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Abstract

In this essay, I will give a detailed overview on classical Iwasawa theory, The Eichler-Selberg
Trace Formula, Shimura’s Algebraicity Theorem (about special values of 𝐿-functions) and proof
of Weil conjectures for Elliptic curves over Finite fields (i.e., 𝐸∕𝔽𝑝). I will provide intuition on
some important topics in this field and how it is being used in developing theories arithmetic
geometry and algebraic number theory. I would like mention that, Ch1-5 are on Iwasawa
theory (which is recommended to be read in the same order), but Ch6-8 are independent
chapters, i.e., those chapters can be read individually without the prior knowledge of other
sections.
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1 Iwasawa Theory
In this section, we summarize Iwasawa’s Theorem about growth of class numbers in infinite towers
of number fields. This is a very beautiful theorem that uses tools from algebraic number theory
and commutative algebra. Personally, it is the theorem that got me interested in this subject.

In number theory, we often study arithmetic objects over a single number field. For example, we
might ask the following questions:

Question 1.1. For a given number field 𝐾.
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1 IWASAWA THEORY 2

(a) What is the class group of 𝐾?
(b) Given an elliptic curve 𝐸∕𝐾, what is the rank of the Mordell-Weil group of 𝐸 over 𝐾?

These questions are often very deep and hard to answer. Iwasawa theory is based on the counter
intuitive insight that even though answering these questions over a single number field is hard,
answering them over a infinite tower of number fields is often easier.

{arithmetic objects over a number field}←→
{arithmetic objects over an infinite tower of number fields}

For example, instead of asking: "what is the class group of this number field?", Iwasawa theory
would ask, given an infinite tower of number fields 𝐾1 ⊂ 𝐾2 ⊂ 𝐾3 ⊂⋯. How does the class group
of 𝐾𝑛 grow as 𝑛 goes to∞? Or given an elliptic curve 𝐸∕𝐾1, how does the rank of the group 𝐸(𝐾𝑛)
grow as 𝑛 goes to∞? The fundamental insight of Iwasawa theory is that these growth questions
are often easier to answer than their counterparts over single number fields.

The first proof of concept of this philosophy was given by Iwasawa in the following now famous
theorem. For an integer𝑚 ≥ 1, let ℚ(𝜁𝑚) denote the𝑚th cyclotomic field.

Theorem 1.2 (Iwasawa). Let 𝑝 be a prime. Consider the tower of cyclotomic fields
ℚ(𝜁𝑝) ⊂ ℚ(𝜁𝑝2) ⊂ ℚ(𝜁𝑝3) ⊂ ℚ(𝜁𝑝4) ⊂⋯

Let 𝑝𝑒𝑛 be the exact power of 𝑝 dividing the class number of ℚ(𝜁𝑝𝑛). Then there exists integers
𝜇, 𝜆, 𝜈 ≥ 0 such that 𝑒𝑛 = 𝜇𝑝𝑛 + 𝜆𝑛 + 𝜈, for all 𝑛 ≥ 0.

Why is this theorem so interesting? Well, nobody knows how to compute class groups. The class
groups of cyclotomic fields, especially, are basically impossible to calculate by naive methods once
the fields get large. So the fact that you can say anything about them is quite amazing. Most people
could not calculate the class group of even a single cyclotomic field. Iwasawa arranged them in an
infinite tower and calculated their class number in one shot.

Before we proceed, it’s worth pointing out what Iwasawa’s theorem doesn’t tell us. First, the
theorem doesn’t tell us anything about the group structure of the class groups. It only tells us
about the class numbers. Furthermore, it also doesn’t tell us the size of the entire class group, only
the power of 𝑝 dividing the class number. Lastly, it doesn’t tell us what the integers 𝜇, 𝜆, 𝜈 are
explicitly; it is a purely abstract result. Even given these caveats, however, Iwasawa’s theorem is
pretty amazing.

Example 1.3. Consider 𝑝 = 5, so we have the number fields
ℚ(𝜁5) ⊂ ℚ(𝜁52) ⊂ ℚ(𝜁53) ⊂ ℚ(𝜁54) ⊂⋯

It turns out that 𝜇 = 𝜆 = 𝜈 = 0 in Iwasawa’s formula. So if 5𝑒𝑛 is the power of 5 dividing the class
number of ℚ(𝜁5𝑛), we have 𝑒𝑛 = 0 for all 𝑛. In other words, 5 is coprime to the class number of
ℚ(𝜁5𝑛) for all 𝑛.
Example 1.4. Now consider 𝑝 = 37, so we have the number fields

ℚ(𝜁37) ⊂ ℚ(𝜁372) ⊂ ℚ(𝜁373) ⊂ ℚ(𝜁374) ⊂⋯
It turns out that 𝜇 = 0 and 𝜆 = 𝜈 = 1 in Iwasawa’s formula. So if 27𝑒𝑛 is the power of 37 dividing
the class number of ℚ(𝜁37𝑛), then 𝑒𝑛 = 𝑛 + 1 for all 𝑛 ≥ 0. That is, the power of 37 dividing the
class number of ℚ(𝜁37𝑛) grows linearly.
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a. Proof of Iwasawa’s Theorem
The proof of Iwasawa’s theorem is incredibly beautiful and it sets up a general strategy for proving
growth theorems in infinite towers. In this section, I’ll sketch the strategy of the proof, without
giving all the details. The full proof is given in Chapter 13 of Lawrence Washington’s book
"Introduction to Cyclotomic Fields". I highly recommend that you read this chapter because it’s
beautifully written and it was what first made me fall in love with Iwasawa theory.

The Setup

So the setup is that we have a tower of number fields

ℚ(𝜁𝑝) ⊂ ℚ(𝜁𝑝2) ⊂ ℚ(𝜁𝑝3) ⊂ ℚ(𝜁𝑝4) ⊂⋯

Let 𝑋𝑛 denote the 𝑝-Sylow subgroup of the class group Cl(ℚ(𝜁𝑝𝑛)). There is a norm map 𝑁 ∶
ℚ(𝜁𝑝𝑛+1)→ ℚ(𝜁𝑝𝑛) and this induces a norm map on the class groups 𝑋𝑛+1 → 𝑋𝑛 for all 𝑛. So, we
get the following infinite sequence:

⋯→ 𝑋𝑛+3 → 𝑋𝑛+2 → 𝑋𝑛+1 → 𝑋𝑛 →⋯

where the arrows are the norm maps. Put

𝑋∞ = lim←,,𝑋𝑛

where the inverse limit is taken with respect to the norm maps. An element of 𝑋∞ is an infinite
sequence (𝑥1, 𝑥2, 𝑥3,… ) where 𝑥𝑛 ∈ 𝑋𝑛 and the norm of 𝑥𝑛 is equal to 𝑥𝑛+1.

Commutative Algebra

Iwasawa’s insight is that even though each 𝑋𝑛 is very mysterious, the a priori more complex object
𝑋∞ is actually easier to study. In fact, we can study 𝑋∞ using tools from commutative algebra. To
do this, first note that 𝑋𝑛 is a ℤ𝑝-module because it is 𝑝-primary abelian group. Furthermore, 𝑋𝑛
has an action of the Galois group Gal(ℚ(𝜁𝑝𝑛)∕ℚ). Therefore, 𝑋𝑛 is a module over the group ring
ℤ𝑝[Gal(ℚ(𝜁𝑝𝑛)∕ℚ)].

Taking inverse limits, this means that 𝑋∞ = lim←,,𝑋𝑛 is a module over the inverse limit of group
rings: lim←,,ℤ𝑝[Gal(ℚ(𝜁𝑝𝑛)∕ℚ)]. The first inverse limit is taken with respect to the norm maps on
class groups. The second inverse limit is taken with respect to the quotient maps on the Galois
groups.

So 𝑋∞ is module over the mysterious ring lim←,,ℤ𝑝[Gal(ℚ(𝜁𝑝𝑛)∕ℚ)]. We will then study the 𝑋∞

using general commutative algebra results about modules over the ring lim←,,ℤ𝑝[Gal(ℚ(𝜁𝑝𝑛)∕ℚ)].
To do this, we will use the following important remark.

Remark 1.5. There is an isomorphism of ℤ𝑝-modules: lim←,,ℤ𝑝[Gal(ℚ(𝜁𝑝𝑛)∕ℚ)] ≅ ℤ𝑝J𝑇K, where
ℤ𝑝J𝑇K is the ring of formal power series in 𝑇 with coefficients in ℤ𝑝.

From now on, the only fact we will remember is this: 𝑋∞ is a ℤ𝑝J𝑇K-module. Our main input will
be the below structure theorem from commutative algebra.

https://link.springer.com/book/10.1007/978-1-4612-1934-7
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Structure Theorem

Put Λ = ℤ𝑝J𝑇K. We’ll now give a structure theorem for finitely-generated Λ-modules that is
reminiscent of the structure theorem of finitely generated modules over a PID. There are two
things that we need to state the theorem:

(a) A polynomial 𝑓 ∈ Λ is distinguished if when you reduce it mod 𝑝, only the highest degree
term remains.

(b) If𝑀1 and𝑀2 are Λ-modules, then a pseudo-isomorphism is a map𝑀1 → 𝑀2 with finite
kernel and cokernel. If there is such a pseudo-isomorphism, then we write𝑀1 ∼ 𝑀2.

Theorem 1.6 (Structure Theorem for Λ-modules by Iwasawa-Serre). Let𝑀 be afinitely-
generated torsion Λ-module. Then there is a pseudo-isomorphism

𝑀 ∼
𝑛⨁

𝑖=1

Λ
𝑝𝑒𝑖 ⊕

𝑚⨁

𝑗=1

Λ
𝑓𝑗

where the 𝑓𝑗 are distinguished polynomials.

One can show that 𝑋∞ is indeed finitely-generated and torsion, so the structure theorem gives us
a pseudo-isomorphism:

𝑋∞ ∼
𝑛⨁

𝑖=1

Λ
𝑝𝑒𝑖 ⊕

𝑚⨁

𝑗=1

Λ
𝑓𝑗

where the 𝑓𝑗 are distinguished polynomials.

Going from 𝑋∞ → 𝑋𝑛

We now have an abstract result about 𝑋∞. How do we extract information about the structure of
𝑋𝑛? Our key will be the following fact:

Proposition 1.7. There is an isomorphism of Λ-modules: 𝑋∞∕((1 + 𝑇)𝑝𝑛 − 1) ≅ 𝑋𝑛.

This proposition is hugely important because it allows us to recover 𝑋𝑛 → 𝑋∞. It tells us that to
calculate |𝑋𝑛|, it is enough to calculate |𝑋∞∕((1 + 𝑇)𝑝𝑛 − 1)| for all 𝑛. We will do this using the
structure theorem. Given that we have a pseudo-isomorphism:

𝑋∞ ∼
𝑛⨁

𝑖=1

Λ
𝑝𝑒𝑖 ⊕

𝑚⨁

𝑗=1

Λ
𝑓𝑗

let’s compute the right-hand side of the above equation modulo (1 + 𝑇)𝑝𝑛 − 1.

(a) First, we have

||||||||||
(

𝑛⨁

𝑖=1

Λ
𝑝𝑒𝑖 ) ∕((1 + 𝑇)𝑝𝑛 − 1)

||||||||||
= 𝑝(

∑𝑛
𝑖=1 𝑒𝑖)𝑝

𝑛
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(b) Next, we have
|||||||||||

⎛
⎜
⎝

𝑚⨁

𝑗=1

Λ
𝑓𝑗

⎞
⎟
⎠
∕((1 + 𝑇)𝑝𝑛 − 1)

|||||||||||
= 𝑝(

∑𝑚
𝑗=1 𝑓𝑗)

𝑛

One can show that the "pseudo-isomorphism" gives us a factor of 𝑝𝜈 for some constant 𝜈. So in
total, we get that

|𝑋𝑛| = |𝑋∞∕((1 + 𝑇)𝑝𝑛 − 1)| = 𝑝(
∑𝑛

𝑖=1 𝑒𝑖)𝑝
𝑛+(∑𝑚

𝑗=1 𝑓𝑗)
𝑛+𝜈

Putting 𝜇 =∑𝑛
𝑖=1 𝑒𝑖 and 𝜆 =

∑𝑚
𝑗=1 𝑓𝑗, we get |𝑋𝑛| = 𝑝𝜇𝑝𝑛+𝜆𝑛+𝜈 for all 𝑛 ≥ 0. This proves Iwasawa’s

theorem.

2 𝑝-adic 𝐿-functions
In this section, we introduce 𝑝-adic 𝐿-functions, which are a key ingredient in the analytic side
of Iwasawa theory. Specifically, it talks about the Kubota-Leopoldt 𝑝-adic 𝐿-function and its
interpolation properties.

Many problems in modern number theory revolve around the following theme: relate arithmetic
objects to special values of 𝐿-functions

{arithmetic objects}←→ {complex 𝐿-functions}

For example, on the left side, we might want to study the class group of a number field and on the
right side, we might want to study values of Dirichlet 𝐿-functions. The bridge linking them is the
class number formula.

As an another example, on the left side, we might want to study the rank of an elliptic curve and
on the right side, we might want to study the Hasse Weil 𝐿-function of that elliptic curve. The
bridge linking them is the Birch and Swinnerton-Dyer formula.

The problem with proving these theorems is that the left side is arithmetic, while the right side is
analytic. So they are very "far" and it is hard to relate them. A crucial tool in relating them is to
use an intermediary object called a "𝑝-adic 𝐿-function".

{arithmetic objects}←→ {𝑝-adic 𝐿-functions}←→ {complex 𝐿-functions}

This 𝑝-adic 𝐿-function (whatever it is) should straddle the worlds of arithmetic and analysis. On
one hand, it should know "analytic" information from the complex function. On the other hand,
it should also be "algebraic" in nature, which would make it easier to relate to arithmetic objects
than the purely complex 𝐿-functions.

This approach has been immensely successful in proving, for example, big results in the direction
of the Birch and Swinnerton Dyer Conjecture. The breakthrough results of Kato and Skinner-
Urban about BSD rely critically on the notion of 𝑝-adic 𝐿-functions. And it’s almost certain that
𝑝-adic 𝐿-functions will play a huge role in proving "arithmetic-analytic" theorems in the future.

In this section, I’ll explain the simplest example of a 𝑝-adic 𝐿-function, the Kubota-Leopoldt
𝑝-adic 𝐿-function, to illustrate the basic ideas behind it. I’ll also give a hint about its relation to
arithmetic, which is the so-called Iwasawamain conjecture.

http://www.numdam.org/item/AST_2004__295__117_0/
https://link.springer.com/article/10.1007/s00222-013-0448-1
https://link.springer.com/article/10.1007/s00222-013-0448-1
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a. Congruences between zeta values
The Kubota-Leopoldt 𝑝-adic 𝐿-function (whatever it is) "𝑝-adically interpolates" special values of
the Riemann zeta function. Consider the Riemann zeta function 𝜁(𝑠) =∑∞

𝑛=1
1
𝑛𝑠
. The fundamental

observation, first observed by Kummer, is that the values of 𝜁(𝑠) at negative integers satisfy
interesting congruences.

