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Notation

Let K be a number field and let GK = Gal(K/K) be absolute Galois group. Let K(t) be the function field
of P1/K and set GK(t) to be the Galois group Gal(K(t)/K(t)). Identifying, Gal(K(t)/K(t)) with GK , we
obtain the exact sequence,

1 → GK(t) → GK(t) → GK → 1

Let p be an odd prime number and let F denote a finite field of characteristic p. Given a point x ∈ P1(K),
we have an associated decomposition group GX ⊂ GK(t) and inertia subgroup IX ⊂ GX . There is a

natural isomorphism GX/IX
∼−→ GK . A continuous Galois representation ϱ : GK(t) → GL2(E) is said to

be unramified at x if IX ⊂ ker ϱ. At any point x at which ϱ is unramified, the rigid Galois representation
specializes to ϱX : GK → GL2(E). Throughout, Q(ζn) is the cyclotomic field generated by a primitive root
of unity ζn, and Kn = Q(ζn)

+ is its real subfield.

Rigid Galois representation

Frey representation

Let p, q are r be not neccesarily distinct primes. A Frey representation associated to xp + yq = zr is a
Galois representation,

ϱ : ϱt : GK(t) → GL2(F)

satisfying ther following conditions:

• The restriction of ϱ to GK(t) is irreducible with trivial determinant. We let ϱgeom : GK(t) → PSL2(F)
be the projectivization of this representation.

• The representation ϱgeom : GK(t) → PSL2(F) is unramified away from {0, 1,∞}.

• It maps the inertia groups at 0, 1, ∞ to subgroups of PSL2(F) of order p, q, r respectively.

For each point x ∈ P1(K) \ {0, 1,∞} we obtain a Galois representation ϱX : GK → GL2(F), thus giving
us a 1-parameter family of Galois representations. Given a nontrivial solution (a, b, c) to xp + yq = zr, we
obtain a Galois representation,

ρ = ϱ(ap/cr) : GK → GL2(F)

A certain quadratic twist of ρ is shown to have very little ramification. Two Frey representation ϱ1 and ϱ2
are equivalent if ϱ1 is conjugate over F to a central twist of ϱ2.
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Given x ∈ P1(K). The inertia group IX ∼= Ẑ(1). Choosing a topological generator γj of Ij for j ∈ {0, 1,∞},
set σj ∈ PSL2(F) to be ϱgeom(γj). The decomposition groups and generators γj may be chosen so that the
relationship σ0σ1σ∞ = 1 is satisfied in PSL2(F). Assuming p, q, r are odd primes, there is a unique lift of
σ̃j of σj to SL2(F). The representation ϱ is even (resp. odd) if σ̃0σ̃1σ̃∞ = 1 (resp. -1).

Rigidity Method

Construction and classification

There are two methods of constructing and classifying Frey representations. One method is to use results
on rigidity due to Belyi, Fried, Thompson and Matzat. The other method is to consider Galois repre-
sentations arising from hypergeometric abelian varieties of GL2-type. The strategy is to first define a
Galois representation ϱgeom : GK(t) → PSL2(F) which is unramified away from {0, 1,∞}. The maximal
quotient of GK(t) which is unramified away from {0, 1,∞} is isomorphic to the profinite completion of the

fundamental group of P1 \ {0, 1, infty}. Thus, this quotient is topologically generated by 3 loops αj for
j = 0, 1,∞, and are subject to the relation α0α1α∞ = 1. In order to specify a Galois representation ϱgeom,
it suffices to choose 3 elements σj ∈ PSL2(F) such that αj 7→ σj. Rigidity theorems are used (as well as
certain cohomological inputs) to extend the Galois representation defined on GK(t) to GK(t). Let us briefly
summarize results that can be proven via the rigidity theorem.

Frey representation of xp + yp = zp

Theorem (Hecke). Let p be a odd prime. Then, there is a unique Frey representation ϱt : GQ(t) → GL2(Fp)
associated to xp + yp = zp. Futhermore, this representation is odd.

