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This essay will discuss the classic result that n
√
p /∈ Q, ie., irrational, when p is a prime and n ∈ Z>1.

We will mainly see the classic elaborated highschool proof, using Fermat’s method of Infinite descent and
our not-so-common number theoretic proof of this classic result.

The classic highschool proof that
√
2 /∈ Q...

As we all know, we will use proof by contradiction. Assume, that
√
2 ∈ Q, ie., rational. By Definition, we

can then write,
√
2 = a

b
, where a, b ∈ Z and b ̸= 0. Since,

√
2 > 0, we can assume that a, b > 0 since if

a, b < 0, we can multiply both of them by -1 to the a, b > 0 and if a = 0, then this is a contradiction of
the fact that

√
2 > 0.

We can also assume that a and b are not both Zeven, for the following reason: If a, b ∈ Zeven, then by
Definition of an even integer, there exists c, d ∈ Z+ with a = 2c and b = 2d. Now since c, d ∈ Z+, we have
c < 2c and d < 2d, so c < a and d < b. Also, we have a

b
= 2c

2d
= c

d
. So, replacing a

b
by c

d
. If c and d are

not both Zeven, then we are done. Otherwise, c, d ∈ Zeven, in which case we repeat the above argument
and make another replacement of the ratio. Since, the integer numerator in the ratio is decreased with
each replacement, yet is always > 0, we can only repeat this replacement process a finite number of times
until we reach the situation in which both numerator and denominator are not both even, which is what
we wanted to prove.

Now multiply on both sides of the initial equation by b ∈ Z+, and square both sides, to obtain the
equation, 2b2 = a2. By the Definition of divisibility, we thus obtain 2 | a2, so a2 ∈ Zeven. Assume, for the
sake of contradiction, that a ∈ Zodd, so by Definition of odd integer, there exists k ∈ Z, with a = 2k + 1.
Then we have,

a2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1

and hence we can conclude that a2 is odd, which is a contradiction. As a result, we conclude that a ∈ Zeven.
Therefore, there exists m ∈ Z such that a = 2m, and substituting this into 2b2 = a2 and rearranging, we
get b2 = 2m2. Analyzing this equation similarly, we can conclude that b ∈ Zeven. Hence, a, b ∈ Zeven, which
is a contradiction of the assumption that a and b are not Zeven. Therefore, we proved that

√
2 /∈ Q.

Fermat’s proof of Infinite descent for irrationality of n
√
p

Proof. Let n
√
p = x1

y1
, where x1, y1 ∈ Z+. By n-th powering, we get

xn
1 = pyn1

which is a Diophantine equation. Finding the solutions to it will give us the denominators and numerators
of all the rational numbers that equal n

√
p. Since the right-hand side is even, it means the left-hand side
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should be even, too. In other words, x1 = px2, where x2 ∈ Z+ and x1 > x2. Plugging that in and
simplifying gives us

pn−1xn
2 = yn1

It is trivial to see that the left side is even. So by a similar argument, y1 = py2, where y2 ∈ Z+ and y1 > y2.
What happens when we plug this in? A little simplification gives us something like these,

xn
2 = pyn2

This means if we have a solution (x1, y1), it is possible to find another solution (x2, y2) to it. By recursion,
we can generate an infinite sequence of strictly decreasing positive integers x1 > x2 > · · · , and that is
not possible. This is the key to Fermat’s method of infinite descent. We have to show that if one solution
exists, there exist infinitely many solutions which are strictly decreasing. That way we are done. Because
we can never have an infinite sequence of strictly decreasing, non-negative integers. So, there was never
a solution, to begin with. In our case, the Diophantine equation xn

1 = pyn1 has no solution in positive
integers. So, n

√
p ̸= x

y
, where x, y ∈ Z+ and that completes our proof.

Not-so-common number theoretic proof...

I am trying to make this essay as self contained as possible, so I will be discussing all the definition,
theorems and claims (w/ proof) in order to show the chain reaction, LOL!. So before, actually proving
the statement by polynomials and number theoretic methods, we will first discuss some useful non-trivial
theorems and definition.

Definition (Divisibility of Z). Let a, b ∈ Z. a divides b, ie., a | b if and only if there exists k ∈ Z
such that b = ak.