Example 2.1. In both these examples, we set 𝑝 = 5. Set 𝑠1 = −1 and 𝑠2 = −21. We have the
congruence −1 ≡ −21 (mod 5). We can calculate 𝜁5(𝑠1) =

1
3
and 𝜁5(𝑠2) =

9260535240173320423
69

, and it
turns out that 𝜁5(−1) ≡ 𝜁5(−21) (mod 52).

As another example, put 𝑠1 = −1 and 𝑠2 = −101. Then −1 ≡ −101 (mod 52). And we can
calculate that 𝜁(−1) ≡ 𝜁(−101) (mod 53). These can be phrased as a rigorous theorem.

Theorem 2.2 (Kummer). Let 𝑝 be a prime and let 𝜁𝑝(𝑠) = (1 − 𝑝−𝑠)𝜁(𝑠) be the Riemann zeta
function with the Euler factor at 𝑝 removed. Define the set

𝑆 = {𝑠 ∈ ℤ<0 ∶ 𝑠 ≡ −1 (mod 𝑝 − 1)}

Then for any 𝑠1, 𝑠2 ∈ 𝑆, we have

𝑠1 ≡ 𝑠2 (mod 𝑝𝑛) ⇐⇒ 𝜁𝑝(𝑠1) ≡ 𝜁𝑝(𝑠2) (mod 𝑝𝑛+1)

We can phrase this in a more suggestive way: the function 𝜁𝑝(𝑠) is 𝑝-adically continuous on the
set 𝑆 ⊂ ℤ.

b. The connection to 𝑝-adic 𝐿-functions
Here is a very simple observation: the set 𝑆 defined above is dense inℤ𝑝. So we have a continuous
function 𝜁𝑝 ∶ 𝑆 → ℤ𝑝 defined on a dense subset 𝑆 of ℤ𝑝. So we can ask: can we extend 𝜁𝑝 to a
continuous function to all of ℤ𝑝? That is, can we define a continuous function ℤ𝑝 → ℤ𝑝 whose
restriction to 𝑆 agrees with 𝜁𝑝?

It turns out that the answer is yes! And furthermore, not only does such an extension exist, it is
also unique. This was proven by Kubota and Leopoldt.

Theorem 2.3 (Kubota-Leopoldt). There is a unique continuous function 𝜁𝑝 ∶ ℤ𝑝 → ℤ𝑝 which
extends the function 𝜁𝑝 defines on 𝑆 defined earlier. That is, for any 𝑠 ∈ 𝑆, we have 𝜁𝑝(𝑠) = (1 −
𝑝−𝑠)𝜁(𝑠).

Definition 2.4. The function 𝜁𝑝 ∶ ℤ𝑝 → ℤ𝑝 in the above theorem is called the 𝑝-adic Riemann
zeta function, or the Kubota-Leopoldt 𝑝-adic zeta function.

c. Analogy
What we have just done is a 𝑝-adic analogue of the process of analytic continuation for complex
𝐿-functions. In the complex story, we define an 𝐿-function on a right half of the complex plane,
and we show that we can extend it via analytic continuation to the entire complex plane. We then
show that this extension is unique.
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In our case, we define a 𝑝-adically continuous function 𝜁𝑝 on a set 𝑆, and then we "analytically
continue" 𝜁𝑝 to all of ℤ𝑝. We then show that this extension is unique. We call this function the
Kubota-Leopoldt 𝑝-adic 𝐿-function.

d. The General Definition of the Kubota-Leopoldt 𝑝-adic zeta func-
tion

You might have noticed that when we wrote down Kummer’s Theorem about congruences of the
zeta function, we defined the set 𝑆 as

𝑆 = {𝑠 ∈ ℤ<0 ∶ 𝑠 ≡ −1 (mod 𝑝 − 1)}

But why −1 in particular in the above definition? There is nothing special about −1 here; we
could define for any 𝑖 = −1,−3,−5,… , the set

𝑆𝑖 = {𝑠 ∈ ℤ<0 ∶ 𝑠 ≡ 𝑖 (mod 𝑝 − 1)}

Note that what we originally called 𝑆 is just 𝑆𝑖 in the case where 𝑖 = −1. For the sets 𝑆𝑖, we have
an analogous form of Kummer’s theorem.

Theorem 2.5 (Kummer). Let 𝑝 be a prime and let 𝜁𝑝(𝑠) = (1 − 𝑝−𝑠)𝜁(𝑠) be the Riemann zeta
function with the Euler factor at 𝑝 removed. Then for any 𝑖 = −1,−3,−5,… , the function 𝜁𝑝 ∶ 𝑆𝑖 →
ℤ𝑝 is 𝑝-adically continuous on 𝑆𝑖.

And just like before, 𝑆𝑖 is dense subset of ℤ𝑝, and we can extend 𝜁𝑝 to a continuous function on all
of ℤ𝑝.

Theorem 2.6 (Kubota-Leopoldt). There is a unique continuous function 𝜁(𝑖)𝑝 ∶ ℤ𝑝 → ℤ𝑝 which
extends the function 𝜁𝑝 defined on 𝑆𝑖 defined earlier.

This function 𝜁(𝑖)𝑝 is called the 𝑖th branch of theKubota-Leopoldt zeta function. The zeta function
𝜁𝑝 we defined in the previous section was the branch corresponding to 𝑖 = −1.

e. Why do we do this?
So who cares about 𝑝-adic zeta functions? A priori, they are just numerical curiosities. It turns
out, however, that 𝑝-adic zeta functions encode very deep arithmetic information: they "know"
about the class groups of cyclotomic fields. This is the content of a very deep theorem called the
IwasawaMain Conjecture.

{𝑝-adic zeta function}
Iwasawa Main Conjecture
←,,,,,,,,,,,,,,,,,,→ {class groups of cyclotomic fields}

The left side is analytic; it is constructed by 𝑝-adically interpolating special values of the Riemann
zeta function. The right side is algebraic; it is group thatmeasures the failure of unique factorization
in a number ring. The Iwasawa main conjecture (whatever it is) gives a profound connection
between the analytic and algebraic sides of number theory.
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It turns out that 𝜁(𝑖)𝑝 , the 𝑖th branch of the Kubota-Leopoldt 𝑝-adic zeta function, encodes informa-
tion about the 𝜒𝑖-th eigenspaces of the class groups of cyclotomic fields, where 𝜒 is the cyclotomic
character. (This is why we need all the branches of the 𝑝-adic 𝐿-function in the first place.)

I won’t say more now, because this connection is discussed in more detail and properly motivate
and state the main conjecture in 3.

3 The IwasawaMain Conjecture
In this section, we draw the link between the algebraic side of Iwasawa theory and the analytic side
of Iwasawa theory. These two worlds are connected via the so-called "Iwasawa main conjecture".

The Iwasawamain conjecture is a deep connection between two objects: class groups of cyclotomic
fields and special values of the Reimann zeta function. The former object is algebraic: it is a class
group of a number field. The latter is analytic: it is the value of a complex function at certain
special points. The main conjecture, therefore (whatever it is), spells out an interesting connection
between an algebraic and an analytic object.

a. Kummer’s Theorem
The first indication that such a connection might exist is a theorem of Kummer.

Theorem 3.1 (Kummer). Let 𝑝 be a prime number. Then 𝑝 divides the class number ofℚ(𝜁𝑝) if
and only if 𝑝 divides the numerator of 𝜁(𝑟) for some integer 𝑟 = −1,−3,−5,… .

Example 3.2. As an example, set 𝑝 = 691. Then 691 divides the numerator of 𝜁(−11) = 691
32760

.
So Kummer’s theorem tells us that 691 divides the class number of ℚ(𝜁691). This is already quite
interesting because calculating class numbers by hand is basically impossible. This theorem says
that the Riemann zeta function can be used to obtain this information in a different way.

But what is the meaning of -11 in 𝜁(−11)? It turns out that -11 encodes the Galois action on the
class group ofℚ(𝜁691). Precisely, the class groupCl(ℚ(𝜁691)) has a natural action of the Galois group
Gal(ℚ(𝜁691)∕ℚ). And this Galois group acts on Cl(ℚ(𝜁691)) via 𝜒−11, where 𝜒 is the cyclotomic
character. In other words, we have an inclusion of Galois modules

Cl(ℚ(𝜁691)) ⊃ (ℤ∕691ℤ)(−11)

where the (−11)means that Galois acts via 𝜒−11.

b. Herbrand-Ribet Theorem
This example actually holds in general, and this was proved by Herbrand and Ribet.

Theorem 3.3 (Herbrand-Ribet). Let 𝑝 be a prime number and let 𝑟 = −1,−3,−5,… . Then
Cl(ℚ(𝜁𝑝)) ⊃ (ℤ∕𝑝ℤ)(−𝑟) if and only if 𝑝 ∣ 𝜁(𝑟).

The slogan here is:

zeta value = class group with Galois action
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It actually turns out that much more is true. To see that, I’ll rephrase the Herbrand-Ribet Theorem
above as follows. Let Cl(𝑟)(ℚ(𝜁𝑝)) be the 𝜒𝑟-eigenspace of Cl(ℚ(𝜁𝑝)) (i.e., it is the subgroup of
Cl(ℚ(𝜁𝑝)) where Galois acts via 𝜒𝑟). Then Herbrand-Ribet equivalently says:

Theorem 3.4. Let 𝑝 be a prime number and let 𝑟 = −1,−3,−5,… . Then

ord𝑝(#Cl
(𝑟)(ℚ(𝜁𝑝))) > 0

if and only if ord𝑝(𝜁(−𝑟)) > 0.

In truth, however, it turns out that the ord𝑝 of both sides are in fact equal. That is, one can show
that

ord𝑝(#Cl
(𝑟)(ℚ(𝜁𝑝))) = ord𝑝(𝜁(−𝑟))

This however is much harder to prove, and requires the full strength of the Iwasawa main con-
jecture. In that sense, the Iwasawa main conjecture (whatever it is) is a strengthening of the
Herbrand-Ribet Theorem.

c. The Iwasawa Main Conjecture
To state the Iwasawa main conjecture, we have to do something which is a signature of Iwasawa
theory: we have to state the formulate Herbrand-Ribet theorem in infinite towers. On the algebraic
side, instead of looking at just one class group, look at class groups in an infinite tower of cyclotomic
fields. On the analytic side, instead of looking at just one zeta value, we will look at infinitely
many zeta values are 𝑝-adically interpolate them into a 𝑝-adic 𝐿-function.

The Algebraic Side

For Herbrand-Ribet, we considered the group Cl(𝑟)(ℚ(𝜁𝑝)), which is the 𝜒𝑟 eigenspace of the class
group of ℚ(𝜁𝑝). Now we will do everything in ℤ𝑝-extensions.

Consider the ℤ𝑝-extensions ℚ(𝜁𝑝∞)∕ℚ(𝜁𝑝) with layers given by:
ℚ(𝜁𝑝) ⊂ ℚ(𝜁𝑝2) ⊂ ℚ(𝜁𝑝3) ⊂⋯ ⊂ ℚ(𝜁𝑝∞)

The for every 𝑛 ≥ 0, consider we can consider the 𝜒𝑟-eigenspace Cl(𝑟)(ℚ(𝜁𝑝𝑛)). The central object
of study will be the inverse limit of these groups:

𝑋(𝑟)
∞ = lim←,,

𝑛
Cl(𝑟)(ℚ(𝜁𝑝𝑛))

Then 𝑋(𝑟)
∞ is a module over Λ = ℤ𝑝JGal(ℚ(𝜁𝑝∞)∕ℚ(𝜁𝑝))K. And 𝑋(𝑟)

∞ is also finitely generated and
torsion as a Λ-module. There is a non-canonical isomorphism Λ ≅ ℤ𝑝J𝑇K. So by the structure
theorem for finitely generated torsion Λ-modules, we have a pseudoisomorphism:

𝑋(𝑟)
∞ ∼

𝑛⨁

𝑖=1

Λ
𝑝𝑒𝑖 ⊕

𝑚⨁

𝑗=1

Λ
𝑓𝑗

where the𝑓𝑗 ∈ ℤ𝑝J𝑇K are distinguished polynomials (i.e., a polynomial𝑓 ∈ ℤ𝑝J𝑇K is distinguished
if when you reduce it mod 𝑝, only the highest degree term remains).

The two quantities of interest:
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(a) Define the 𝜇-invariant to be 𝜇 = 𝑒1 +⋯ + 𝑒𝑛.
(b) Define the 𝜆-invariant to be 𝜆 = deg𝑓1 +⋯ + deg𝑓𝑚.

Then we have Iwasawa’s growth formula: there is an integer 𝜈 ≥ 0 such that

|Cl(𝑟)(ℚ(𝜁𝑝𝑛))| = 𝑝𝜇𝑝𝑛+𝜆𝑛+𝜈

for all 𝑛 ≥ 0. So the quantities 𝜇 and 𝜆 in the structure theorem have a concrete meaning in terms
of class numbers of the intermediate layers of the tower.

We can wrap up 𝜇 and 𝜆 in a quantity called the characteristic ideal.
Definition 3.5. The characteristic ideal of 𝑋(𝑟)

∞ is defined as:

char 𝑋(𝑟)
∞ = (𝑝𝑒1+⋯+𝑒𝑛𝑓1⋯𝑓𝑚) ⊂ ℤ𝑝J𝑇K

That is, you take all the "denominators" in the structure theorem, multiply them together. The
ideal generated by that element in ℤ𝑝J𝑇K is the characteristic ideal. Note that we can recover 𝜇
and 𝜆 from the characteristic ideal.

The Analytic Side

On the algebraic side, we looked at infinitely many number fields and "strung together" their class
groups by taking an inverse limit. On the analytic side we will look at infinitely many zeta values
and we will string them together by 𝑝-adically interpolating them. Doing this will create a 𝑝-adic
𝐿-function, which is the main object of the analytic side of the main conjecture.

We discussed 𝑝-adic 𝐿-function in detail in section 2. I’d definitely recommend reading that section
first before coming here. For here, I’ll just recall the main theorem from that section, which proves
the existence and uniqueness of the 𝑝-adic Riemann zeta function.
Theorem 3.6 (Kubota-Leopoldt). Let 𝑝 be a prime, and let 𝑟 = −1,−3,−5,… be a negative odd
integer. There exists a unique 𝑝-adically continuous function 𝜁(𝑟)𝑝 ∶ ℤ𝑝 → ℤ𝑝 with the following
interpolation property: Define the set 𝑆𝑟 = {𝑛 ∈ ℤ<0 ∶ 𝑛 ≡ 𝑟 (mod 𝑝 − 1)}. Then for all 𝑠 ∈ 𝑆𝑟, we
have

𝜁𝑝(𝑠) = (1 − 𝑝−𝑠)𝜁(𝑠)
This function is called the (𝑟th branch of the) Kubota-Leopoldt 𝑝-adic zeta function. The set
𝑆𝑟 consists of the "points of interpolation" of 𝜁(𝑟)𝑝 . At these points, the function 𝜁(𝑟)𝑝 coincides with the
Riemann zeta function with the Euler factor at 𝑝 removed.

