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Before going into the context of the polynomial case, I would really wish you all to read my previous
essays on the Fermat’s last theorem. Fermat’s last theorem states that there are no non-trivial integer
solutions to,

an + bn = cn

for n ≥ 3 and abc ̸= 0. We will be considering a similar statement, where the solutions are polynomials.

Theorem 1. Let f, g, h ∈ C[x] be non-constant polynomials such that no irreducible divides all of f, g, h.
Then if

fn + gn = hn

implies that n ≤ 2.

Note that the statement that no irreducible divides all of f, g, h is equivalent to seemingly stronger state-
ment that the three being pairwise coprime beacuse of the linear relation between, fn, gn, hn. Also that
this statement implies the more general result that if f, g, h are non-constant and satisfy fn+gn = hn then
n ≤ 2 because if there is some factor dividing all three, then we can divide out by the GCD of the three
polynomials and reduce to the case in Theorem 1.

Note that we cannot improve on this bound of n ≤ 2. Indeed, if a ∈ C[x] then it is always true that,

(1− a2)2 + (2a)2 = (1 + a2)2

Finally, note that Theorem 1 implies thee result for polynomials in any finite number of variables. To see
this, let f, g, h ∈ C[x1, . . . , xn] be polynomials that satisfy for n ≥ 3,

fn + gn = hn

Reordering variables if necessary, we can always choose α1, . . . , αn ∈ C such that,

f(x1, α2, . . . , αn), g(x1, α2, . . . , αn), h(x1, α2, . . . , αn) ∈ C[x1]

are non-constant, violating Theorem 1. I will try to present three proofs, by using traditional techniques
of number theory (Algebraic and computation), and geometric linear algebraic proofs.

We first note that it suffices to prove the result for n = p a prime because all n ≥ 3 are divisible by
some prime p and if we have a solution for n, we replace

(f, g, h) →
(
f

n
p , g

n
p , h

n
p

)
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to get a solution for p. Because we are working over C we have all roots of unity. Thus we can factor,

hp = fp + gp = (f + g)(f + ζpg)(f + ζ2pg) · · · (f + ζp−1
p g) =

p−1∏
i=0

(f + ζ ipg)

Note that for i ̸= j, f + ζ ipg and f + ζjpg are coprime. Indeed,

f + ζ ipg − (f + ζjpg) = (ζ ip − ζjp)g

f + ζ ipg − (ζ ip − ζjp)
ζ ip

ζ ip − ζjp
g = f

gcd(f + ζ ipg, f + ζjpg) = gcd(f, g) = 1

Now, we have laid a surface for the first proof.

Proof. We will use the idea of induction and roots of unity. Let deg f + deg g = d and p ≥ 3. By above,

hp =

p−1∏
i=0

(f + ζ ipg)

These are pairwise coprime polynomials and hp factors uniquely into irreducible because C[x] is a UFD,
so they must be pth powers. We induct on d. When d = 2, f, g are linear and this is clearly impossible by
degree considerations. Now suppose, Theorem 1 holds for all degree less than d where d > 2. Now, p ≥ 3,
so p− 1 ≥ 2 and so we must have some a, b, c ∈ C[x] such that,

f + g = xp

f + ζpg = yp

f + ζ2pg = zp

But then,

g =
1

ζp − 1
(yp − xp)

f =
1

ζp = 1
(yp − ζpx

p)

Combining the above two equations with f + ζ2pg = zp yields,(
1

ζp − 1
(yp − ζpx

p)

)
+ ζ2p

(
1

ζp − 1
(yp − xp)