Divisibility of Integer Combinations. For all a, b, c ∈ Z, if a | b and a | c, then for all x, y ∈ Z, a | (bx+cy).

Proof. Let a, b and c be arbitrary integers, and assume that a | b and a | c. Since a | b, by Definition of
divisibility, there exist r ∈ Z such that b = ra. Similarly, for a | c, there exists s ∈ Z such that c = sa. Let
x and y be arbitrary integers. Then also bx+ cy ∈ Z. Using the assumption, we have,

bx+ cy = (ra)x+ (sa)y = rax+ say = (rx+ sy)a

Since, rx+ sy ∈ Z. It follows from the definition of divisibility that a | (bx+ cy).

Bounds of Divisibility. For all a, b ∈ Z, if b | a and a ̸= 0, then b ≤ |a|.

Proof. Let a and b be arbitrary integers and assume that b | a and a ̸= 0. Since, b | a, from the Definition
of divisibility, there exists q ∈ Z so that a = qb. Since a ̸= 0, this gives qb ̸= 0, and hence q ̸= 0. Therefore,
q ∈ Z\{0}, so |q| ≥ 1. Then using the properties of absolute value, we have |a| = |qb| = |q|·|b| ≥ 1·|b| = |b|,
which gives |b| ≤ |a|. Now, from Proposition 1, we also have the inequality b ≤ |b|, and putting these two
inequalities together, we obtain b ≤ |b| ≤ |a|, which gives b ≤ |a|.

Division Algorithm. For all a ∈ Z and b ∈ Z+, there exists unique q, r ∈ Z such that a = qb+ r, where
0 ≤ r < b.

Proof. Let a be an arbitrary integer, and b be an arbitrary positive integer. We assume that there exist
q, r ∈ Z such that a = qb+ r, with 0 ≤ r < b. To prove that the q, r ∈ Z are unique, assume that q1, r1 ∈ Z
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such that a = q1b+ r1, with 0 ≤ r1 < b and that q2, r2 ∈ Z such that a = q2b+ r2, with 0 ≤ r2 < b. Then,
we have the pair of inequalities,

0 ≤ r1 < b

−b < −r2 ≤ 0

where the second inequality is obtained from 0 ≤ r2 < b by multiplying through by -1, which therefore
reverses the inequalities. Now, adding this pair of inequalities, we obtain

−b < r1 − r2 < b (0.1)

However, we also have 0 = a − a = (q1b + r1) − (q2b + r2) = (q1 − q2)b + (r1 + r2) and rearranging the
equation 0 = (q1−q2)b+(r1−r2) gives (q2−q1)b = r1−r2. This means that b | (r1−r2), so r1−r2 = kb, for
some k ∈ Z. Now substituting for r1 − r2 in (0.1) gives −b < kb < b, and dividing through this inequality
by b, which is positive, gives −1 < k < 1. Since k ∈ Z, we can conclude that k = 0. Now k = 0 gives
r1 − r2 = kb = 0b = 0, so we have r1 = r2. Finally, substituting r1 = r2, we get (q2 − q1)b = r1 − r2 = 0
and since b ̸= 0, we have q2 − q1 = 0 and hence q1 = q2. We have proved that r1 = r2 and q1 = q2, and
therefore conclude that the q, r ∈ Z are unique.

GCD With Remainders Theorem. For all a, b, q, r ∈ Z, if a = qb+ r, then gcd(a, b) = gcd(b, r).

Proof. Let a, b, q and r be arbitrary integers, and assume that a = qb + r. Now either a and b are not
both zero, or they are both zero, and we consider these possibilities as two cases.

Case 1. When a and b are not both zero, let d = gcd(a, b). Note that in this case we also have that
b and r are not both zero. From the definition of gcd we have d | a and d | b, and by the Divisibility of
Integer Combinations, this implies that d | (a(1) + b(−q)) =⇒ d | (a − qb). But rearranging a = qb + r,
we get a− qb = r, so d | r, and hence d is a common divisor of b and r. Now, let c be an arbitrary common
divisor of b and r. Since, c | b and c | r, then we have c | qb+r. Now, a = qb+r, so c | a. Since, d = gcd(a, b)
and c | a and c | b, then from the definition of gcd we have c ≤ d. Hence, gcd(b, r) = d = gcd(a, b) in this
case.