We will see a theorem on the Frey representation of xp + yp = zr. The convention is that p is the
characteristic of the Frey representation.

Theorem (Darmon). Let p and r be distinct primes. Assume that p is odd. Let K = Q(ζr)
+ and F

be the residue field of K at a prime p | p. There are exactly (r − 1) Frey representations,

ϱt : GK(t) → GL2(F)

up to equivalence. When r ̸= 2, exactly r−1
2

representations are even and r−1
2

are odd.

We will discuss Frey representation of xr + yr = zp. Recall that p is the characteristic of the Frey
representation, ie., the finite field F.

Theorem (Darmon). Let p and r be distinct odd primes. Let K = Q(ζr)
+ and F be the residue field

of K at a prime p | p. There are exactly (r−1)(r−2)
2

Frey representations,

ϱt : GK(t) → GL2(F)

up to equivalence. Exactly (r−1)2

4
representations are odd and (r−1)(r−3)

4
are even.

Similarly, we will discuss Frey representation of xp + yq = zr, Theorem (Darmon). Let p, q and r be
distinct primes and assume that p is odd. Let K = Q(ζr, ζq)

+ and F be the residue field of K at a prime

p | p. There are exactly (r−1)(q−1)
2

Frey representations,

ϱt : GK(t) → GL2(F)

up to equivalence. Exactly (r−1)(q−1)
4

representations are odd and (r−1)(q−1)
4

are even.
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hypergeometric abelian varieties: xp + yp = zp

The Frey representations constructed via rigidity are realized as Galois representations associated to certain
hypergeometric abelian varities. Consider Legendre family, J = J(t) : y2 = x(x − 1)(x − t), of elliptic
curves. The module J [p] ≃ Fp ⊕ Fp is a module over GQ(t). The Galois representation,

ϱt : GQ(t) → GL2(Fp)

is the Frey representation associated to xp + yp = zp. Now, let’s look at the case when xp + yp = z2. let
C2 be the family of elliptic curves, C2 = C2(t) : y2 = x3 + 2x2 + tx. The mod-p Galois representation,
ϱt : GQ(t) → GL2(Fp) arising from C2[p] is the associated Frey representation. Now, let’s discuss when
xp + yp = zr, when r is a odd prime. Suppose that p and r are distinct odd primes. Let ωj = ζjr + ζ−j

r ,
and set ω = ω1. Note that K := Q(ω) is the real subfield of Q(ζr). The degree d = [K : Q] is r−1

2
. Let

g(x) =
∏

j(x + ωj) be the characteristic polynomial over −ω. Set f(x) = xg(x2 − 2), and consider the
hyperelliptic curves over Q(t) defined by,

C−
r = C−

r (t) : y
2 = f(x) + 2− 4t

C+
r = C+

r (t) : y
2 = (x+ 2)(f(x) + 2− 4t)

and let J±
r be the Jacobian of C±

r over Q(t). These Jacobians have real multiplication by K, ie.,
EndQ(t)(J

±
r ) ≃ OK . Fix p | p ofK and let F be the residue field of p. Choose a homomorphism φ : OK → F.

The module J±
r [p]⊗φ F ≃ F⊕ F is a module over GK(t), and

ϱ±r = ϱ±r (t) : GK(t) → GL2(F)

the associated Galois representation.

Theorem (Darmon). Let K = Q(ζr)
+ and let F be the residue field of K are a prime p | p. As φ : OK → F

ranges over all r−1
2

homomorphisms, the representations ϱ±r : GK(t) → GL2(F) give a rise to the (r − 1)
characteristic p Frey representation for xp + yp = zr. The representations ϱ+r are even representation and
ϱ−r are odd.

