete picture the latter should be consulted . We



confine ourselves here only to the two topics somewhat elucidated in the previous section. But many good
results were proved in other branches of Computational Complexity, as well as in Combinatorics, Algebra
and Topology, and more information about them can be gained from the abstracts of the respective papers.

Proof complexity

One of the long-standing open problems in propositional proof complexity was to decide whether the weak
Pigeonhole principle is hard for Resolution or not (here "weak” refers to the fact that the number of pigeons
is much larger than the number of holes, potentially infinite). This problem was completely solved in the
papers Resolution Lower Bounds for the Weak Pigeonhole Principle by R. Raz and Improved Resolution
Lower Bounds for the Weak Pigeonhole Principle by A. A. Razborov (very recently this result was extended
to the functional version of the Pigeonhole principle, see Resolution Lower Bounds for the Weak Functional
Pigeonhole Principle).

In the paper Resolution is Not Automatizable Unless W[P] is Tractable, M. V. Alekhnovich and A. A.
Razborov studied the question whether Resolution is automatizable or not. Under a rather strong hardness
assumption from the theory of parameterized complexity they were able to completely answer this question
in negative.

Another important contribution to understanding the power of Resolution was made by Elli, Ben-Sasson
and Nicola Galesi in Space Complexity of Random Formulae in Resolution . The behaviour of a proof
system on random tautologies is traditionally considered as a good indicator of its strength. Ben-Sasson
and Galesi were able to show that Resolution performs rather badly on such formulas in terms of space
consumed by the proof (a similar result for the ordinary bit size measure was known for a long time).

Among the papers devoted to stronger proof systems, we can mention Monotone simulations of non-
monotone propositional proof by Albert Atserias, Nicola Galesi and Pavel Pudlak that contains the follow-
ing (rather surprising) result. An interesting fragment of the Frege proof system called monotone sequent
calculus was introduced several years ago and was long believed to be substantially weaker than (non-
monotone) Frege. This paper showed that, contrary to this belief, the monotone sequent calculus can in
fact efficiently simulate every Frege proof.

Derandomization and pseudo-randomness

The paper In Search of an Easy Witness: Exponential Time vs. Probabilistic Polynomial Time by R.
Impagliazzo , V. Kabanets and A. Wigderson (awarded the Best Paper Award at the 16th IEEE Conference
on Computational Complexity) makes very important contributions to the goal of extracting randomness
from hardness described above. It proves (in a sense, and in an intermediate form) the universality of
this approach: no derandomization of the complexity class MA (that stands for "Arthur-Merlin games”)
is possible unless there are hard functions in NEXPTIME. As another application of this technique, they
showed a number of the so-called downward closure results (that are very rare in Complexity Theory). The
paper Entropy Waves, The Zig-Zag Graph Product, and New Constant-Degree Expanders and Extractors
by O. Reingold, S. Vadhan and A. Wigderson introduces one elegant combinatorial construction, zig-zag
product of graphs. Iterating this construction, one in particular gets simple explicit expander graphs
of every size, starting from one constant-size expander. The subsequent paper Semi-direct Products in
Groups and Zig-Zag products in graphs: Connections and Applications by N. Alon , A. Lubotsky and A.
Wigderson reveals deep connections between this zig-zag product and basic group-theoretical primitives.
As an important application, they give an example showing that the expansion property of the Cayley
graph of a group may be not invariant under the choice of generators.

Extracting Randomness via Repeated Condensing by O. Reingold, R. Saltiel and A. Wigderson con-
structs efficient explicit condensers and extractors that give significant qualitative improvements over pre-
viously known constructions for sources of arbitrary min-entropy.
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