Case 2. When are a = b = 0, then a = qb + r becomes 0 = 0 + r, so we have r = 0. We thus have
gcd(a, b) = gcd(0, 0) = 0 and gcd(b, r) = gcd(0, 0) = 0, giving gcd(a, b) = gcd(b, r) in this case.

GCD Characterization Theorem. For all a, b ∈ Z, and d ∈ Z≥0, if

1. d is a common divisor of a and b.

2. There exists integers s and t such that as+ bt = d

then d = gcd(a, b).

Proof. Let a and b be arbitrary integers, and let d be an arbitrary non-negative integer. Assume that d
is a common divisor of a and b, and that there exist s, t ∈ Z such that as + bt = d. We consider the two
cases a and b no both zero, and a = b = 0.

Case 1. Suppose that a and b are not both zero. Since d is a common divisor of a and b, that means that
d ̸= 0, so d > 0. Now, let c be an arbitrary common divisor of a and b. Hence, c | a and c | b, so by
divisibility of integer Combinations, we have that c | (ax + by), for all x, y ∈ Z. Therefore, c | (as + bt),
and since as + bt = d, we obtain c | d. Then from Bounds by Divisibility we obtain c ≤ |d|, so by the
positivity of d we get c ≤ d. Hence from the definition of gcd, we have d = gcd(a, b).
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Case 2. Suppose that a = b = 0. From the assumption that there exists s, t ∈ Z such that as+ bt = d, we
must have d = 0, since 0s+ 0t = 0, for all s, t ∈ Z. Also, 0 | 0, so d = 0 is a common divisor of a = 0 and
b = 0. Since gcd(0, 0) = 0, then d = gcd(a, b).

Bézout’s Lemma (Coprimeness Characterization Theorem). For all a, b ∈ Z. gcd(a, b) = 1 if and only
if there exists s, t ∈ Z such that as+ bt = 1.

Proof. Let a and b be arbitrary integers. We will prove both implications.

Claim. For a, b ∈ Z be nonzero, let gcd(a, b) = d. Then, there exists x, y ∈ Z such that ax+ by = d.

The proof of this claim uses the property that for non-zero integers a and b, dividing a by b leaves a
remainder of r1 strictly less than b and gcd(a, b) = gcd(r1, b) by GCD With Remainders. Then by repeated
computation of the Euclidean division algorithm, we have

a = bx1 + r1 0 < r1 < |b|
b = r1x2 + r2 0 < r2 < r1
...

rn−1 = rnxn+1 + rn+1 0 < rn+1 < rn

rn = rn+1xn+2

where the rn+1 is the last nonzero remainder in the division process. Now, we can use the second to
last equation to solve for rn+1 as a combination of rn and rn−1. Unfolding this, we can solve for rn as a
combination of rn−1 and rn−2, ...
Untill, we eventually write rn+1 as a linear combination of a and b. Since, rn+1 is the last nonzero remainder
in the division process, it is the gcd of a and b, which proves our claim.

(=⇒:) Assume that gcd(a, b) = 1. Applying the above claim, there exists s, t ∈ Z so that as+ bt = 1.

(⇐=:) Assume that there exists s, t ∈ Z such that as + bt = 1. Now, 1 | a and 1 | b for all a, b ∈ Z,
so from GCD Characterization theorem, we have gcd(a, b) = 1.

Comprimness and Divisibility Theorem. For all a, b, c ∈ Z, if c | ab and gcd(a, c) = 1, then c | b

Proof. Let a, b and c be arbitrary integers, and assume that c | ab and gcd(a, c) = 1. Since gcd(a, c) = 1, by
Coprimeness Characterization Theorem (or by Bézout’s Lemma) there exists s, t ∈ Z such that as+ct = 1.
Multiplying the equation by b gives,

abs+ cbt = b

Now, we have c | ab from the hypothesis, and c | c from the Definition of divisibility, so by the Divisibility
of integer combination, we have c | ((ab)s+ c(bt)). Hence from (6.8) we obtain c | b.

Rational Roots Theorem. For all f(x) ∈ Z[x] with n ≥ 1. If p
q
is a rational root of f(x), where p, q ∈ Z

and q ̸= 0, with gcd(p, q) = 1, then p | a0 and q | an.