)
= zp

(−ζp)xp + (1 + ζp)y
p = zp

Because we are working over C, there exists u, v ∈ C such that up = −ζp and vp = 1 + ζp. Let x′ = ux,
y′ = vy and so substituting back in we get,

x′p + y′p = zp

Note that x, y are non-constant of smaller degree than f, g respectively, so deg x+deg y < deg f+deg g = d
and thus this violates the inductive hypothesis and hence we are done.
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In this proof, we use Mason’s theorem as a lemma and prove Theorem 1 using this. A fun and serious
fact about the Mason’s theorem, if it holds for Z, then Fermat’s Last theorem’s proof wouldn’t be extremely
complicated as it was. First, we define the derivative operator. Note that we can use the analytic definition
as a guide, but that over general rings, the lacking analytic structure requires an algebraic definition for
use to use the concept of a derivative. Let us define a linear function, D : C[x] → C[x] with Dx = 1,
Dα = 0 for all α ∈ C and if f, g ∈ C[x], let D(fg) = fDg+ gDf . Then by induction we get Dxn = nxn−1

and in general Df is just the derivative as we think about it.

In C[x], we have unique factorization. Thus if f ∈ C[x], there exists irreducible p1, . . . , pn ∈ C[x],
e1, . . . , en ∈ N, and u ∈ C such that

f = u
∏

peii

We define radf = u
∏
pi. Before, we begin the proof of Theorem 1, we will prove the Mason’s theorem.

Proposition 4 (Mason’s Theorem). Let f, g, h ∈ C[x] be non-constant and coprime such that f + g = h.
Then,

max{deg f, deg g, deg h} ≤ deg rad(fgh)− 1

Lemma 5. If f ∈ C[x], then we have the inequality

deg gcd(f,Df) ≥ deg f − deg radf

Proof. We will prove Lemma 5. By unique factorization, there is are irreducibles pi ∈ C[x], u ∈ C, and
natural numbers ei such that f = u

∏
peii , making radf = u

∏
pi. For any i, let f = peii qi, so we have,

Df = D(peii qi) = peii Dqi + eip
ei−1
i qiDpi = peii (piDqi + eiqiDpi)

Thus for each i, pei−1
i | Df and because the pi are pairwise coprime, we have

∏
pei−1
i | Df and so∏

pei−1
i | gcd(f,Df). Let g =

∏
pei−1
i . Then we have deg g ≤ deg gcd(f,Df). But we have gradf = f so

deg g + deg radf = deg f . Hence proved.

Now, we are prepared to prove Mason’s Theorem.

Proof. Remember, we discuseed that f, g, h are pairwise coprime. Now, notice that we have

f + g = h (0.1)

Applying D and noting that D is linear gives,

Df +Dg = Dh (0.2)

Multiplying (0.1) by Dg and (0.2) by g and subtracting yields,

fDg + gDg = hDg

gDf + gDg = gDh

We get,

fDg − gDf = hDg − gDh (0.3)

3



To see that fDg − gDf is non-zero, note that if fDg = gDf , by the fact that f, g are coprime, we must
have f | Df but Df is of lower degree so we must have Df = 0 so f is constant, contradicting the
assumption that f is non-constant in Mason’s theorem. Now, let

df = gcd(f,Df)

dg = gcd(g,Dg)

dh = gcd(h,Dh)

Note that df , dg | fDg−gDf and that dh | hDg−gDh = fDg−gDf by (0.3) and that because f, g, h are
pairwise coprime, so must df , dg, dh be. Thus, we have dfdgdh | fDg − gDf . Clearly, deg(fDg − gDf) ≤
deg f + deg g − 1. By Lemma 5,

deg df ≥ deg f − deg radf

deg dg ≥ deg g − deg radg

deg dh ≥ deg h− deg radh

Thus, we have

deg(dfdgdh) = deg df + deg dg + deg dh ≥ deg f + deg g + deg h− deg radf − deg radg − deg radh

But deg(dfdgdh) ≤ deg(fDg − gDf), so we have

deg f + deg g − 1 ≥ deg df + deg dh + deg dg ≥ deg f + deg g + deg h− deg radf − deg radg − deg radh

Rearranging and cancelling, we get

deg h ≤ deg radf + deg radg + deg radh− 1 = deg rad(fgh)− 1

where we get (radf)(radg)(radh) = rad(fgh) because f, g, h are pairwise coprime. We can now apply the
same argument to the equations,

h+ (−f) = g

h+ (−g) = f

to bound deg f, deg g with the same bpund. Thus, we are done.

