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Firstly, I would like to say that, this essay is not a very detailed one. I am writing this, to motivate
others to work in this amazingly elegant field, called Galois representation. Trust me, last four to five
decades of algberaic number theory and arithmetic geometry has been an highlight because of this, which
is kinda cool, actually!

Let Q be the field of algebraic numbers. The Galois group GQ = Gal(Q/Q) is the group of automorphisms
of the field Q, ie., Aut(Q). A Galois representation is simply a representation of this group, or indeed of
any Galois group. Since, GQ is a profinite group, the projective limit of the finite groups Gal(K/Q) where
K is a finite Galois extension of Q, any continuous representation of GQ on a complex vector space VC
acts through a finite quotient. We get a richer theory if we consider the action of GQ on vector spaces
over the p-adic numbers Qp. In this case a continuous representation may have infinite image. Moreover,
very interesting examples of p-adic Galois representations arise from geometry. An algebraic variety X
over Q is an object defined by finitely many algebraic equations with rational coefficients. Grothendieck’s
p-adic etale cohomology attaches to such an X a collection of finite dimensional Qp-vector spaces with a
continuous action of GQ. We will denote these by H i(X,Qp), where i ∈ Z≥0. The vector spaces H

i(X,Qp)
have a simple description in terms of the complex solutions of the equations defining X. These form a
topological space X(C), and the H i(X,Qp) are obtained from the singular cohomology groups H i(C(C),Z)
by tensoring by Qp. Unfortunately, one cannot see the action of GQ with this definition! At this point, it
is natural to ask the following question: ”Which p-adic representations of GQ occur as an H i(X,Qp) for
some X”?

There is a remarkable conjecture due to Fontaine and Mazur which predicts the answer. To explain
this we need to say something about the anatomy of GQ. If ℓ is a prime, let Qℓ be an algebraic closure of
Qℓ and fix an embedding Q ⊂ Qℓ. The elements of GQ which admit a continuous extension to Qℓ form
a subgroup Dℓ ⊂ GQ, which is isomorphic to Gal(Qℓ/Qℓ) and depends on the chosen embedding Q ⊂ Qℓ

only up to conjugation by elements of GQ. There is a short exact sequence,

0 → Iℓ → Dℓ → Gal(Fℓ/Fℓ) → 0

where Fℓ is an algebraic closure of the finite field Fℓ of ℓ elements. The quotient Gal(Fℓ/Fℓ) is pro-free and
topologically generated by the Frobenius automorphism Frobℓ : χ → χℓ of Fℓ. A representation of GQ is
said to be unramified at ℓ if Iℓ acts trivially. There is an analogy between this picture and the fundamental
group of a punctured Riemann surface. The analogues of the groups Iℓ are the subgroups generated by a
loop around a puncture. The latter subgroups are of course isomorphic to Z, but the groups Iℓ are much
more complicated than this. Moreover in the topological picture the analogue of the quotient Gal(Fℓ/Fℓ)
is trivial. The conjecture of Fontaine-Mazur says that a continuous representation ρ : GQ → GL(V ) on a
finite dimensional Qp-vector space V is a sub-quotient of some H i(X,Qp), we will say that ρ comes form
geometry, if and only if it satisfies the following two conditions:

1. ρ is unramified at all but finitely many primes.
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2. ρ |Dp is potentially semi-stable.

More, precisely one should consider not just H i(X,Qp) but all its twists by a power of the cyclotomic
character.