If any of this feels unfamiliar, check out section 2 where I explained this theorem much more
slowly.

The Iwasawa main conjecture relates the module 𝑋(𝑟)
∞ to the 𝑝-adic 𝐿-function 𝜁(𝑟)𝑝 :

𝑋(𝑟)
∞

Iwasawa Main Conjecture
←,,,,,,,,,,,,,,,,,,→ 𝜁(𝑟)𝑝

The problem is that these two objects live in different worlds: the module 𝑋(𝑟)
∞ is an object from

commutative algebra whereas 𝜁(𝑟)𝑝 is a 𝑝-adic analytic function. So it’s not even clear how to state
a precise conjecture relating them. It was Iwasawa who realized that 𝜁(𝑟)𝑝 can be expressed as a
power series in ℤ𝑝J𝑇K, which will allow us to view it as an object in commutative algebra.
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Theorem 3.7 (Iwasawa). Let 𝑝 be a prime and let 𝑟 = −1,−3,−5,… be an odd negative integer.
Then there is a unique power series 𝜁(𝑇) ∈ ℤ𝑝J𝑇K satisfying

𝐺𝑟((1 + 𝑝)𝑠 − 1) = 𝜁(𝑟)𝑝 (𝑠)
for all 𝑠 ∈ ℤ𝑝.

By abuse of notation, we also call 𝐺𝑟(𝑇) the (𝑟th branch of the) Kubota-Leopoldt 𝑝-adic zeta
function. We will no longer think of the 𝑝-adic zeta function as a literal function ℤ𝑝 → ℤ𝑝, but
we will view it as a power series in ℤ𝑝J𝑇K.

The main Conjecture

On the algebraic side, we have the characteristic ideal char(𝑋(𝑟)
∞ ). On the analytic side, we have

the 𝑝-adic zeta function 𝐺𝑖(𝑇). We can look at the ideal (𝐺𝑖(𝑇)) ⊂ ℤ𝑝J𝑇K generated by this 𝑝-adic
zeta function. The main conjecture asserts that these two ideals are equal.
Conjecture 3.8 (Iwasawa Main Conjecture). Let 𝑝 be a prime and let 𝑟 = −1,−3,−5,… be
a negative odd integer. Then:

char(𝑋(𝑟)
∞ ) = (𝐺𝑟(𝑇))

When I first saw this, I understood basically nothing. So I want to take it apart a bit to understand
it better. First, I found it helpful to phrase this in terms of power series instead of ideals. We had a
pseudo-isomorphism:

𝑋(𝑟)
∞ ∼

𝑛⨁

𝑖=1

Λ
𝑝𝑒𝑖 ⊕

𝑚⨁

𝑗=1

Λ
𝑓𝑗

Also, by the Weierstrass preparation theorem, we can factor 𝐺𝑟(𝑇) as
𝐺𝑟(𝑇) = 𝑝𝑘𝑢(𝑇)𝑓(𝑇)

where 𝑢(𝑇) is a unit and 𝑓(𝑇) is a distinguished polynomial.
Conjecture 3.9 (Power Series Formulation of IMC). We have

𝑝𝑒1+⋯+𝑒𝑛𝑓1⋯𝑓𝑚 ∼ 𝐺𝑟(𝑇)
where ∼ indicates equality upto a unit in ℤ𝑝J𝑇K. In particular, 𝑒1 +⋯ + 𝑒𝑛 = 𝑘 and 𝑓1⋯𝑓𝑚 ∼ 𝑓.

This might seem kind of opaque (I definitely thought so at first), but it has a very concrete
consequence about 𝜇 and 𝜆-invariants. To see it, let’s remember Iwasawa’s growth formula: there
is an integer 𝜈 ≥ 0 such that

|Cl(𝑟)(ℚ(𝜁𝑝𝑛))| = 𝑝𝜇𝑝𝑛+𝜆𝑛+𝜈

for all 𝑛 ≥ 0. The main Iwasawa conjecture then implies that:

(a) The quantity 𝜇 in the above formula is the power of 𝑝 dividing 𝐺𝑟(𝑇).
(b) And the quantity 𝜆 in the above formula is the degree of the of 𝑝 dividing 𝐺𝑟(𝑇).

So we can read off 𝜇 and 𝜆 right from the 𝑝-adic zeta function. This is really weird! The 𝑝-adic
zeta-function interpolates special values of the Riemann zeta function. Why on earth should we
be able to read off 𝜇 and 𝜆-invariants for class groups from these zeta functions?
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d. The Main Conjecture is now a theorem!
Regardless of how mysterious the statement is, Mazur and Wiles were actually able to prove the
main conjecture in a brilliant 1984 Inventiones paper.

Theorem 3.10 (Mazur-Wiles). The Iwasawa Main Conjecture is true.

4 Kato’s Euler System
In this section, we describe the construction of Kato’s Euler system, which was used to prove one
direction of the Iwasawa main conjecture for modular forms. Kato’s Euler System is a technical
tool that was used to prove many deep results in the direction of the BSD conjecture. It was
developed in Kato’s 2004 Asterisque Paper. This paper is a 100+ page tour de force and would
easily take several years to study fully. The purpose of this section is to give a high level overview
of the main ideas of the paper.

a. What is an Euler System?
Many problems in modern number theory revolve around the following theme: relate Galois
cohomology classes to special values of 𝐿-functions

{Galois cohomology}←→ {special values of 𝐿-functions}

Example 4.1. For example, suppose you have an elliptic curve 𝐸∕ℚ. On the left side of the
diagram, you might want to study the Selmer group of 𝐸 over ℚ. This is a group defined using
Galois cohomology that essentially controls the arithmetic of 𝐸. On the right side, you might want
to study the Hasse-Weil 𝐿-function 𝐿(𝐸, 𝑠). Relating these two objects would give deep results in
the direction of BSD.

An Euler System, simply put, is an object that links these two worlds. It is a technical tool that
allows you to link Galois cohomology groups to special values of 𝐿-functions.

{Galois cohomology}
Euler Systems
←,,,,,,,,→ {special values of 𝐿-functions}

Kato developed an Euler system and used it to prove the following amazing result (among many
other results):

Theorem 4.2 (Kato). Let 𝐸∕ℚ be an elliptic curve, and let 𝐿(𝐸, 𝑠) be the Hasse-Weil 𝐿-function of
𝐸. If 𝐸(ℚ) is infinite, then 𝐿(𝐸, 1) = 0.

In other words, "positive algebraic rank implies positive analytic rank." In the rest of the section, I
will describe what Kato’s Euler system is.

https://link.springer.com/article/10.1007/BF01388599
http://www.numdam.org/item/AST_2004__295__117_0/


4 KATO’S EULER SYSTEM 13

b. Kato’s Euler System
Setup

For us, 𝐸 will be an elliptic curve over ℚ and 𝑝 will be a prime of good reduction. We will
𝑇𝑝𝐸 = lim←,,𝑛 𝐸[𝑝

𝑛] for the tate module of 𝐸. So, 𝑇𝑝𝐸 is isomorphic toℤ𝑝 ×ℤ𝑝, i.e., 𝑇𝑝𝐸 ≅ ℤ𝑝 ×ℤ𝑝,

as an abelian group and it has an action of Gal(ℚ∕ℚ). Now define

𝑉𝑝𝐸 = 𝑇𝑝𝐸 ⊗ℤ𝑝 ℚ𝑝

Then 𝑉𝑝𝐸 is a two-dimensionalℚ𝑝-vector space with an action of Gal(ℚ∕ℚ) inherited from the
first factor 𝑇𝑝𝐸 of the tensor product. (We write 𝑉𝑝𝐸 because the 𝑉 stands for Vector space).

Kato’s Euler System - the bottom layer

Kato considers the Galois cohomology group𝐻1(ℚ, 𝑉𝑝𝐸). With this group, Kato does two things.

(a) First, Kato defines a class 𝑧Kato ∈ 𝐻1(ℚ, 𝑉𝑝𝐸) called the Kato class.
(b) Second, Kato defines a very mysterious map called the dual exponential map:

exp∗ ∶ 𝐻1(ℚ𝑝, 𝑉𝑝𝐸)→ ℚ𝑝𝜔𝐸
which is defined using 𝑝-adic Hodge theory. We will not define explicitly and treat like a
black box. Here 𝜔𝐸 is the invariant differential on 𝐸.

Now let res𝑝 ∶ 𝐻1(ℚ, 𝑉𝑝𝐸)→ 𝐻1(ℚ𝑝, 𝑉𝑝𝐸) denote the restriction map. Kato showed that

exp∗(res𝑝(𝑧Kato)) =
𝐿{𝑝}(𝐸, 1)

Ω𝐸
𝜔𝐸

The function 𝐿{𝑝}(𝐸, 𝑠) is the 𝐿-function 𝐿(𝐸, 𝑠) with the 𝑝th Euler Factor removed. And Ω𝐸 is the
real Neron period of 𝐸. This identity is called the explicit reciprocity law.

Kato’s Euler System - the other layers

Kato realized that this class 𝑧Kato is not alone, but is just the first class in an entire infinite collection
of classes that interpolate 𝐿-values in different ways.

For each prime power 𝑝𝑚, consider the cohomology group𝐻1(ℚ(𝜁𝑝𝑚), 𝑉𝑝𝐸). Kato defined a class
𝑧Kato ∈ 𝐻1(ℚ(𝜁𝑝𝑚), 𝑉𝑝𝐸). Kato also defined a dual exponential map using 𝑝-adic Hodge theory:

exp∗ ∶ 𝐻1(ℚ(𝜁𝑝𝑚), 𝑉𝑝𝐸)→ ℚ𝑝(𝜁𝑝𝑚)𝜔𝐸
The explicit reciprocity law here says: for any Dirichlet character 𝜒 ∶ (ℤ∕𝑝𝑚)× → ℂ× of conductor
𝑝𝑚, we have

exp∗
⎛
⎜
⎝

∑

𝜎∈Gal(ℚ𝑝(𝜁𝑝𝑚 )∕ℚ𝑝)
res𝑝(𝑧Kato𝑝𝑚 )𝜎

⎞
⎟
⎠
=
𝐿{𝑝}(𝐸, 𝜒, 1

Ω±
𝐸

𝜔𝐸

Here res𝑝 ∶ 𝐻1(ℚ(𝜁𝑝), 𝑉𝑝𝐸)→ 𝐻1(ℚ𝑝(𝜁𝑝), 𝑉𝑝𝐸) denotes the restriction map. The periodsΩ+
𝐸 and

Ω−
𝐸 are the real and imaginary periods of 𝐸, respectively.
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Kato’s Euler System - the whole thing

The collection of classes {𝑧Kato𝑝𝑚 }𝑚≥1 called Kato’s Euler System. The class 𝑧Kato𝑝𝑚 is the 𝑝𝑚-th layer
of Kato’s Euler System.

Ok, this is a bit of a lie. Kato actually defined classes 𝑧Kato𝑚 for every integer𝑚 ≥ 1, not just prime
powers 𝑝𝑚. But we only need the layers which are prime powers, so that’s not a problem for us.

c. Construction of Kato’s Euler System
In this section, I’ll describe the construction of the bottom class of Kato’s Euler system, the
element 𝑧Kato = 𝑧Kato𝑝0 ∈ 𝐻1(ℚ, 𝑉𝑝𝐸).

Modularity

Since every elliptic curve overℚ is modular, there exists a modular parametrization 𝑋0(𝑁)→ 𝐸,
where 𝑁 is the conductor of 𝐸. Compose this with the natural surjection 𝑋1(𝑁)→ 𝑋0(𝑁), to get a
map

𝑋1(𝑁)→ 𝐸

This induces amap on the Jacobians: 𝐽1(𝑁)→ 𝐸. This is turn induces amap on their Tatemodules:
𝑇𝑝(𝐽1(𝑁))→ 𝑇𝑝𝐸. Tensoring with ℚ𝑝, we get a Galois equivariant:

𝑉𝑝(𝐽1(𝑁))→ 𝑉𝑝𝐸

This induces a map on Galois cohomology, so we get a map which I’ll call (𝑎):

𝐻1(ℚ, 𝑉𝑝(𝐽0(𝑁)))
(𝑎)
,,→ 𝐻1(ℚ, 𝑉𝑝𝐸)

Étale Cohomology

There is an isomorphism of 𝐺ℚ-modules:

𝐻1
et(𝑌1(𝑁),ℚ𝑝(𝑄))

∼
,→ 𝑉𝑝(𝐽1(𝑁))

where𝐻1
et denotes the etale cohomology group and 𝑌1(𝑁) is the base-change of 𝑌1(𝑁) toℚ. This

induces a map on Galois cohomology which we denote (𝑏):

𝐻1(ℚ, 𝐻1
et(𝑌1(𝑁),ℚ𝑝(1)))

(𝑏)
,,→ 𝐻1(ℚ, 𝑉𝑝(𝐽1(𝑁)))

A Spectral Sequence

The next step is to use a spectral sequence to get a map from 𝐻2 → 𝐻1(ℚ, 𝐻1(⋯)). Precisely,
consider the spectral sequence

𝐸𝑖,𝑗2 = 𝐻𝑖(ℚ, 𝐻𝑗
et(𝑌1(𝑁),−) ⇐⇒ 𝐻𝑖+𝑗(𝑌1(𝑁),−)
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And use a fact from étale cohomology: 𝐻𝑖
et(𝐶,−) = 0 for 𝑖 ≥ 2 whenever 𝐶 is an affine curve over

an algebraically closed field. Combining these two facts (I do not know spectral sequences, so
have not (and don’t know how to) verify this fact. Kato says that you get this map, so I’m taking it
for granted), I am told that one obtains a map:

𝐻2(𝑌1(𝑁),ℚ𝑝(1))
(𝑐)
,,→ 𝐻1(ℚ, 𝐻1

et(𝑌1(𝑁),ℚ𝑝(1)))

Crucially, in the domain of the map (𝑐), we consider the curve 𝑌1(𝑁) overℚ, whereas in the target,
we consider 𝑌1(𝑁) base-changed to the algebraic closureℚ. So the group𝐻2(𝑌1(𝑁),ℚ𝑝(1)) does
not have a Galois action. The benefit, therefore, of working over ℚ is that we can use tools from
geometry (namely, the Kummer map) to produce classes in𝐻2(𝑌1(𝑁),ℚ𝑝(1)).