Proof. Let f(x) = anx
n+an−1x

n−1+ · · ·+a2x
2+a1x+a0 ∈ Z[x] with n ≥ 1, be an arbitrary polynomials,

and assume p
q
is a root of f(x). Then f

(
p
q

)
= 0, so we have

an

(
p

q

)n

+ an−1

(
p

q

)n−1

+ · · ·+ a2

(
p

q

)2

+ a1

(
p

q

)
+ a0 = 0
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multiplying on both sides by qn gives,

anp
n + an−1p

n−1q + · · ·+ a2p
2qn−2 + a1pq

n−1 + a0q
n = 0

and rearranging, we obtain

anp
n = −q(an−1p

n−1 + · · ·+ a2p
2qn−3 + a1pq

n−2 + a0q
n−1)

where q, ai, p
i ∈ Z, 0 ≤ i ≤ n, so from the Definition of divisibility we have, q | anpn.

Claim: for all n ∈ N, if gcd(p, q) = 1, then gcd(p, qn) = 1.

We will prove a claim by applying induction on n, where P (n) is the open sentence that if gcd(p, q) = 1,
then gcd(p, qn) = 1.

Base Case. Let n = 1. We can see that if gcd(p, q) = 1, then gcd(p, q) = 1.

Inductive Case. Let k be an arbitrary natural number. Assume the inudctive hypothesis, P (k). That
is, we assume if gcd(p, q) = 1, then gcd(p, qk) = 1. We wish to prove P (k + 1), ie., if gcd(p, q) = 1, then
gcd(p, qk+1) = 1. Hence, assume gcd(p, q) = 1. Hence assume gcd(p, q) = 1, then by Bézout’s Lemma
(Coprimeness Characterization Theorem), there exists s, t ∈ Z such that ps+ qt = 1. Since gcd(p, qk) = 1
from the inductive hypothesis, we can also use the Bézout’s Lemma again, to give that there exists u, v ∈ Z
such that pu+ qkv = 1, Multiplying these two equations together gives, p2su+ pqksv + pqtu+ qk+1tv = 1,
which we can rewrite as, p(psu+ qksv + qtu) + qk+1(tv) = 1. Let e = psu+ qksv + qtu and f = tv. Then
from the previous equation e, f ∈ Z such that pe + qk+1f = 1, and hence we deduce from the Bézout’s
Lemma that gcd(p, qk+1) = 1. The result us true for n = k + 1, and hence holds for all integers n ≥ 1 by
the Principle of Mathematical Induction.

So applying Coprimess and Divisibility theorem, we get that q | an. Now, the proof of p | a0 is triv-
ial using the same technique.

Now, we will prove our original result that n
√
p /∈ Q, when p is a prime and n ∈ Z>1, using the

rational roots theorem.

Proof. Since, we will be proving using rational roots theorem, we need to constuct a polynomial, f(x) ∈ Z[x]
such that n

√
p is a root of f(x), ie., f( n

√
p) = 0. So let x = n

√
p, powering to the n-th on both sides we get

xn = p, so we get f(x) = xn − p ∈ Z[x]. Since, f( n
√
p) = p − p = 0, n

√
p is a root of f(x). Now, applying

the rational roots theorem to f(x). Since the divisors of 1 are ±1 and p are ±1 and ±p. So, the candidates
for rational roots of f(x) are ±1 and ±p. We will see in two different cases: when n ∈ Zeven and when
n ∈ Zodd. Using the fact that 1 is neither a prime nor composite the following holds,

When n ∈ Zeven. f(1) = f(−1) = 1 − p ̸= 0 and f(p) = f(−p) = pn − p = p(pn−1 − 1) ̸= 0, which
means that f(x) has no rational roots. Since, n

√
p is a root of f(x) but f(x) has no rational roots, we

proved that n
√
p is irrational.

When n ∈ Zodd. f(1) = 1− p ̸= 0, f(−1) = −1− p = −(1 + p) ̸= 0, f(p) = pn − p = p(pn−1 − 1) ̸= 0 and
f(−p) = −pn − p = −p(pn−1 + 1) ̸= 0, which means that f(x) has no rational roots. Since, n

√
p is a root

of f(x) but f(x) has no rational roots, we proved that n
√
p is irrational.

Therefore, we proved that n
√
p is irrational when p is a prime and n > 1
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