We will discuss hypergeometric abelian varieties, where xr + yr = zp. Let p and r be distict odd primes.
Choose an odd integer 1 ≤ j ≤ r − 2, and consider the curves over Q(t) defined by,

X−
r,r(t) : y

2r = u2xj−2

(
x− 1

x− u

)j+2

X+
r,r(t) : y

r = u2xj−2

(
x− 1

x− u

)j+2

where u = t
t−1

. Consider the family of elliptic curves J = J(t) defined by,

J(t) : y2 = u2xj−2

(
x− 1

x− u

)j+2

There is an involution τ of X±
r,r and J defined by, τ(x, y) =

(
u
x
, 1
y

)
. Maps, π : X−

r,r → J and πr : X
−
r,r → X+

r,r

are defined by,

π(x, y) = (x, yr)

πr(x, y) = (x, y2)
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Let C±
r,r = X±

r,r/τ and J ′ = J/τ , the maps π and πr descend to maps,

π : C−
r,r → J ′

πr : C
−
r,r → C+

r,r

Set J+
r,r to be the jacobian of C+

r,r. The maps π and πr induce maps,

π∗ : J ′ → Jac(C−
r,r)

π∗
r : J+

r,r → Jac(C−
r,r)

LetJ−
r,r be defined to be the quotient,

J−
r,r =

Jac(C−
r,r)

(π∗(J ′) + π∗
r(J

+
r,r))

We have an isomorphism EndK(t)(J
+
r,r) ≃ OK .

Theorem. Let p ̸= r be distinct odd primes. Let K = Q(ζr)
+, and let F the residue field of K at a

prime p | p. The representation ϱ±r,r : GK(t) → GL2(F) associated to J±
r,r as φ ranges over homomorphisms

OK → F are the characteristic p Frey representations associated to xr + yr = zp.

Modular Lifting conjecture

Let K be a totally real field and p an odd prime. Let E be an finite extension of Qp with valuation ring
OE and F = OE/ϖ the residue field. A continuous Galois representation ρ : GK → GL2(E) is said to be
modular if it arises from a Hilbert modular form on GL2(K). In greater detail, this means that there is
a Hecke eigencuspform f on GL2(K) and a prime p | p in the field of Fourier coefficients of f such that
ρf,p ≃ ρ. Modular Galois representations satisfy some characteristic properties. If the Galois representation
ρ is modular then, ρ satisfies some additional conditions:

• ρ is unramified away from a finite set of primes of K.

• The resrictions of ρ to the decomposition groups at the primes of K above p are all potentially
semistable.

Given a continuous Galois representation ρ : GK → GL2(E), let Vρ ≃ E ⊕ E be the underlying vector
space. There exists a Galois stable OE-lattice L ⊂ VE for the action of GK . Let ρ : GK → GL2(OE) be the
associated Galois representation on L and ρ : GK → GL2(F), the mod-ϖ reduction of ρ. The semisimplifi-
cation of ρ is independent of the choice of Lattice L. We say that ρ is modular if (up to semisimplification)
it arises from a Hecke eigencuspform g for GL2(K).

Conjecture (Darmon). Let p be an odd prime and ρ : GK → GL2(OE) a Galois representation such
that ρ is unramified at all but finitely many primes of K and ρ is potentially semistable when restricted
all primes p | p of K. Suppose ρ is modular, then ρ itself is modular.

Let ϱ = ϱt : GK(t) → GL2(OE) be an irreducible Galois representation. We say that ρ is rigid if it
is unramified at all points, x ∈ P1(K) − {0, 1,∞}. For j ∈ {0, 1,∞}, let γj be a generator of the in-
ertia group Ij and let σj = ϱ(γj) ∈ GL2(OE). The semisimplification of σj is finite of order nj. Let
n = lcm(n0, n1, n∞). The field K is necessarily contains Kn = Q(ζn)

+. In the event that K strictly
contains Kn, then after a twist, we may in fact extend ϱt to ϱt : GKn(t) → GL2(OE).