Then we are going to apply a Tate twist to get a map (𝑑):

𝐻2(𝑌1(𝑁),ℚ𝑝(2))
(𝑑)
←,, 𝐻2(𝑌1(𝑁),ℚ𝑝(1))

Cup Product

There is a cup-product map in étale cohomology:

𝐻1(𝑌1(𝑁),ℚ𝑝(1)) ×𝐻1(𝑌1(𝑁),ℚ𝑝(1))
(𝑒)
,,→ 𝐻2(𝑌1(𝑁),ℚ𝑝(2))

A useful mnemonic: when you apply the cup product, you add the twists (so ℚ𝑝(1) and ℚ𝑝(1)
becomes ℚ𝑝(2)) and add the degrees (so𝐻1 ×𝐻1 becomes𝐻2).

The Kummer Map

The Kummer Map is a map 𝜅 ∶ 𝒪(𝑌1(𝑁))× → 𝐻1(𝑌1(𝑁),ℚ𝑝(1)). Applying the map 𝜅 × 𝜅, we
obtain a map (𝑓):

(𝒪(𝑌1(𝑁))×)2
(𝑓)
,,→ 𝐻2(𝑌1(𝑁),ℚ𝑝(1))2

Putting it all together

Composing the maps (𝑎) through (𝑓), we have

(𝒪(𝑌1(𝑁))×)2
(𝑓)
,,→ 𝐻2(𝑌1(𝑁),ℚ𝑝(1))2
(𝑒)
,,→ 𝐻2(𝑌1(𝑁),ℚ𝑝(2))
(𝑑)
,,→ 𝐻2(𝑌1(𝑁),ℚ𝑝(1))
(𝑐)
,,→ 𝐻1(ℚ, 𝐻1

et(𝑌1(𝑁),ℚ𝑝(1)))
(𝑏)
,,→ 𝐻1(ℚ, 𝑉𝑝(𝐽1(𝑁)))
(𝑎)
,,→ 𝐻1(ℚ, 𝑉𝑝𝐸)

This is confusing! To recap, the maps are given as follows:
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⋄ (𝑎) is induced by the map 𝑉𝑝(𝐽1(𝑁))→ 𝑉𝑝(𝐸),
⋄ (𝑏) is induced by the isomorphism𝐻1

et(𝑌1(𝑁),ℚ𝑝(1)) ≅ 𝑉𝑝(𝐽1(𝑁)),
⋄ (𝑐) comes from a certain spectral sequence,
⋄ (𝑑) is a twist,
⋄ (𝑒) is the cup-product map in étale cohomology, and
⋄ (𝑓) is the (square of the) Kummer map.

To produce an element of𝐻1(ℚ, 𝑉𝑝𝐸), Kato defines an explicit element of (𝒪(𝑌1(𝑁))×)2 and lets
𝑧Kato be its image under the maps (𝑎) through (𝑓).

Kato-Seigel Units

Elements of 𝒪(𝑌1(𝑁))× are calledmodular units, and we can write some of them down using
nothing but classical 19th century elliptic function theory.

Definition 4.3. Let 𝑁 ≥ 1 and 0 ≥ 𝑎, 𝑏 < 𝑛 be integers. For each pair
( 𝑎
𝑀
, 𝑏
𝑀

)
∈ ℚ2 ⧵ (0, 0),

define the function 𝑔 𝑎
𝑀
, 𝑏
𝑀
∶ ℍ→ ℂ as follows:

𝑔 𝑎
𝑀
, 𝑏
𝑀
(𝑧) = 𝑞𝑤

∞∏

𝑛=0

(
1 − 𝑞𝑛+𝑎∕𝑁𝜁𝑏𝑁

) ∞∏

𝑛=1
(1 − 𝑞𝑛−𝑎∕𝑁𝜁−𝑏𝑁 )

where 𝑞 = 𝑒2𝜋𝑖𝑧 and 𝑤 = 1
12
− 𝑎

𝑁
+ 𝑎2

2𝑁2
.

This is well-defined (independent of the choice of common denominator𝑁). We would like to say
that it is modular of level𝑁, but this is not quite true. Acting on it by an element of 𝛤(𝑁)multiplies
it by a root of unity so it defines an element of 𝒪(𝑌(𝑁))⊗ℤ ℚ. We can kill the denominator by
making a very simple modification:

Definition 4.4. Let 𝑐 > 1 be an integer coprime to 6𝑁. Put

𝑐𝑔 𝑎
𝑁
, 𝑏
𝑁
=
(𝑔 𝑎

𝑁
, 𝑏
𝑁
)
𝑐2

𝑔 𝑐𝑎
𝑁
, 𝑐𝑏
𝑁

Then 𝑐𝑔 𝑎
𝑁
, 𝑏
𝑁
is 𝛤(𝑁)-invariant so it belongs to 𝒪(𝑌(𝑁)ℂ)×.

However, we can do better: it actually descends to the number field ℚ(𝜁𝑁). Since the affine curve
𝑌(𝑁) is defined over ℚ(𝜁𝑁), we have:

Proposition 4.5. The units 𝑐𝑔 𝑎
𝑁
, 𝑏
𝑁
belong to 𝒪(𝑌(𝑁))×.

Definition of 𝑧Kato (Wrong version)

I say "wrong version" because this is morally correct and conveys the overall idea, but is technically
false. The basic idea is that Kato picks parameters𝑀, 𝑁 appropriately and gets a pair of modular
units 𝑐𝑔 1

𝑀
,0, 𝑑𝑔0, 1

𝑁
in (𝒪(𝑌1(𝑁))×)2. Then Kato lets 𝑧Kato be its image under the maps (𝑎) through

(𝑓).
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Definition of 𝑧Kato (Correct version)

The full details here are very overwhelming (at least I found them so). From this point onwards,
I’m skipping over a bunch of technical details to get the main point across. If you’d like technical
details, then I’d suggest looking Sections 2 and 5 of Kato’s paper as a reference.

Kato fixes two integers 𝑐, 𝑑 > 1 such that gcd(𝑐𝑑, 6𝑁) = 1. He considers a pair of Seigel units
(𝑐𝑔 1

𝑀
,0, 𝑑𝑔0, 1

𝑁
) where 𝑀,𝑁 are chosen appropriately. After doing this, Kato obtains an element

which he denotes 𝑐,𝑑𝑧𝑀,𝑁 = (𝑐𝑔 1
𝑀
,0, 𝑑𝑔0, 1

𝑁
). This element 𝑐,𝑑𝑧𝑀,𝑁 belongs to (𝒪(𝑌(𝑀,𝑁))×)2, where

𝑌(𝑀,𝑁) is a certain "two-level" modular curve and𝑀,𝑁 are parameters to be chosen later.

Then for any matrix 𝜉 ∈ SL2(ℤ), Kato "twists" this pair by 𝜉 and applies a norm map down to
𝑌1(𝑁) to get an element which Kato denotes by

𝑐,𝑑𝑧1,𝑁,𝑚(𝑘 = 2, 𝑟 = 1, 𝑟′ = 1, 𝜉, 𝑆 = prime(𝑁𝑝)) ∈ (𝒪(𝑌1(𝑁))×)2

(See page 153 of Kato’s paper for the precise definition).

The image of the above element 𝑐,𝑑𝑧1,𝑁,𝑚(2, 1, 1, 𝜉, 𝑆) under the maps (𝑎) through (𝑓) is denoted
(see Sections 8.9, 8.11 of Kato’s paper)

𝑐,𝑑𝑧(𝑓, 𝜉) = 𝑐,𝑑𝑧
(𝑝)
𝑚=1(𝑓, 𝑟 = 1, 𝑟′ = 1, 𝜉, 𝑆 = prime(𝑝𝑁))

Then in 13.9 of Kato’s paper, the zeta element 𝑧Kato (denoted 𝑧(𝑝)𝛾 in Kato’s paper for some auxiliary
parameter 𝛾) is defined as quotients of elements of the form 𝑐,𝑑𝑧(𝑓, 𝜉) by certain elements 𝜇(𝑐, 𝑑).
It is this element 𝑧(𝑝)𝛾 which is related to 𝐿-values.

This is clearly very technical. And to be fully honest, I don’t intuitively understand a lot of the
motivation behind Kato’s constructions. But hopefully this gives at least a vague idea about how
Kato’s Euler System is constructed.

5 The Main Conjecture for Elliptic Curves
In this section, we draw the link between the algebraic side of Iwasawa theory and the analytic side
of Iwasawa theory for elliptic curves. These two worlds are connected via the so-called "Iwasawa
main conjecture".

The Iwasawa Main Conjecture (IMC) is a deep conjecture that connects the Selmer group of
an elliptic curve (an algebraic object) to its 𝑝-adic 𝐿-function (an analytic object). We will first
summarize the objects on the algebraic side of the main conjecture, then summarize the objects
on the analytic side, and then state the Iwasawa main conjecture which bridges these two worlds.

a. The algebraic side
In this section, 𝑝 will denote an odd prime and 𝐸∕ℚ will be an elliptic curve with good ordinary
reduction at 𝑝. Let ℚcyc denote the cyclotomic ℤ𝑝-extension of ℚ.
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For any algebraic extension𝐾∕ℚ, the Selmer group of𝐸 over𝐾 is a certain subgroup of𝐻1(𝐺𝐾, 𝐸(ℚ)tors),
where 𝐺𝐾 = Gal(𝐾∕𝐾). The Selmer group fits into the fundamental exact sequence

0→ 𝐸(𝐾)⊗ℚ∕ℤ→ Sel(𝐸∕𝐾)→ Sha(𝐸∕𝐾)→ 0
where Sha(𝐸∕𝐾) denotes the Tate-Shafarevich group of 𝐸 over 𝐾. Let 𝐾 = ℚcyc. Then we can
consider the Selmer group Sel(𝐸∕ℚcyc), and this has an action of 𝛤 = Gal(ℚcyc∕ℚ). Its 𝑝-primary
subgroup Sel(𝐸∕ℚcyc)𝑝 can be regarded as a Λ-module, where Λ = ℤ𝑝J𝑇K. This ring Λ is called
the Iwasawa algebra. It is now known from the deep work of Kato that the Pontryagin dual
𝑋(𝐸∕ℚcyc) = Sel(𝐸,ℚcyc)∨𝑝 is a finitely generated torsion Λ-module. Therefore the structure
theorem of finitely generated Λ-modules says that one has a pseudo-isomorphism

𝑋(𝐸∕ℚcyc) ∼ (
𝑛⨁

𝑖=1

Λ
(𝑓𝑖(𝑇)𝑎𝑖)

)⊕
⎛
⎜
⎝

𝑚⨁

𝑗=1

Λ
𝑝𝜇𝑗

⎞
⎟
⎠

where the 𝑓𝑖(𝑇)’s are irreducible distinguished polynomials (A polynomial 𝑓(𝑇) is distinguished
if when you reduce 𝑓 modulo 𝑝, only the highest degree term remains.) One can then define the
algebraic Iwasawa invariants by

𝜆alg𝐸 =
𝑛∑

𝑖=1
𝑎𝑖 deg(𝑓𝑖(𝑇)) and 𝜇alg𝑝 (𝐸) =

𝑚∑

𝑗=1
𝜇𝑗

Definition 5.1. The characteristic ideal of𝑋(𝐸∕ℚcyc) is the ideal ofΛ generated by𝑝𝜇𝑓1(𝑇)𝑎1 ⋯𝑓𝑛(𝑇)𝑎𝑛 .

b. The Analytic Side
For an elliptic curve 𝐸∕ℚ with good ordinary reduction at a prime 𝑝 and 𝜒 an even Dirichlet
character, denote by 𝐿(𝐸, 𝜒, 𝑠) the Hasse-Weil 𝐿-function of 𝐸 twisted by 𝜒. Let Ω𝐸 be the Neron
period of 𝐸. It is known by the work of Shimura that 𝐿(𝐸, 𝜒, 1)∕Ω𝐸, a priori a transcendental
number, is in fact an algebraic number.

Mazur and Swinnerton-Dyer have attached to 𝐸 a 𝑝-adic 𝐿-functionℒ𝑝(𝐸, 𝑇) ∈ Λ⊗ℚ𝑝 satisfying
the following interpolation properties. If we write 𝑎𝑝 = (𝑝 + 1) − #𝐸(𝔽𝑝), consider the Hecke
polynomial 𝑋2 − 𝑎𝑝𝑋 + 𝑝. Let 𝛼 ∈ ℤ×

𝑝 denote this unique 𝑝-adic root of the Hecke polynomial.
Then,

ℒ𝑝(𝐸, 0) = (1 − 1
𝛼)

2
⋅ 𝐿(𝐸, 1)

Ω+
𝐸

Let 𝜒 be an even Dirichlet character of conductor 𝑝𝑛 and 𝑝-power order. Then,

ℒ𝑝(𝐸, 𝜒(1 + 𝑝) − 1) = 1
𝛼𝑛+1 ⋅

𝑝𝑛+1
𝑔(𝜒−1)

𝐿(𝐸, 𝜒−1, 1)
Ω𝐸

where 𝑔(𝜒) denotes the Gauss sum.

Using the Weierstrass preparation theorem, we can define the analytic invariants 𝜇an𝑝 (𝐸) and 𝜇an𝑝
be writing:

ℒ𝑝(𝐸, 𝑇) = 𝑝𝜇an𝑝 (𝐸) ⋅ 𝑢(𝑇) ⋅ 𝑓(𝑇)
where 𝑓(𝑇) is a distinguished polynomial of degree 𝜇an𝑝 and 𝑢(𝑇) is a unit in Λ. It is known that if
𝐸 has good ordinary reduction at an odd prime 𝑝, and that 𝐸[𝑝] is irreducible as a Galois module,
then 𝜇an𝑝 (𝐸) ≥ 0. In other words, ℒ𝑝(𝐸, 𝑇) ∈ Λ.
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c. The Main Conjecture
The Iwasawa main conjecture relates the Selmer group on the algebraic side to the 𝑝-adic 𝐿-
function on the analytic side. Precisely, suppose that 𝐸∕ℚ is an elliptic curve with good ordinary
reduction at an odd prime 𝑝, and that 𝐸[𝑝] is irreducible as a Galois module. Then on the algebraic
side, we can look at the characteristic ideal of the 𝑝-primary Selmer group 𝑋(𝐸∕ℚcyc); this is an
ideal in Λ. On the analytic side, we can attach to 𝐸 a 𝑝-adic 𝐿-function ℒ𝑝(𝐸, 𝑇) ∈ Λ.

Conjecture 5.2 (The Main conjecture). The characteristic ideal of the𝑝-primary Selmer group
𝑋(𝐸∕ℚcyc) is generated by the 𝑝-adic 𝐿-function ℒ𝑝(𝐸, 𝑇). In particular, we have 𝜇

alg
𝐸 = 𝜇an𝐸 and

𝜆alg𝐸 = 𝜆an𝐸 .