Now that we have proven this useful, albeit somewhat technical, lemma, we are prepared for the second
proof of Theorem 1.

Proof. Suppose there exists f, g, h ∈ C[x] non-constant, coprime such that

fn + gn = hn

By Mason’s theorem, we have

max{deg fn, deg gn, deg hn} ≤ deg rad(fgh)− 1 ≤ deg f + deg g + deg h− 1

Because clearly rad(qn) = radq. The maximum of a finite set is at least the mean, so we have

deg fn + deg gn + deg hn

3
=
n

3
(deg f + deg g + deg h) ≤ max{deg fn, deg gn, deg hn}

Combining the above inequalities and letting deg f + deg g + deg h = d, we get

nd

3
≤ d− 1

Rearranging, we get

3 < d(3− n)

By the fact that f, g, h are non-constant, we have d > 0 so n < 3.
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The final proof, we provide new modern approach, which is a culmination of recent theories in advanced
linear algebra and algebraic geometry. Before, we begin the proof, we need to develop some prerequisite
concepts. For any field k, we define Pn

k to be the set of lines in an n+ 1 dimensional k-vector space. This
can be realized as the set,

Pn
k = {[x0 : x1 : · · · : xn] ∈ kn+1 \ {0, 0, . . . , 0}}/ ∼

where [x0 : x1 : · · · : xn] ∼ [x′0 : · · · : x′n] if and only if there is some λ ∈ k× such that x′i = λxi for 1 ≤ i ≤ n.
We will be concerning ourselves with the projective line, P1 and the projective plane, P2. We can consider
the sets,

Ui = {[x0 : x1 : · · · : xn] ∈ Pn | xi ̸= 0}

and note that all points in Ui are equivalent to a unique.[
x0
xi

:
x1
xi

: · · · : xi−1

xi
: 1 :

xi+1

xi
: · · · : xn

xi

]
Thus we can embed any n-dimensional vector space V in Ui for any i. Moreover, the union of all of the Ui

is P1. There are many cool facts about projective space and projective geometry in a rich field of study,
but will restrict ourselves to facts relevant to the subsequent proof. We will assume that all fields k = C
so we will abbreviate Pn

C as Pn. We can consider polynomials as functions on points in kn be evaluation in
the usual way. For example, if f ∈ C[c, y], f = x2 + y2, then f(1, 1) = 2. We might wish to extend this to
functions on projective coordinates. We can attempt to naively do the same thing, but we quickly run into
a problem of the function being well defined. For instance, let f = x2 + y. We have that [1 : 2] ∼ [2 : 4]
but f(1, 2) = 3 ̸= 8 = f(2, 4). This leads us to homogeneous polynomials. The degree of a monomial
xα0
0 x

α1
1 · · ·xαn

n is defined to be α0 + α1 + · · · + αn. We call a polynomial homogeneous if all monomials
have the same degree. It is easy to check that for any λ ∈ k, if f is a homogeneous polynomial of degree
d, then f(λx0, λx1, . . . , λxn) = λdf(x0, x1, . . . , xn). Thus it makes sense to talk about when a polynomial
evaluates to 0 on projective space, for if v = [x0 : x1 : · · · : xn] ∼ v′ = [x′0 : x