Theorem (Darmon). Let ϱ be the rigid Galois representation, and assume that at least one of the σj

is unipotent, and that 8 does not divide n(ϱ) = lcm(n0, n1, n∞). Suppose that the modularity lifting con-
jecture is true, then ϱx arises from a Hilbert modular form on GL2(K) form for all x ∈ P1(Q) \ {0, 1,∞}.
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Admissible triples

An admissible triple (σ0, σ1, σ∞) is a triple whose elements belong to SL2(OE) such that the following
conditions are satisfied:

1. The semisimplification of σj is finite of order nj.

2. The group generated by σ0, σ1 and σ∞ generate an irreducible subgroup of SL2(E).

3. σ0σ1σ∞ = 1

Given an admissible triple (σ0, σ1, σ∞), there is a rigid Galois representation, ϱt : GKn(t) → GL2(E), whose
monodromy matrices are σ0, σ1 and σ∞ at 0, 1, ∞ respectively. Here, n = lcm(n0, n1, n∞). We will now
discuss, hypergeometric abelian varieties with real multiplication. An hypergeometric abelian variety A/Q
is an abelian scheme over P1 \ {0, 1,∞} of dimension [K : Q] such that there is a Gal(K/Q)-equivariant
isomorphism, EndK(t)(A) ≃ OK , and the associated Galois representation ϱt is irreducible.

Proposition. Let (σ0, σ1, σ∞) be an admissible triple in GL2(OKn). Let E be the completion of Kn at
a prime. There exists a hypergeometric abelian variety with multiplications by Kn, such that the associ-
ated Galois representation, ϱ : GKn(t) → GL2(E) whose monodromy matrix at j is σj for j ∈ {0, 1,∞}.

Let A be a hypergeometric abelian variety with multiplication by K. Letting (σ0, σ1, σ∞) to be the triple
in SL2(OK) defined by letting σj be the image of γj ∈ Ij acting on the deRham cohomology H1

dR(A),
viewed as a 2-dimensional K vector space. This is an admissible tripple in SL2(OK). Conversely, every
admissible triple in SL2(OK) arises in this way.

Inductive aregument

Suppose we are given a rigid Galois representation, ϱt : GKn(t) → GL2(E). Let (σ0, σ1, σ∞) ∈ SL2(OE) be
the associated admissible triple, n = lcm(n0, n1, n∞). The admissible triple arises from a hypergeometric
abelian variety A with multiplication by K = Kn. The triple (σ0, σ1, σ∞) lies in SL2(OK). It suffices to
show that A is modular (in fibres), and the argument is via induction on n. Note that if n = 1, then
K = Q, and the result follows from the standard results on the modularity of elliptic curves. Assume
without loss of generality that n > 1, such that K ̸= Q. if n = 2 or 4, then K = Q, hence n has an odd
prime divisor. Let ℓ be an odd prime divisor of n and let n′ = n/ℓ and K ′ = Kn′ . Choose a prime λ | ℓ
of K and let λ′ | ℓ be the prime of K ′ below λ. Let F be the residue field of K at λ, since λ′ is totally
ramified in K, the residue field of λ′ is also F. Let φ : OK → F and φ′ : OK′ → F be compatible maps.
We may choose a lift (σ′

0, σ
′
1, σ

′
∞) of (φ(σ0), φ(σ1), φ(σ∞)) to an admissible triple of SL2(OK′). Let A′ be

the abelian variety with multiplication by K ′ associated to (σ′
0, σ

′
1, σ

′
∞). Since n′ < n, by the inductive

hypothesis, A′ is modular (in fibres). Since the two triples (σ0, σ1, σ∞) ≡ (σ′
0, σ

′
1, σ

′
∞) (mod λ), it follows

that A[ℓ] ⊗φ F and A′[ℓ] ⊗φ′ F are isomorphic as GK′(t) representations. Since A′ is modular, it follows
that A[ℓ]⊗φ F is modular. By the modularity lifting conjecture, it follows that A is modular, and thus, in
particular, the representation ϱt is modular (in fibres).
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