Progress on the Main Conjecture

In a magnum opus paper, Kato proved one divisibility of the Main conjecture under mild technical
conditions:

Theorem 5.3 (Kato). If 𝑝 ≥ 5 and the mod 𝑝 Galois representation of 𝐸 is surjective, then the
characteristic ideal of 𝑋(𝐸∕ℚcyc) divides the ideal generated by ℒ𝑝(𝐸, 𝑇). In particular, 𝜇

alg
𝐸 ≤ 𝜇an𝐸

and 𝜆alg𝐸 ≤ 𝜆an𝐸 .

In another beautiful paper, using completely different techniques, Skinner-Urban proved the
other divisibility of the main conjecture under mild technical conditions:

Theorem 5.4. Let𝑁 denote the conductor of 𝐸. Assume:

(a) We have 𝑝 ≥ 5.
(b) The mod 𝑝 Galois representation 𝜌𝐸,𝑝 of 𝐸 is surjective.
(c) There exists a prime 𝑞 ≠ 𝑝 such that 𝑞 strictly divides𝑁 and 𝜌𝐸,𝑝 is ramified at 𝑝.

Then the ideal generated by ℒ𝑝(𝐸, 𝑇) divides the characteristic ideal of 𝑋(𝐸∕ℚcyc).

Combining this with Kato’s Theorem, we conclude that the main conjecture is true for 𝐸.

6 The Eichler-Selberg Trace Formula and Class
Numbers

This independent section describes a paper of Kuniaki Horie, which uses the Eichler-Selberg Trace
Formula to prove an interesting result about class numbers of imaginary quadratic fields.

In a beautiful 1987 Inventiones paper, Kuniaki Horie proved the following theorem about class
numbers of imaginary quadratic fields:

Theorem 6.1 (Horie). Let 𝑝 be a fixed prime number. There exist infinitely many imaginary
quadratic fields 𝐾 such that 𝑝 is non-split 𝐾 and 𝑝 does not divide the class number of 𝐾.

http://www.numdam.org/item/AST_2004__295__117_0/
https://link.springer.com/article/10.1007/s00222-013-0448-1
https://eudml.org/doc/143442
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This theorem has consequences for Iwasawa theory. If 𝐾 is a number field, then let 𝐾cyc∕𝐾 denote
the cyclotomicℤ𝑝-extension of𝐾. Let 𝜇𝐾 and 𝜆𝐾 denote the Iwasawa 𝜇 and 𝜆-invariants of𝐾cyc∕𝐾.
Iwasawa proved that if 𝐾 has a unique prime lying over 𝑝 and 𝑝 does not divide the class number
of 𝐾, then 𝜇𝐾 = 0. Therefore, Horie’s theorem proves:

Corollary 6.2. Let 𝑝 be a fixed prime number. There exist infinitely many imaginary quadratic
fields 𝐾 with 𝜇𝐾 = 0 and 𝜆𝐾 = 0.

The fact that 𝜇𝐾 = 0 is already known by the Ferrero-Washington theorem since 𝐾 is an abelian
extension of ℚ. So the new content of Horie’s theorem is that 𝜆𝐾 = 0 for infinitely many 𝐾.

a. The Trace Formula
To prove this theorem, Horie uses Galois representations attached to modular forms, along with
the Eichler-Selberg trace formula. I’ll take this time to explain in detail what the Eichler-Selberg
trace formula says.

Let𝑁 ≥ 1 be an integer. Let 𝑆2(𝛤0(𝑁)) denote the space of weight 2 cuspforms for the congruence
group 𝛤0(𝑁). Every cuspform 𝑓 ∈ 𝑆2(𝛤0(𝑁)) has a 𝑞-expansion 𝑓 =

∑∞
𝑛=1 𝑎𝑛𝑞

𝑛.

For every integer𝑚 ≥ 1, there is a linear operator 𝑇𝑚 ∶ 𝑆2(𝛤0(𝑁))→ 𝑆2(𝛤0(𝑁)). For gcd(𝑚,𝑁) =
1, the operator 𝑇𝑚 is defined on 𝑞-expansion as follows:

𝑇𝑚 ∶
∞∑

𝑛=1
𝑎𝑛𝑞𝑛 ↦→

∞∑

𝑛=1

⎛
⎜
⎝

∑

𝑑∣gcd(𝑚,𝑛)
𝑑𝑎𝑚𝑛∕𝑑2

⎞
⎟
⎠
𝑞𝑛

The Eichler-Selberg trace formula gives a closed form expression for the trace of the linear operator
𝑇𝑚 in terms of class numbers of imaginary quadratic fields.
Theorem 6.3 (Eichler-Selberg Trace Formula (𝑁 prime)). Suppose that𝑁 is a prime num-
ber. For any prime number 𝑞 not dividing the level𝑁, we have

Tr(𝑇𝑞) = 𝑞 − 1 −
∑

𝑎,𝑏

ℎ((𝑎2 − 4𝑞)∕𝑏2)
𝑤(𝑎2 − 4𝑞)∕𝑏2)

𝜇(𝑎, 𝑏, 𝑞)

where:

⋄ 𝑎 runs through all integers such that 𝑎2 < 4𝑞.
⋄ 𝑏 runs through integers 𝑏 ≥ 1 such that 𝑏2 divides 𝑎2 − 4𝑞 and 𝑎2−4𝑞

𝑏2
≡ 0, 1 (mod 4).

⋄ ℎ
(𝑎2−4𝑞

𝑏2

)
is the class number of the order with discriminant 𝑎

2−4𝑞
𝑏2

.

⋄ 𝑤
(𝑎2−4𝑞

𝑏2

)
is the number of roots of unity of the order with discriminant 𝑎

2−4𝑞
𝑏2

.

⋄ 𝜇(𝑎, 𝑏, 𝑞) = 𝜓(𝑁)
𝜓(𝑁∕𝑁𝑏)

∑
𝑐 1, where 𝜓(𝑁) = [SL2(ℤ) ∶ 𝛤0(𝑁)], 𝑁𝑏 = gcd(𝑁, 𝑏), and 𝑐 runs

through all elements of (ℤ∕𝑁ℤ)∗ which lift to solutions of 𝑐2 − 𝑎𝑐 + 𝑞 ≡ 0 (mod 𝑁𝑁𝑏).

The slogan of the trace formula is:

Trace of 𝑇𝑞 = weighted sum of class numbers of imaginary quadratic fields

There is also a version of the trace formula for the case 𝑁 = 1, which we state here:
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Theorem 6.4 (Eichler-Selberg Trace Formula (𝑁 = 1)). For any prime number 𝑞, the trace
of 𝑇𝑞 on 𝑆2(SL2(ℤ)) is given as:

Tr(𝑇𝑞) = −𝑞 +
∑

𝑎,𝑏

ℎ((𝑎2 − 4𝑞)∕𝑏2)
𝑤((𝑎2 − 4𝑞)∕𝑏2)

where as before:

⋄ 𝑎 runs through all integers such that 𝑎2 < 4𝑞.
⋄ 𝑏 runs through integers 𝑏 > 1 such that 𝑏2 divides 𝑎2 − 4𝑞 and 𝑎2−4𝑞

𝑏2
≡ 0, 1 (mod 4).

⋄ ℎ
(𝑎2−4𝑞

𝑏2

)
is the class number of the order with discriminant 𝑎

2−4𝑞
𝑏2

.

⋄ 𝑤
(𝑎2−4𝑞

𝑏2

)
is the number of roots of unity of the order with discriminant 𝑎

2−4𝑞
𝑏2

.

A good reference for the trace formula is the book Traces of Hecke Operators by Knightly and Li.
The end of the book contains a full statement of the trace formula. This book contains a formula
for the trace of 𝑇𝑛 for arbitrary 𝑛, arbitrary level 𝑁, and any weight 𝑘.

Example 6.5 (𝑁 = 1). Let 𝑁 = 1, the space 𝑆2(𝛤0(1)) = 𝑆2(SL2(ℤ)) is zero. So for all primes 𝑞,
we have Tr(𝑇𝑞) = 0. Rearranging the trace formula, we obtain the following non-trivial relations
between class numbers for all primes 𝑞:

𝑞 =
∑

𝑎,𝑏

ℎ((𝑎2 − 4𝑞)∕𝑏2)
𝑤((𝑎2 − 4𝑞)∕𝑏2)

Suppose 𝑞 = 2. Then the pairs of (𝑎, 𝑏) are:

(𝑎, 𝑏) = (−2, 1), (−1, 1), (0, 1), (1, 1), (2, 1)

Therefore, the trace formula becomes:

2 = 2 ℎ(−4)
𝑤(−4)

+ 2 ℎ(−7)
𝑤(−7)

+ ℎ(−8)
𝑤(−8)

= ℎ(−4)
2 + ℎ(−7) + ℎ(−8)

2
= 1
2 + 1 + 1

2
For an example with non-trivial class numbers, put 𝑞 = 7. The trace formula gives:

7 = 6 ℎ(−3)
𝑤(−3)

+ 2 ℎ(−12)
𝑤(−12)

+ 2 ℎ(−19)
𝑤(−19)

+ 2 ℎ(−24)
𝑤(−24)

+ 2 ℎ(−27)
𝑤(−27)

+ ℎ(−28)
𝑤(−28)

+ ℎ(−7)
𝑤(−7)

= ℎ(−3) + ℎ(−12) + ℎ(−19) + ℎ(−24) + ℎ(−27) + ℎ(−28)
2 + ℎ(−7)

2
= 1 + 1 + 1 + 1 + 2 + 1

2 +
1
2

where in the last line, we used the fact that ℎ(−27) = 2 and ℎ(𝑑) = 1 for all the other values of 𝑑
above.

https://bookstore.ams.org/surv-133/
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Example 6.6. The space 𝑆2(𝛤0(11)) is one-dimensional, spanned by the newform 𝑓 = 𝑞 − 2𝑞2 −
𝑞3 + 2𝑞4 + 𝑞5 +⋯. Writing 𝑓 =∑ 𝑎𝑛𝑞𝑛, it follows that for all 𝑞 coprime to 11, i.e., gcd(𝑞, 11) = 1,
we have Tr(𝑇𝑞) = 𝑎𝑞(𝑓). Let us verify this using the trace formula.

If 𝑞 = 3, then the trace formula reads:

Tr(𝑇3) = 3 − 1 − 4 ℎ(−8)
𝑤(−8)

− 2 ℎ(−11)
𝑤(−11)

= 3 − 1 − 2ℎ(−8) − ℎ(−11)
= −1
= 𝑎3(𝑓)

where we used the facts that ℎ(−8) = ℎ(−11) = 1.

If 𝑞 = 5, the trace formula reads.

Tr(𝑇5) = 5 − 1 − 2 ℎ(−11)
𝑤(−11)

− 4 ℎ(−19)
𝑤(−19)

= 5 − 1 − ℎ(−11) − 2ℎ(−19)
= 1
= 𝑎5(𝑓)

where we used the facts that ℎ(−11) = ℎ(−19) = 1.

Horie’s Proof

Fix a prime 𝑝 ≥ 5 for the rest of this section. Horie uses two trace formula: the trace formula for
𝛤0(𝑝)

Tr(𝑇𝑞) = 𝑞 − 1 −
∑

𝑎,𝑏

ℎ((𝑎2 − 4𝑞)∕𝑏2)
𝑤((𝑎2 − 4𝑞)∕𝑏2)

𝜇(𝑎, 𝑏, 𝑞)

and the trace formula for 𝛤0(1) = SL2(ℤ) (see example 6.5):

𝑞 =
∑

𝑎,𝑏

ℎ((𝑎2 − 4𝑞)∕𝑏2)
𝑤((𝑎2 − 4𝑞)∕𝑏2)

Here 𝑞 is a prime (different from 𝑝) which will be chosen later. Substituting the second equation
into this first equation, we get:

Tr(𝑇𝑞) + 𝑞 + 1 =
∑

𝑎,𝑏

ℎ((𝑎2 − 4𝑞)∕𝑏2)
𝑤((𝑎2 − 4𝑞)∕𝑏2) (

1 − {
(𝑎2 − 4𝑞)∕𝑏2

𝑝 }) (1)

Now we will prove the easier result that there is one imaginary quadratic field 𝐾 such that 𝑝 does
not divide the class group of 𝐾 and 𝑝 is non-split in 𝐾. Suppose that we can find a prime 𝑞 such
that the LHS of (1) is nonzero modulo 𝑝. Then there would exist (𝑎, 𝑏) such that

ℎ((𝑎2 − 4𝑞)∕𝑏2)
𝑤((𝑎2 − 4𝑞)∕𝑏2) (

1 − {
(𝑎2 − 4𝑞)∕𝑏2

𝑝 }) ≢ 0 (mod 𝑝)



6 THE EICHLER-SELBERG TRACE FORMULA AND CLASS NUMBERS 23

This implies that 𝑝 ∤ ℎ((𝑎2 − 4𝑞)∕𝑏2). It also implies that { (𝑎
2−4𝑞)∕𝑏2

𝑝
} ≠ −1, which means that 𝑝 is

non-split in ℚ (
√

𝑎2−4𝑞
𝑏2

).

So it suffices to prove the following:

Lemma 6.7. There exists a prime 𝓁 different from 𝑝 such that Tr(𝑇𝓁) + 𝓁 + 1 ≢ 0 (mod 𝑝).

Proof. Let 𝓁 be the least positive quadratic non-residue modulo 𝑝. Then 𝓁 is a prime number
and 𝓁 < 𝑝

2
(Why?)

The trace formula for 𝑞 = 𝓁 give us:

Tr(𝑇𝓁) + 𝓁 + 1 =
∑

𝑎,𝑏

ℎ((𝑎2 − 4𝓁)∕𝑏2)
𝑤((𝑎2 − 4𝓁)∕𝑏2) (

1 − {
(𝑎2 − 4𝓁)∕𝑏2

𝑝 }) (2)

Therefore, we can write

Tr(𝑇𝓁) + 𝓁 + 1 ≥ (1 − (−𝓁𝑝 )) ℎ(−4𝓁)
𝑤(−4𝓁)

+ (1 − (1 − 𝓁
𝑝 )) ℎ(4 − 4𝓁)

𝑤(4 − 4𝓁)
(3)

Since 𝓁 is a non square mod 𝑝, we have (𝓁
𝑝
) = −1 and ( 1−𝓁

𝑝
) = 1. Therefore, the RHS of the above

inequality is always positive, so that Tr(𝑇𝓁) + 𝓁+ 1 > 0. On the other hand, the trace formula and
the identity 𝓁 < 𝑝

2
shows that Tr(𝑇𝓁) + 𝓁 + 1 < 𝑝. Since Tr(𝑇𝓁) ∈ ℤ, we obtain

Tr(𝑇𝓁) + 𝓁 + 1 ≢ 0 (mod 𝑝) (4)

which completes the proof of the Lemma. 2

The Proof in General

We’ll now use the above Lemma along with the Chebotarev Density Theorem to prove the theorem
in general.