The first condition is very natural because if X has good reduction at a prime ℓ then H i(X,Qℓ) will
be unramified at ℓ. The second condition is more subtle. Although we have not explained what it means,
it depends only on the restriction of ρ to Dp. This is rather remarkable, because if ρ comes from geometry,
then results of Deligne and de Jong imply that for a prime ℓ at which ρ is unramified, the eigenvalues
of ρ(Frobℓ) are Weil numbers. This means that they are algebraic and their complex absolute values all
have the form ℓw/2, where w belongs to a finite collection of integers depending only on X. A priori these
eigenvalues are just p-adic numbers, and have no reason to be algberaic. A ρ which comes from geometry is
also conjectured to be part of a compatible system of ℓ-adic representations, as well as have an associated
complex L-function. It seems incredible that a condition at only one prime p could imply all this, and yet
there is mounting evidence for the truth of the conjecture! A representation ρ satisfying (1) AND (2) is
said to be geometric. That a ρ which comes from geometry satisfies (2) is a consequence of the work of
many people, beginning with a paper of Fontaine-Messing. In fact, this is a local result, any variety X/Qp

gives rise to representations of Gal(Qp/Qp) which are potentially semi-stable. However, the local version

of the converse is completely false, a potentially semi-stable representation of Gal(Qp/Qp) need not come
from geometry. Most of the work on the Fontaine-Mazur conjecture has exploited a connection between
Galois representations and automorphic forms. The most classical example is that of modular forms. If
k,N ∈ Z≥0, a modular form of weight k on Γ1(N) is a holomorphic function f on the complex upper half

plane, which satisfies f(γ(z)) = (cz+d)kf(z) for elements γ =

(
a b
c d

)
∈ SL2(Z), whose reduction modulo

N has the form

(
1 ∗
0 1

)
. In particular, f(z + 1) = f(z) so that f has a Fourier expansion,

f =
∑
n∈Z

anq
n

where q = e2πiz. Modular forms are also required to satisfy certain growth conditions, which imply that
an = 0 for n < 0. The space of modular forms of Γ1(N) of weight k is finite dimensional, and comes
equipped with a collection of commuting operators Tn, n ≥ 1. If,

f =
∞∑
n=0

anq
n

is a simultaneous eigenvector for these operators, then a1 ̸= 0, and Tn has eigenvalue λn = an
a1
. A theorem

of Shimura, Deligne, and Deligne-Serre asserts that for such an f , the field Q(λn)n≥1 is a number field Ef ,
and that if λ is a finite prime of Ef then there is a continuous representation,

ρf,λ : GQ → GL2(Ef,λ)

which is unramified at prime ℓ not dividing λN . Moreover at such primes the trace of the representation
is given by the Fourier coefficients: tr(ρf,λ(Frobℓ)) = aℓ.

The Cebotarev density theorem, asserts that the elements Frobℓ are dense in the group GQ, so the existence
of the representation ρf,λ implies that the aℓ satisfy a plethora of λ-adic congruences, and even do so simul-
taneously for all possible λ. This is quite remarkable, given their definition as Fourier coefficients. Starting
with the spectacular work of Wiles and Taylor on the modularity of elliptic curves and Fermat’s Last
theorem, with the gap on ring theoretic properties of Hecke algebras, there has been significant progress,
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due to many people, toward establishing the Fontaine-Mazur conjecture for 2-dimensional representations.
The basic idea is to prove that a geometric representation ρ is equivalent to one of the representations ρf,λ,
the latter coming from geometry by construction. This relationship between modular forms and geometric
objects is an instance of a philosophy of Langlands that algebraic geometry over Q should be related to
certain, so called (algebraic) automorphic forms. Together with the Fontaine-Mazur conjecture it suggests
that three, apparently completely different, kinds of objects should be intimately related. At an overview,
we can summarize as following,

• Geometric representations of GQ −→ Algebraic varieties over Q by Fontaine-Mazur conjecture and
vice-versa by Grothendieck’s theory of Etale cohomology.

• Algebraic automorphic forms −→ Algebraic varities over Q by the partial progress on Shimura
Varieties and vice-versa by Langland’s conjectures.

• Geometric representations of GQ −→ Algebraic automorphic forms by partial progree of Wiles, Tay-
lor,...

Deligne was able to pass from modular forms to algebraic geometry and thereby prove the Ramanujan
conjecture (and construct the ρf,λ). Wiles (and his students) was able to pass from Galois representations
to modular forms, and there by prove that elliptic curves were modular using Etale cohomology, and that
their L-functions were therfore entire, as well as proving Fermat’s Last Theorem!
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