′
1 : · · · : x′n] then there is some

λ ̸= 0 ∈ k such that x′i = λxi. Given a polynomial in n variables, we can homogenize the polynomial by
adding an extra variable t, letting the top degree monomial be of degree d and multiply each monomial of
degree α by td−α. For example, if we wish to homogenize the polynomial,

f = x3 + y3 + xy + x2 + y

we add a variable z and notice that the top degree is 3 and get the polynomial,

f ′ = x3 + y3 + xyz + x2z + yz2

Now we need to talk about some topological invariants. Heuristically the genus of a surface is the number of
holes in the surface. We will take it on faith that the genus satisfies a number of nice properties, including
that we can define this number on curves. We can define the Euler Characteristic, χ as 2−2g as a starting
point. For the purposes of this lecture, we will gloss over much of deep theory, but the interested (and
advanced) reader is directed to William Fulton’s Intersection theory. One important property of χ is that
if P is a point then χ(P ) = 1. Also, if U, V are disjoint, then χ(U ∪ V ) = χ(U) + χ(V ). Thus, if S is a
finite set of points of size n, then χ(S) = n by an easy induction argument. We can think of the degree
of a map as the size of the inverse image at a suitably general point, assuming a variety of conditions
that lie outside the scope of this essay. The interested reader is directed to learn algebraic geometry if
he wished more rigor in this proof, with a suggested reference of Elements of Algebraic Geometry by
Alexander Grothendieck. The relevant fact is that if if we have a degree n surjective map, f : X → Y ,
then χ(X) = nχ(Y ). This can be thought of intuitively as coming directly from additivity. This idea is
that in a sifficiently small neighbourhood U of a point P , we have f−1(U) consists of n disjoint copies of U .
Thus by additivity, χ(f−1(U)) = nχ(U). Finally, we state without the proof that g(P1) = 0. This means
that χ(P1) = 2− 2 · 0 = 2. Finally, we are now prepared to prove Theorem 1 geometrically.
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Proof. Let Y ⊂ P2 be,

Y = {[x : y : z] | xn + yn = zn}

Let ϕ : Y → P1 sending [x : y : z] 7→ [x : y]. Let,

Y[s:t] = Y ∩ ϕ−1([s : t]) = {z | zn = sn + tn}

Because there are n roots of unity in C, if sn + tn ̸= 0, we have |Y[s:t]| = n. Let Z = {[s : t] | sn + tn = 0}.
Note that because [0 : 0] /∈ P1, we must have that s, t ̸= 0 if [s : t] ∈ Z. Thus [s : t] = [1 : t′], where t′ = t

s
.

Then Z is just the set of n points [1 : ρi] where ρ is a primitive n-th root of -1, so χ(Z) = n. We now
consider ϕ : Y \ ϕ−1(Z) → P1 \ Z. By the multiplicativity of the Euler characteristic, we have

χ(Y \ ϕ−1(Z)) = n · χ(P1 \ Z) = n(χ(P1)− χ(Z)) = n(2− n)

Note that ϕ : ϕ−1(Z) → Z is a bijection so χ(ϕ−1(Z)) = χ(Z) = n. By the additivity of the Euler
Characteristic, we have

χ(Y ) = χ(Y \ ϕ−1(Z)) + χ(ϕ−1(Z)) = n(2− n) + n = n(3− n)

By the computation 2− 2g = χ, we get that

g(Y ) =
(n− 2)(n− 1)

2

Now, suppose that there are non-constant f, g, h ∈ C[x] such that

fn + gn = hn

Let f ′, g′, h′ ∈ C[s, t] be the homogenized f, g, h. On U1 Fermat’s equation is clearly satisfied because all
points are equivalent to [s′ : 1] and evaluating f ′, g′, h′ at t = 1 gives f, g, h. On U0, every point is equivalent
to [1 : t′] and evaluating f ′, g′, h′ at s = 1 gives polynomials f, g, h ∈ C

[
1
t

]
so the identity still holds. But

P1 = U0∪U1 so the identity holds on all of P1. Let ψ : P1 → Y ⊂ P2 send [s : t] 7→ [f ′(s, t) : g′(s, t) : h′(s, t)].
This is non-constant so we have

0 = g(P1) ≥ g(Y ) =
(n− 1)(n− 2)

2

Thus, we must have n = 1 or n = 2.
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