Let 𝐽0(𝑁) be the Jacobian of the modular curve 𝑋0(𝑁). If 𝑋0(𝑁) has genus 𝑔, then 𝐽0(𝑁) is an
abelian variety over ℚ of dimension 𝑔. Let 𝐽0(𝑁)[𝑝] denote the 𝑝-torsion of 𝐽0(𝑁); this is a 𝔽𝑝-
vector space of dimension 2𝑔 with a natural action of Gal(ℚ∕ℚ). This gives rise to the following
Galois representation:

𝜌 ∶ Gal(ℚ∕ℚ)→ GL2𝑔(𝔽𝑝)

By the Eichler-Shimura relations, we know that "traces of Frobenius equal traces of Hecke"; i.e:
for all primes 𝑞 away from 𝑁𝑝, we have

Tr(𝜌(Frob𝑞)) = Tr(𝑇𝑞)

where the right side denotes the trace of 𝑇𝑞 on 𝑆2(𝛤0(𝑁)).
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b. Chebotarev Density Theorem
Fix a large prime 𝑟. We will find an imaginary quadratic field with discriminant > 𝑟 satisfying the
conditions of the theorem. By the Chebotarev Density Theorem, there exists a positive proportion
of primes 𝑞 such that:

⋄ Frob𝑞 ≡ Frob𝓁 (mod 𝑝), where 𝓁 is the prime from lemma 6.7,

⋄ 𝑞 is inert in ℚ(𝑖), ℚ(
√
−2), ℚ

√(−1
𝑣

)
𝑣 for every odd prime 𝑣 ≤ 𝑟 different from 𝑝.

The first point implies that

Tr(𝑇𝓁) ≡ Tr(𝑇𝑞) (mod 𝑝) (5)

Furthermore, by the Weil Pairing, the field ℚ(𝐽0(𝑁)[𝑝]) contains the cyclotomic field ℚ(𝜁𝑝).
Therefore, the congruence Frob𝑞 ≡ Frob𝓁 (mod 𝑝) implies that

𝑞 ≡ 𝓁 (mod 𝑝) (6)

The lemma shows that Tr(𝑇𝓁) + 𝓁 + 1 ≢ 0 (mod 𝑝). Combining this with the above two points
gives:

Tr(𝑇𝑞) + 𝑞 + 1 ≢ 0 (mod 𝑝)

Hence, by the trace formula, there exists (𝑎, 𝑏) such that

ℎ((𝑎2 − 4𝑞)∕𝑏2)
𝑤((𝑎2 − 4𝑞)∕𝑏2)

≢ 0 (mod 𝑝) and {
(𝑎2 − 4𝑞)∕𝑏2

𝑝 } ≠ 1

Now put 𝑘 = ℚ(
√
(𝑎2 − 4𝑞)∕𝑏2). Let 𝑓𝑘 be the conductor of 𝑘. We will show that 𝑓𝑘 > 𝑟.

First, note that 𝑞 is not inert in 𝑘. To see this, write −𝑓𝑘𝑢2 − (𝑎2 − 4𝑞)∕𝑏2 for some 0 < 𝑢 ∈ ℤ.
Then 4𝑞 is the norm of 𝑎 + 𝑏𝑢

√
−𝑓𝑘 for 𝑘∕ℚ and hence 𝑞 is not inert in 𝑘. Since { (𝑎

2−4𝑞)∕𝑏2

𝑝
} ≠ 1,

the field 𝑘 is not equal toℚ(
√
−1),ℚ(

√
−2), orℚ(

√
𝑣 ∗) for every prime 𝑣 ≤ 𝑟 different from 𝑝. It

follows that 𝑟 < 𝑓𝑘, as desired.

Now we will show that the class number of 𝑘 is not divisible by 𝑝. This follows from the following
relation:

ℎ((𝑎2 − 4𝑞)∕𝑏2)
𝑤((𝑎2 − 4𝑞)∕𝑏2)

= ℎ(−𝑓𝑘)
𝑤(−𝑓𝑘)

𝑢
∏

𝑣∣𝑢
(1 − (−𝑓𝑘𝑣 ) 𝑣−1)

with the product on the right taken over the prime divisors 𝑣 of 𝑢. Since, 𝑤(−𝑓𝑘) ∣ 12 and we have
assumed 𝑝 ≥ 5, it follows from this that ℎ(−𝑓𝑘) is not divisible by 𝑝.

In conclusion, we obtain an imaginary quadratic field 𝑘 such that 𝑝 is non-split in 𝑘, the class
number of 𝑘 is prime to 𝑝, and 𝑓𝑘 > 𝑟. Since 𝑟 is an arbitrary prime number, we have proved our
Theorem.
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7 Shimura’s Algebraicity Theorem
In a beautiful 1976 paper, Shimura proved that one can normalize critical 𝐿-values of modular
forms to make them algebraic. This independent explains Shimura’s theorem and sketches a
proof.

Let 𝑓 be a newform of weight 2 and level 𝛤0(𝑁). We can attach to 𝑓, its Hasse-Weil 𝐿-series

𝐿(𝑓, 𝑠) =
∞∑

𝑛=1

𝑎𝑛
𝑛𝑠

The 𝐿-series converges for ℜ(𝑠) > 3
2
. It has analytic continuation to all 𝑠 ∈ ℂ and satisfies a

functional equation.

Theorem 7.1 (Shimura). Let 𝑓 ∈ 𝑆2(𝛤0(𝑁)) be an eigenform. Let 𝜒 and 𝜓 be primitive Dirichlet
characters of opposite sign: i.e 𝜒𝜓(−1) = −1. Put

𝐶(𝑓, 𝜒, 𝜓) ∶= 𝐿(𝑓, 𝜒, 1)𝐿(𝑓, 𝜓, 1)
𝜋2⟨𝑓, 𝑓⟩𝑁

⋅ Ga(𝜒𝜓)𝑖

(a) The value 𝐶(𝑓, 𝜒, 𝜓), a priori a transcendental number, is in fact an algebraic number. Fur-
thermore, 𝐶(𝑓, 𝜒, 𝜓) belongs to the number field 𝐾𝜒𝐾𝜓. (Here 𝐾𝜒 and 𝐾𝜓 are the number fields
containing the values of 𝜒 and 𝜓, respectively).

(b) For any automorphism 𝜎 ∈ Gal(ℚ∕ℚ), we have

𝐶(𝑓, 𝜒, 𝜓)𝜎 = 𝐶(𝑓𝜎, 𝜒𝜎, 𝜓𝜎)

This is quite a surprising theorem, because it shows that the ratio of two transcendental quantities
is actually algebraic, and it behaves nicely under the action of Galois. I would highly recommend
reading Shimura’s original paper. This is Theorem 4 in Shimura’s paper (the proof is very clearly
written and packed with a lot of insight).

a. The Rankin-Selberg Method
The proof of Shimura’s theorem uses a technique known as the Rankin-Selberg method. To
introduce this method, we need some definitions:

Theorem 7.2. Let𝑁 ≥ 1 be an integer and let 𝜔 be the Dirichlet character mod𝑁. Define for 𝜏 ∈ ℍ
(the upper half plane) and 𝑠 ∈ ℂ,

𝐺𝜔(𝜏, 𝑠) =
𝑁

−4𝜋𝑖 ⋅ Ga(𝜔)
∑

(𝑚,𝑛)∈ℤ2⧵(0,0)

𝜔(𝑛)
(𝑚𝑁𝜏 + 𝑛) ⋅ |𝑚𝑁𝜏 + 𝑛|2𝑠

For fixed 𝜏 ∈ ℍ, the function 𝐺𝜔(𝜏, 𝑠) is analytic in 𝑠 forℜ(𝑠) sufficiently large. For fixed 𝜏 ∈ ℍ, the
function 𝐺𝜔(𝜏, 𝑠) has an analytic continuation to all 𝑠 ∈ ℂ and is holomorphic at 𝑠 = 0.

Put 𝐺𝜔(𝜏) ∶= 𝐺𝜔(𝜏, 0).

https://onlinelibrary.wiley.com/doi/10.1002/cpa.3160290618
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Remark 7.3. Here are some facts:

(a) The function 𝐺𝜔(𝜏) belongs to ℰ1(𝛤0(𝑁), 𝜔), the space of weight 1 Eisenstein series for 𝛤0(𝑁)
with nebentype 𝜔. It is also an eigenform.

(b) If 𝜔 is a primitive character, then 𝐺𝜔(𝜏) has the 𝑞-expansion

𝐺𝜔(𝜏) =
𝐿(0, 𝜔)
2 +

∞∑

𝑛=1

⎛
⎜
⎝

∑

𝑑∣𝑛
𝜔(𝑑)

⎞
⎟
⎠

Definition 7.4. Let 𝑓 = ∑∞
𝑛=1 𝑎𝑛𝑞

𝑛 ∈ 𝑆2(𝛤0(𝑁)) and 𝑔 = ∑∞
𝑛=1 𝑏𝑛𝑞

𝑛 ∈ 𝑀1(𝛤0(𝑁), 𝜔) be a
cuspform and a modular form, respectively. Define the Rankin-Selberg convolution 𝐿-function
of 𝑓 and 𝑔 as follows:

𝐿(𝑠, 𝑓 × 𝑔) ∶= 𝐿(2𝑠 − 1, 𝜔) (
∞∑

𝑛=1

𝑎𝑛𝑏𝑛
𝑛𝑠 )

Suppose that 𝑓 and 𝑔 are eigenforms with Galois representations 𝜌𝑓 and 𝜌𝑔. Then 𝐿(𝑠, 𝑓 × 𝑔) is
the 𝐿-function attached to the tensor product representation 𝜌𝑓 ⊗ 𝜌𝑔. The main theorem is:

Theorem 7.5. The 𝐿-series 𝐿(𝑠, 𝑓×𝑔) hasmeromorphic continuation to all 𝑠 ∈ ℂ. It is holomorphic
at 𝑠 = 1 and satisfies:

⟨𝑓, 𝑔 ⋅ 𝐺𝜔⟩𝑁 = 𝐿(1, 𝑓 × 𝑔)Ga(𝜔)8𝜋2𝑖

b. Determining the form 𝑔
We now need to determine the form 𝑔. To do that, we’ll introduce another definition.

Definition 7.6. Let 𝜒 and 𝜓 be Dirichlet characters mod 𝑁 such that 𝜒𝜓(−1) = −1. There is an
Eisenstein series

𝐺𝜒,𝜓 =
∞∑

𝑛=0
𝑎𝑛𝑞𝑛 ∈ ℰ1(𝛤0(𝑁))

where for 𝑛 ≥ 1, we have

𝑎𝑛 =
∑

𝑑∣𝑛
𝜒(𝑑)𝜓(𝑛∕𝑑)

and

𝑎0 = {
0 if 𝜒, 𝜓 non-trivial
𝐿(0,𝜒𝜓)

2
else

Here 𝐺𝜒,𝜓 is the Eisenstein series whose associated Galois representation is 𝜒 ⊕ 𝜓. This is a
more-or-less standard fact about Eisenstein series; for a proof, see for example Miyake’s book
Modular Forms (Theorem 4.7.1).

We need one last proposition:

https://wstein.org/edu/Fall2003/252/references/Miyake/index.html


7 SHIMURA’S ALGEBRAICITY THEOREM 27

Proposition 7.7. Let 𝑓 ∈ 𝑆2(𝛤0(𝑁)) be an eigenform. Let 𝜒 and 𝜓 be Dirichlet characters mod𝑁
such that 𝜒𝜓(−1) = −1. Then for all 𝑠 ∈ ℂ, we have

𝐿(𝑠, 𝑓 × 𝐺𝜒,𝜓) = 𝐿(𝑓, 𝜒, 𝑠)𝐿(𝑓, 𝜓, 𝑠)

The proof of this is Lemma 1 in Shimura’s paper, and it is proved by computing the Euler products
of the 𝐿-functions on both sides. Alternatively, the LHS has Galois representation 𝜌𝑓 ⊗ (𝜒 ⊕ 𝜓)
and the RHS has Galois representation (𝜌𝑓 ⊗𝜒)⊕ (𝜌𝑓 ⊗𝜓). These two Galois representations
are equal.

Combining this Proposition with the above Theorem, we obtain:

Theorem 7.8. Let 𝑓 ∈ 𝑆2(𝛤0(𝑁)) be an eigenform. Let 𝜒 and 𝜓 be primitive Dirichlet characters of
opposite sign: i.e., 𝜒𝜓(−1) = −1. Then

⟨𝑓, 𝐺𝜒,𝜓 ⋅ 𝐺𝜒𝜓⟩𝑁
⟨𝑓, 𝑓⟩𝑁

= 𝐿(𝑓, 𝜒, 1)𝐿(𝑓, 𝜓, 1)
⟨𝑓, 𝑓⟩𝑁

⋅ Ga(𝜒𝜓)8𝜋2𝑖
In other words, suppose that 𝑓1,… , 𝑓𝑛 form a basis of eigenforms for 𝑆2(𝛤0(𝑁)). We can decompose
𝐺𝜒,𝜓 ⋅ 𝐺𝜒𝜓 in terms of the eigenforms 𝑓𝑗 as follows:

𝐺𝜒,𝜓 ⋅ 𝐺𝜒𝜓 = 𝐸 +
𝑛∑

𝑗=1
(
𝐿(𝑓, 𝜒, 1)𝐿(𝑓, 𝜓, 1)

⟨𝑓, 𝑓⟩𝑁
⋅ Ga(𝜒𝜓)8𝜋2𝑖 )𝑓𝑗

where 𝐸 ∈ ℰ2(𝛤0(𝑁)) is an Eisenstein series.

The following Lemma (Lemma 4 in Shimura’s paper) essentially completes the proof of the
algebraicity theorem:

Lemma 7.9. Let𝑓 ∈ 𝑆2(𝛤0(𝑁)) be an eigenform and let ℎ ∈ 𝑀2(𝛤0(𝑁)) be amodular form. Suppose
that both 𝑓 and ℎ have algebraic Fourier coefficients in number fields 𝐾𝑓 and 𝐾ℎ respectively. Then:

(a) The value ⟨𝑓,ℎ⟩
⟨𝑓,𝑓⟩

belongs to 𝐾𝑓𝐾ℎ.

(b) For every automorphism 𝜎 of ℂ, we have

(⟨𝑓, ℎ⟩⟨𝑓, 𝑓⟩)
𝜎

= ⟨𝑓𝜎, ℎ𝜎⟩
⟨𝑓𝜎, 𝑓𝜎⟩

Proof. For simplicity, we prove this when 𝑁 is prime. It is well-known from the theory of
newforms that 𝑆2(𝛤0(𝑁)) has a basis of newforms {𝑓1,… , 𝑓𝑛} where

(a) The 𝑓𝑖 are pairwise orthogonal, i.e., ⟨𝑓𝑖, 𝑓𝑗⟩ = 0 for 𝑖 ≠ 𝑗.
(b) If 𝜎 ∈ Gal(ℂ∕ℚ) is an automorphism, then the 𝑓𝑖 are permutated under 𝜎.

