Proof of Fermat's Last Theorem in One page! What...?

Sachin Kumar

University of Waterloo, Faculty of Mathematics

Abstract

Obviously! One could have noticed that we are not going to prove the actual Fermat's Last Theorem, rather we will prove a slight variation of the original statement (just by adding a extra condition). This condition changes the difficulty of the problem by day and night.

Statement: Let $x, y, z, n \in \mathbb{N}$ and $n \geq z$, then $x^n + y^n = z^n$ has no non-trivial integer solutions.

Proof. For the sake of contradiction, suppose $x^n + y^n = z^n$ has a non-trivial integer solution. Without the loss of generality, assume x < y. So, we have

$$x^{n} = z^{n} - y^{n} = (z - y)(z^{n-1} + yz^{n-2} + \dots + y^{n-1})$$

Since, we have x < z and y < z, by substituting y we have

$$\begin{aligned} (z-y)(z^{n-1}+yz^{n-2}+\cdots+y^{n-1}) &> (z-y)(y^{n-1}+yy^{n-2}+\cdots+y^{n-1}) \\ &> (z-y)ny^{n-1} \\ &> ny^{n-1} \end{aligned}$$

Also, since $n \ge z$, we have $x^n > ny^{n-1} > zy^{n-1} > zx^{n-1} > x^n$. Hence, we get a contradiction that $x^n > x^n$, which is not possible. Hence proved.