Put 𝑓 = 𝑓1. Write ℎ = 𝐸 + 𝑎1𝑓1 +⋯ + 𝑎𝑛𝑓𝑛, where 𝐸 ∈ ℰ2(𝛤0(𝑁)) is an Eisenstein series. Then
⟨𝑓,ℎ⟩
⟨𝑓,𝑓⟩

= 𝑎1. Applying 𝜎 to both sides of the above equation, we get ℎ𝜎 = 𝐸𝜎 + 𝑎𝜎1𝑓𝜎1 +⋯ + 𝑎𝜎𝑛𝑓𝜎𝑛 .

This implies that ⟨𝑓𝜎 ,ℎ𝜎⟩
⟨𝑓𝜎 ,𝑓𝜎⟩

= 𝑎𝜎1 . This proves the second claim of the Lemma.

It remains to prove the first claim. The second claim implies that ⟨𝑓,ℎ⟩
⟨𝑓,𝑓⟩

is invariant under the action

of Gal(ℂ∕𝐾𝑓𝐾ℎ). It follows from Galois theory that ⟨𝑓,ℎ⟩
⟨𝑓,𝑓⟩

must actually belong to 𝐾𝑓𝐾ℎ, proving
the first claim. This completes the proof of the Lemma, at least when 𝑁 is prime. 2
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Proof of Shimura’s Theorem

We are ready to prove Shimura’s Theorem. Our "Key Theorem" said the following:

Let 𝑓2 ∈ 𝑆2(𝛤0(𝑁)) be an eigenform. Let 𝜒 and 𝜓 be primitive Dirichlet characters of opposite
sign: i.e 𝜒𝜓(−1) = −1. Then

⟨𝑓, 𝐺𝜒,𝜓 ⋅ 𝐺𝜒𝜓⟩𝑁
⟨𝑓, 𝑓⟩𝑁

= 𝐿(𝑓, 𝜒, 1)𝐿(𝑓, 𝜓, 1)
⟨𝑓, 𝑓⟩𝑁

⋅ Ga(𝜒𝜓)8𝜋2𝑖

Now 𝑓 has Fourier coefficients in 𝐾𝑓 and 𝐺𝜒,𝜓 ⋅ 𝐺𝜒𝜓 has Fourier coefficients in 𝐾𝜒𝐾𝜓. (Here 𝐾𝜒
and 𝐾𝜓 are the number fields containing the values of 𝜒 and 𝜓 respectively). The Lemma above
says, therefore, that the LHS of the above identity lives in 𝐾𝑓𝐾𝜒𝐾𝜓 and transforms functorially
under Galois. This proves Shimura’s theorem.

c. Examples
The beauty of Shimura’s proof is that it allows us to calculate algebraic 𝐿-values in a fairly effective
way. We demonstrate this in two examples.

Example 1

Let 𝑝 = 11 and let 𝜒(𝑛) =
(−11

𝑛

)
be the unique quadratic character of conductor 11. The character

𝜒 is odd.

The Eisenstein series 𝐺1,𝜒 is the unique normalized eigenform in the space ℰ1(𝛤0(11), 𝜒). Using
Sage, we compute:

𝐺1,𝜒 =
1
2 + 𝑞 + 2𝑞3 + 𝑞4 + 2𝑞5 + 3𝑞9 + 𝑞11 + 2𝑞12 + 4𝑞15 + 𝑞16 + 𝑂(𝑞20)

The Eisenstein series 𝐺1,𝜒 belongs to the space ℰ1(𝛤0(11), 𝜒). Since 𝜒 is a quadratic character, we
have 𝜒 = 𝜒 so in fact 𝐺1,𝜒 = 𝐺1,𝜒. Therefore,

(𝐺1,𝜒)2 =
1
4 + 𝑞 + 𝑞2 + 2𝑞3 + 5𝑞4 + 4𝑞5 + 𝑂(𝑞6)

This forms (𝐺1,𝜒)2 belongs to𝑀2(𝛤0(11)). The space𝑀2(𝛤0(11)) is spanned by an Eisenstein series
and a cuspidal newform whose 𝑞-expansions are:

𝐸 = 5
12 + 𝑞 + 3𝑞2 + 4𝑞3 + 7𝑞4 + 6𝑞5 + 𝑂(𝑞6)

𝑓 = 𝑞 − 2𝑞2 − 𝑞3 + 2𝑞4 + 𝑞5 + 𝑂(𝑞6)

By examining these 𝑞-expansions, we find that

𝐺1,𝜒 ⋅ 𝐺1,𝜒 =
3
5𝐸 +

2
5𝑓

Therefore,

𝐿(𝑓, 1)𝐿(𝑓, 𝜒, 1)
⟨𝑓, 𝑓⟩𝑁

⋅ Ga(𝜒)8𝜋2𝑖 =
⟨𝑓, 𝐺1,𝜒 ⋅ 𝐺𝜒⟩𝑁

⟨𝑓, 𝑓⟩𝑁
= 2
5



7 SHIMURA’S ALGEBRAICITY THEOREM 29

Example 2

Let 𝑝 = 37. Let 𝜒 be the unique Dirichlet character of conductor 37 such that 𝜒(2) = 𝜁36. Then 𝜒
is odd. Note that 𝜒 is not a quadratic character so our theorem does not say anything about it. But
we include this example because it shows a modular form with analytic rank 1.

The Eisenstein series 𝐺1,𝜒 is the unique eigenform (normalized so that 𝑎1 = 1) in the space
ℰ1(𝛤0(37), 𝜒). Using Sage, we calculate the 𝑞-expansion as:

𝐺1,𝜒 =
6
37𝜁

11
36 +

3
37𝜁

10
36 −

17
37𝜁

9
36 −

27
37𝜁

8
36 +

5
37𝜁

7
36 −

16
37𝜁

6
36 −

14
37𝜁

5
36 −

7
37𝜁

4
36+

15
37𝜁

3
36 +

26
37𝜁

2
36 +

13
37𝜁36 +

25
37 + 𝑞 + (𝜁36 + 1)𝑞2 + (−𝜁836 + 1)𝑞3+

(𝜁236 + 𝜁36 + 1)𝑞4 + (−𝜁536 + 1)𝑞5 +⋯

The Eisenstein series 𝐺𝜒 belongs to the space ℰ1(𝛤0(37), 𝜒). Using Sage again, we calculate the
𝑞-expansion as,

𝐺𝜒 = − 18
37𝜁

11
36 +

1
37𝜁

10
36 +

2
37𝜁

9
36 +

4
37𝜁

8
36 +

8
37𝜁

7
36 +

16
37𝜁

6
36 +

13
37𝜁

5
36 +

26
37𝜁

4
36+

15
37𝜁

3
36 −

7
37𝜁

2
36 −

14
37𝜁36 +

9
37 + 𝑞 + (−𝜁1136 + 𝜁536 + 1)𝑞2 + (𝜁1036 + 1)𝑞3+

(−𝜁1136 − 𝜁1036 + 𝜁536 + 𝜁436 + 1)𝑞4 + (𝜁736 − 𝜁36 + 1)𝑞5 +⋯

The product of these two forms is 𝐺1,𝜒 ⋅𝐺𝜒, which belongs to𝑀2(𝛤0(11)). The space𝑀2(𝛤0(11)) is
spanned by an Eisenstein series 𝐸 and two cuspidal newforms 𝑓 and 𝑔 whose 𝑞-expansions are:

𝐸 = 3
2 + 𝑞 + 3𝑞2 + 4𝑞3 + 7𝑞4 + 6𝑞5 +⋯

𝑓 = 𝑞 − 2𝑞2 − 3𝑞3 + 2𝑞4 − 2𝑞5 +⋯
𝑔 = 𝑞 + 𝑞3 − 2𝑞4 +⋯

By examining these 𝑞-expansions, we find that

𝐺1,𝜒 ⋅ 𝐺𝜒

= (−1237𝜁
11
36 +

4
37𝜁

10
36 −

8
111𝜁

9
36 −

32
111𝜁

8
36 +

2
111𝜁

7
36 +

34
111𝜁

5
36 +

20
111𝜁

4
36 +

16
111𝜁

3
36 +

20
111𝜁

2
36 +

34
111𝜁36 +

34
37)𝐸

+ 0 ⋅ 𝑓 + (−13𝜁
9
36 −

1
3𝜁

8
36 +

1
3𝜁

7
36 −

1
3𝜁

5
36 +

1
3𝜁

4
36 +

2
3𝜁

3
36 +

1
3𝜁

2
36 −

1
3𝜁36) 𝑔

Therefore,

𝐿(𝑓, 1)𝐿(𝑓, 𝜒, 1)
⟨𝑓, 𝑓⟩37

⋅ Ga(𝜒)8𝜋2𝑖 =
⟨𝑓, 𝐺1,𝜒 ⋅ 𝐺𝜒⟩37

⟨𝑓, 𝑓⟩37
= 0

So, 𝐿(𝑓, 1)𝐿(𝑓, 𝜒, 1) = 0. The newform 𝑓 corresponds via modularity to the elliptic curve 𝐸 =
37.a1 with Weierstrauss equation 𝐸 ∶ 𝑦2 + 𝑦 = 𝑥3 + 𝑥. This curve 𝐸 has Mordell-Weil rank
1. Under Birch and Swinnerton-Dyer conjecture (BSD), this implies that 𝐿(𝑓, 1) = 0. This is
consistent with our calculation that 𝐿(𝑓, 1)𝐿(𝑓, 𝜒, 1) = 0.

Furthermore, we have

𝐿(𝑔, 1)𝐿(𝑔, 𝜒, 1)
⟨𝑔, 𝑔⟩37

⋅ Ga(𝜒)8𝜋2𝑖 =
⟨𝑔, 𝐺1,𝜒 ⋅ 𝐺𝜒⟩37

⟨𝑔, 𝑔⟩37
= −13𝜁

9
36 −

1
3𝜁

8
36 +

1
3𝜁

7
36 −

1
3𝜁

5
36 +

1
3𝜁

4
36 +

2
3𝜁

3
36 +

1
3𝜁

2
36 −

1
3𝜁36
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8 Weil Conjectures for Elliptic curves over 𝔽𝑝
a. Introduction
Let 𝑝 be an odd prime. Consider the elliptic curve 𝐸∕𝔽𝑝 given by

𝐸∕𝔽𝑝 ∶ 𝑦2 = 𝑥3 − 𝑥

The most basic question we can ask about 𝐸 is: What is the size of 𝐸(𝔽𝑝)? In Figure 1 below,
we have plotted |𝐸(𝔽𝑝)| as a function of 𝑝: we can see that the plot roughly follows the red line
|𝐸(𝔽𝑝)| = 𝑝 + 1. We might guess that,

|𝐸(𝔽𝑝)| ≈ 𝑝 + 1

But this estimate is not meaningful unless we have a handle on the error |𝐸(𝔽𝑝)| − (𝑝 + 1). In
Figure 2, we plot this error as a function of 𝑝 and we notice that the points are sandwiched between
two red lines with equations 2

√
𝑝 and −2

√
𝑝. This could lead us to guess that

−2
√
𝑝 ≤ |𝐸(𝔽𝑝)| − (𝑝 + 1) ≤ 2

√
𝑝

This theorem actually holds true for all elliptic curves over 𝔽𝑝.

Theorem 8.1 (Hasse-Weil Bound). Let 𝐸∕𝔽𝑝 be an elliptic curve. Then

|𝐸(𝔽𝑝)| = 𝑝 + 1 + 𝑎𝑝

where |𝑎𝑝| ≤ 2
√
𝑝.

There is something curious about this theorem. Namely, the number of solutions to an equation
mod 𝑝 seems to be a purely number-theoretic problem, but it is stated for elliptic curves, which
have a group structure. Is that assumption necessary? Shouldn’t the number of solutions to a
polynomial mod 𝑝 only have to do with the polynomial itself, and not whether the underlying
curve has a group structure?



8 WEIL CONJECTURES FOR ELLIPTIC CURVES OVER 𝔽𝑝 31

The answer is yes: theorems like the above actually do hold for general curves that are not groups,
indeed more generally for varieties of any dimension, over 𝔽𝑝. The difficulty, of course, lies in
the fact that these are much harder to prove because the proofs cannot rely on the extra structure
given by elliptic curves. These theorems are spelled out in a set of conjectures called theWeil
Conjectures. These conjectures can be thought of as distilling the true nature of the Hasse-Weil
bound, generalizing the it in such a manner that its inessential features are stripped away.

As an illustration, the Weil conjectures imply the following generalization of the Hasse- Weil
bound, which crucially, does not assume any group structure on the curve.

Theorem 8.2. Let 𝐶 be a smooth curve over 𝔽𝑝. Let 𝑔 denote the genus of 𝐶. Then

|𝐶(𝔽𝑝)| = 𝑝 + 1 + 𝑎𝑝
where |𝑎𝑝| ≤ 2𝑔

√
𝑝.

In this paper, we will state the Weil conjectures for smooth curves over 𝔽𝑝 and then prove them in
the special case of elliptic curves.

b. The 𝜁-function
Unlike the Hasse-Weil bound, the Weil Conjectures are not phrased explicitly in terms of |𝐶(𝔽𝑝)|.
Rather, they are phrased in terms of the so-called 𝜁-function of a curve 𝐶, a function which
encodes a lot of information about |𝐶(𝔽𝑝𝑛)| for all 𝑛. We will first present the definition of the
𝜁-function, and then indicate the motivation for the definition.
Definition 8.3. Let 𝐶 be a smooth curve over 𝔽𝑝. The 𝜁-function of 𝐶 is defined as

𝜁𝐶∕𝔽𝑝(𝑠) = exp (
∞∑

𝑛=1
|𝐶(𝔽𝑝𝑛)|

(𝑝−𝑠)𝑛
𝑛 )

If we expand out the exponential in the definition of 𝜁𝐶∕𝔽𝑝 , we get that 𝜁𝐶∕𝔽𝑝(𝑠) ∈ ℚJ𝑝−𝑠K, i.e., 𝜁 is
a power series with rational coefficients in the variable 𝑝−𝑠. The Weil Conjectures are phrased
completely in terms of this 𝜁-function; they give detailed information about its roots and in doing
so, it gives us bounds for |𝐶(𝔽𝑝𝑛)| for various 𝑛. But this raises two questions:

(a) Why do we want to wrap up the various values |𝐶(𝔽𝑝𝑛)| in this function? What is the use of
this?

(b) Why does the 𝜁-function have this particular form; i.e: why is the exponential there?

Here are some answers:

(a) The general philosophy is that 𝜁 functions allow us to use analysis to study algebraic objects.
If we can prove complex analytic facts about this 𝜁-function (e.g: it has zeroes at these points,
poles at those points with these residues, etc), we can translate that information back into
the realm of algebra to solve our original problem. This approach is essential to proving the
Weil Conjectures for higher dimensional varieties.

(b) Here the answer is simpler: if we put exp in front, the 𝜁-function turns out to be a rational
function of 𝑝−𝑠. This makes it much easier to deal with that the otherwise complicated
infinite series. (We see this in the examples.)
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Examples

(a) If 𝐶 = ℙ1, then |ℙ1(𝔽𝑝)| = 𝑝 + 1. More generally, |ℙ1(𝔽𝑝𝑛)| = 𝑝𝑛 + 1. This gives us,

𝜁ℙ1(𝑠) = exp (
∞∑

𝑛=1
(𝑝𝑛 + 1)(𝑝

−𝑠)𝑛
𝑛 )

In the following, we will write 𝑇 = 𝑝−𝑠 and 𝜁(𝑇) instead of 𝜁(𝑠) to make the notation easier.
We know that 𝜁ℙ1(𝑇) is a power-series in the variable 𝑇 with ℚ-coefficients. As a concrete
case, we will show that if 𝑝 = 5, then the power series of 𝜁(𝑇) is:

𝜁ℙ1∕𝔽5(𝑇) = 1 + 6𝑇 + 31𝑇2 + 156𝑇3 + 781𝑇4 +⋯

Here is how to derive this series. Instead of working with 𝜁 directly, the standard trick is to
work with log 𝜁 to get rid of the exponential. We then get

log 𝜁ℙ1(𝑇) =
∞∑

𝑛=1
(𝑝𝑛 + 1)𝑇

𝑛

𝑛 = − log(1 − 𝑝𝑇) − log(1 − 𝑇)

where in the last equality, we used the power-series − log(1 − 𝑋) = ∑∞
𝑛=1

𝑋𝑛

𝑛
. Simplifying

this via the logarithm rules, we get

𝜁ℙ1(𝑇) =
1

(1 − 𝑝𝑇)(1 − 𝑇)

so as promised, 𝜁(𝑇) is a rational function of 𝑇. This motivates why 𝜁 was defined the way
it was; the exponential function allows us to use logarithms in this argument, which lead to
the function being rational. To write this rational function as an element ofℚJ𝑇K, use the
geometric series

1
(1 − 𝑧)

= 1 + 𝑧 + 𝑧2 +⋯

and multiply the two resulting power series. For example, if 𝑝 = 5, we get:

𝜁ℙ1∕𝔽5(𝑇) = (1 + 5𝑇 + 25𝑇2 + 125𝑇3 +⋯)(1 + 𝑇 + 𝑇2 + 𝑇3 +⋯)
= 1 + 6𝑇 + 31𝑇2 + 156𝑇3 + 781𝑇4 +⋯

which gives us the power series from the start.
(b) We will later prove that for any elliptic curve 𝐸∕𝔽𝑝, the 𝜁-function is of the form:

𝜁𝐸∕𝔽𝑝(𝑇) =
1 + (|𝐸(𝔽𝑝)| − (𝑝 + 1))𝑇 + 𝑝𝑇2

(1 − 𝑇)(1 − 𝑝𝑇)

As an example, the curve 𝐸∕𝔽𝑝 ∶ 𝑦2 = 𝑥3 − 𝑥 is an elliptic curve over 𝔽𝑝 for all odd primes.
Take 𝑝 = 5, then Sage tells us that |𝐸(𝔽5)| = 8. To get a power series, use the geometric series
1

(1−𝑧)
= 1+ 𝑧+ 𝑧2 +⋯, and multiply the two resulting power series. Then the 𝜁-function for

𝐸∕𝔽5 is:

𝜁𝐸∕𝔽5(𝑇) =
1 + 2𝑇 + 5𝑇2
(1 − 𝑇)(1 − 5𝑇)

= 1 + 8𝑇 + 48𝑇2 + 248𝑇3 + 1248𝑇4 +⋯
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If 𝑝 = 13, then |𝐸(𝔽13)| = 8, so the 𝜁-function for 𝐸∕𝔽13 is:

𝜁𝐸∕𝔽13(𝑇) =
1 − 6𝑇 + 13𝑇2
(1 − 𝑇)(1 − 13𝑇)

= 1 + 8𝑇 + 112𝑇2 + 1464𝑇3 + 19040𝑇4 +⋯

We have plotted 𝜁𝐸∕𝔽5 (Figure 3) and 𝜁𝐸∕𝔽13 (Figure 4) as a function of 𝑠 (recall that 𝑇 = 𝑝−𝑠).
Observe that all the zeroes fall on a line (called the critical line); this line isℜ(𝑠) = 1

2
.

c. Statement of the Weil Conjectures
Theorem 8.4 (Weil Conjectures for Curves). Let 𝐶 be a smooth curve over 𝔽𝑝. Let 𝑔 denote
the genus of 𝐶. Let 𝜁𝐶∕𝔽𝑝(𝑠) be the 𝜁-function of 𝐶.

(a) The 𝜁-function of 𝐶 is a rational function of 𝑝−𝑠. Furthermore, we can write

𝜁𝐶∕𝔽𝑝(𝑝−𝑠) =
𝐹(𝑝−𝑠)

(1 − 𝑝−𝑠)(1 − 𝑝 ⋅ 𝑝−𝑠)
where 𝐹 ∈ ℚ[𝑝−𝑠] is a polynomial of degree 2𝑔.

(b) The 𝜁-function of 𝐶 satisfies the so-called functional equation:

𝜁𝐶∕𝔽𝑝(𝑠) = 𝜁𝐶∕𝔽𝑝(1 − 𝑠)

(c) The zeroes of 𝜁𝐶∕𝔽𝑝(𝑠) lie on the critical lineℜ(𝑠) =
1
2
.

To appreciate the importance of these statements, it helps to compare this with the situation for the
ordinary Riemann zeta function 𝜁(𝑠) =∑ 1

𝑛𝑠
. The ordinary Riemann 𝜁-function is not rational; it

is a complicated infinite series, and that is the source of great trouble in analytic number theory.
So the fact that 𝜁𝐶∕𝔽𝑝 is a rational function is quite remarkable. This is a general phenomenon:
many problems in number theory have cousins in the world of algebraic curves, which are simpler
to state and solve because we can make use of algebraic geometry.
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d. Proof of Weil Conjectures for Elliptic Curves
We will now prove the Weil Conjectures for elliptic curves over 𝔽𝑝. The proof has a different
flavour from the rest of the paper because it relies in an essential way on the group structure of
elliptic curves. We begin with a proposition.

Proposition 8.5. Let 𝐸 be an elliptic curve over 𝔽𝑝.

(a) For every 𝑛, we have:

|𝐸(𝔽𝑝𝑛)| = 𝑝𝑛 + 1 − 𝛼𝑛 − 𝛽𝑛

where 𝛼, 𝛽 ∈ ℂ are the complex roots of the polynomial 𝑇2 + (|𝐸(𝔽𝑝)| − (𝑝 + 1))𝑇 + 𝑝.
(b) Furthermore, the roots 𝛼, 𝛽 are complex conjugates of each other, and they satisfy

|𝛼| = |𝛽| =
√
𝑝

These complex numbers 𝛼 and 𝛽 are called the eigenvalues of Frobenius (for reasons that
will become clear).

Proof. Let 𝐸 be an elliptic curve over 𝔽𝑝.

(a) Here is the overall structure of the proof. We will first use the Frobenius map to reinterpret
|𝐸(𝔽𝑝𝑛)| in the language of algebraic geometry. Then we will use the Tate Module 𝑇𝓁𝐸 to
convert this algebraic geometry problem into a simpler one about linear algebra.
Carrying out the first step is simple. To do this, let Frob ∶ 𝐸 → 𝐸 denote the 𝑝-power
Frobenius map given by (𝑥, 𝑦) ↦→ (𝑥𝑝, 𝑦𝑝). Then 𝑥 ∈ 𝐸(𝔽𝑝𝑛) if and only if 𝑥 is fixed by
Frob𝑛, which is true if and only if 𝑥 ∈ 𝐾𝑒𝑟(Frob𝑛 −id). Since Frob𝑛 −id is an isogeny, we
conclude that

|𝐸(𝔽𝑝𝑛)| = |𝐾𝑒𝑟(Frob𝑛 −id)| = deg(Frob𝑛 −id)

So we have reduced the problem of finding |𝐸(𝔽𝑝𝑛)| to the problem of finding the degree of
the map Frob𝑛 −id. To find the degree, note that 𝓁 is a prime different from 𝑝, we have an
injection End(𝐸) → End(𝑇𝓁𝐸). This is useful because of the following claim.
Claim (Proved in [1]). Given a map 𝜙 ∈ End(𝐸), let 𝜙𝓁 ∈ End(𝑇𝓁𝐸) be its image. Then

det𝜙𝓁 = deg𝜙
Tr𝜙𝓁 = 1 + deg𝜙 + deg(1 − 𝜙)

This fact tells us that we can find deg(Frob𝑛 −id) by finding the determinant of the linear
map (Frob𝑛 −id)𝓁 ∈ End(𝑇𝓁𝐸). We do this using linear algebra. Write Frob𝑛 −id instead of
(Frob𝑛 −id)𝓁 for convenience. We will find the determinant of this map using the following
claim.
Claim. If 𝐴 is a 2 × 2matrix, then det(𝐴 − 1) = det(𝐴) − Tr(𝐴) + 1.
This fact, combined with the multiplicativity of det, means that

det(Frob𝑛 −1) = det(Frob)𝑛 − Tr(Frob𝑛) + 1 (7)
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We know that det(Frob) = deg(Frob) = 𝑝, so we have half the formula. To find Tr(Frob𝑛),
we use the fact that Tr(Frob𝑛) is the sum of the eigenvalues of Frob𝑛 (counted with multi-
plicity). But the eigenvalues of Frob𝑛 are the eigenvalues of Frob (counted with multiplicity)
raised to the 𝑛th power, so we have that Tr(Frob𝑛) = 𝛼𝑛 + 𝛽𝑛, where 𝛼, 𝛽 ∈ ℂ are the
eigenvalues of Frob. Combining this with (7), we get

det(Frob𝑛 −1) = 𝑝𝑛 + 1 − 𝛼𝑛 − 𝛽𝑛

Since |𝐸(𝔽𝑝𝑛)| = det(Frob𝑛 −1), this completes the proof of (a).
(b) Apply the quadratic formula to the characteristic polynomial ofFrob, which is𝑇2+(|𝐸(𝔽𝑝)|−

(1 + 𝑝))𝑇 + 𝑝. Noting that the discriminant

∆ = (|𝐸(𝔽𝑝)| − (1 + 𝑝))2 − 4𝑝 = −3𝑝 − |𝐸(𝔽𝑝)| + 1 < 0

is negative, it follows that the roots of the characteristic polynomial are complex conjugates.
Since 𝛼𝛽 = 𝑝 (look at the characteristic polynomial), it follows that |𝛼| = |𝛽| =

√
𝑝.

This completes the proof of the proposition. 2

Now we can prove the Weil Conjectures for elliptic curves.

Proof. Plugging in our expression for |𝐸(𝔽𝑝𝑛)| into the 𝜁-function for 𝐸, we get:

log 𝜁𝐸∕𝔽𝑝(𝑇) =
∞∑

𝑛=1
|𝐸(𝔽𝑝𝑛)|

𝑇𝑛
𝑛

=
∞∑

𝑛=1
(𝑝𝑛 + 1 − 𝛼𝑛 − 𝛽𝑛)𝑇

𝑛

𝑛
= − log(1 − 𝑝𝑇) − log(1 − 𝑇) + log(1 − 𝛼𝑇) + log(1 − 𝛽𝑇)

where in the last equality, we used the power-series for − log(1 − 𝑋) from before. This means that

𝜁𝐸∕𝔽𝑝(𝑇) =
1 + (|𝐸(𝔽𝑝)| − (𝑝 + 1))𝑇 + 𝑝𝑇2

(1 − 𝑇)(1 − 𝑝𝑇)

which shows that 𝜁 is a rational function of 𝑇. This proves part (a) of the Weil Conjectures.

The part (b), i.e., the functional equation, is a calculation with the rational function for 𝜁 obtained
above.

Now we prove part (c) of the Weil Conjectures. Using the quadratic formula, note that the zeroes
of 𝜁𝐸∕𝔽𝑝(𝑠) are precisely the zeroes of the polynomial,

(𝑝−𝑠)2 + (|𝐸(𝔽𝑝)| − (1 + 𝑝))𝑝−𝑠 + 𝑝

divided by 𝑝. So the roots of 𝜁𝐸∕𝔽𝑝 are
𝛼
𝑝
and 𝛽

𝑝
with norm 1

√
𝑝
, where 𝛼 and 𝛽 are the eigenvalues of

Frob. Therefore, if 𝑠 is a zero of 𝜁𝐸∕𝔽𝑝 , then |𝑝−𝑠| = 𝑝−
1
2 , soℜ(𝑠) = 1

2
, as desired. This completes

the proof of the Weil Conjectures for elliptic curves. 2
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Now we illustrate how information about the 𝜁-function gives us what we were originally after:
bounds on |𝐸(𝔽𝑝𝑛)| for all values of 𝑛.

Corollary 8.6 (Generalized Hasse-Weil Bound). Let 𝐸∕𝔽𝑝 be an elliptic curve. Then for all
𝑛, we have

|𝐸(𝔽𝑝𝑛)| = 𝑝𝑛 + 1 + 𝑎𝑝

where |𝑎𝑝| ≤ 2
√
𝑝𝑛.

Proof. We can write 𝜁𝐸∕𝔽𝑝 as follows:

𝜁𝐸∕𝔽𝑝(𝑇) =
(1 − 𝛼𝑇)(1 − 𝛽𝑇)
(1 − 𝑇)(1 − 𝑝𝑇)

where 𝛼 and 𝛽 are as in the Proposition. Taking logarithms, and expanding in power series, we
get:

log 𝜁𝐸∕𝔽𝑝(𝑇) = log(1 − 𝛼𝑇) + (1 − 𝛽𝑇) − log(1 − 𝑇) − log(1 − 𝑝𝑇)

=
∞∑

𝑛=1
(−𝛼𝑛 − 𝛽𝑛 + 𝑝𝑛 + 1)𝑇

𝑛

𝑛

Matching coefficients, we get that

|𝐸(𝔽𝑝𝑛)| = −𝛼𝑛 − 𝛽𝑛 + 𝑝𝑛 + 1

The Riemann Hypothesis implies that |𝛼| = |𝛽| =
√
𝑝, so we have

|𝐸(𝔽𝑝𝑛)| − (𝑝𝑛 + 1) ≤ |𝛼𝑛| + |𝛽𝑛| = 2
√
𝑝𝑛

completing the proof. 2
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