
These are problems proposed by the TAs of the MSRI Summer Graduate School on Automorphic
Forms, Summer 2017, in Berkeley.

1 Day 1

1 Look up definition of inverse limits (of topological groups). Understand why

Gal(L/K) = lim←−
L⊇M⊇K

Gal(M/K),

as topological groups.

Solution Recall that the inverse limit of topological groups Gi with respect to some inverse
system {ϕij}i,j∈I,i≤j is the unique (up to unique isomorphism) topological group G with the prop-
erty that any topological H admitting continuous homomorphisms {ψi}i∈I to the Gi which are
compatible with the {ϕij} factors uniquely through G. Gal(L/K) admits natural maps to all finite
Gal(Li/K). Suppose H is a topological group admitting maps {ψi : H → Gal(Li/K)}i∈I , com-
patible with the inverse system {ϕij : Gal(Li/K)→ Gal(Lj/K)}Li⊇Lj . Then there exists a unique
continuous map ψ : H → Gal(L/K) which is compatible with everything, defined as follows: let
ψ(h) =: g for h ∈ H be the element g ∈ Gal(L/K) such that g(λ) = ψi(h)(λ), for some i such that
h ∈ Li, and for all λ ∈ Li. If this map is well-defined, it is manifestly unique. Suppose λ ∈ L1, L2,
and let L3 be the compositum of L1 and L2. Then ψi(h)(λ) = ϕ31ψ3(h)(λ) = ϕ32ψ3(h)(λ). Also,
the compatibility of the {ϕij} with the {ψi} ensures that ψ(h) is an honest element of Gal(L/K).
Thus ψ exists and is unique.

2 View
Gal(L/K) ↪→

∏
L⊇M⊇K

Gal(M/K).

Prove that Gal(L/K) is closed when viewed as a subspace of the product of discrete finite groups
(equipped with product topology).

Solution As before, let I be an index for all finite Galois Li/K. Suppose g = (gi)i∈I /∈
Gal(L/K). This means that there is some L1 ⊇ L0 such that resL0g1 6= g0 (here, resL0 denotes
the restriction map resL0 : Gal(L1/K) → Gal(L0/K). Also, in using numerical indices, I don’t
mean to hint at any filtration of the fields, I just didn’t want to keep using indices i,j). Then U =
{(g0, g1)} ×

∏
i 6=0,1 Gal(Li/K) is a basic open set containing g which does not intersect Gal(L/K).

Thus, the complement of Gal(L/K) is open in the product topology.

3 Understand details of Example 0: K = Q, Ln = Q(ζpn), L =
⋃

n≥1 Ln =⇒ Gal(L/K) = Z×p .
From lecture,

Gal(L/K) ↪→
∏
n≥1

(Z/pnZ)×

ϕ 7→ (ϕn)n≥1.

• a) Compare
∏

n≥1(Z/p
nZ)×(=

∏
n Gal(Ln/K)) with

∏
L⊇M⊇K Gal(M/K). Why is the first

product enough to compute Gal(L/K)?

• b) Prove ϕm ≡ ϕn mod pm (m ≤ n)

1



Solution For part (a), note that there is a natural, continuous surjection∏
L⊇M⊇K

Gal(M/K) �
∏
n

Gal(Ln/K)

which is given by projection onto the factors of the form Gal(Ln/K). Now one has to check that
the composition

Gal(L/K) ↪→
∏

L⊇M⊇K
Gal(M/K) �

∏
n

Gal(Ln/K)

is injective. An element of Gal(L/K) is determined by its action on each Gal(Li/K) (as every
λ ∈ L is contained in some Li), hence the desired injectivity. So we can compute Gal(L/K) as
topological subgroup of

∏
n Gal(Ln/K).

For b, observe that if σ ∈ Gal(Ln/K), is given by [ζpn 7→ ζapn ] (so that σ is identified with
a ∈ (Z/pnZ)×), then the image of σ under the natural map Gal(Ln/K)→ Gal(Lm/K) for m 6= n
is [ζpm → ζapm ] where now we view a as an element of (Z/pmZ)× via the natural reduction Z/pnZ→
Z/pmZ. This is because ζpm = ζp

n−m

pn , so σ(ζpm) = ζap
n−m

pn = ζapm

4 Given a topological ring R, we ask whether the inversion map i : R× → R×, r 7→ r−1, is
continuous when R× is given the subspace topology from R.

• a) Show i is invertible when R = Zp.

• b) Given an example of a topological ring R such that i is not continuous.

Solution For part (a), let x, y ∈ Z×p , |x− y| < ε. Then

|1
x
− 1

y
| = |y − x

xy
| < ε/|xy| < ε.

For part (b), let R = Q, and let {x+nZ} be a basis of open sets for all n ∈ Z≥1 and x ∈ Q. Q× is
open in this topology. Let U be the open set Z∩. The preimage of this set is {±1,±1/2,±1/3, · · · },
but this set cannot be open as it contains no sets of the form x+ nZ.

5 Check that Gal(Fqn/Fq) = Z/nZ, via Frobq 7→ 1, and that Frobq has order n (recall in this
course that = means canonically isomorphic).

Solution We must show that Frobq has order n. Since #Gal(Fqn/Fq) = n, this will prove
the isomorphism.

Suppose [x 7→ xq
m

] is the identity for some m ≥ 1,m | n. But then every element of Fqn is
fixed by the qm-th power map, which contradicts the fact that F×qn is cyclic.

6 Let K = Fq and fix an algebraic closure K. We have that Φ: Gal(K/K) ↪→
∏

n≥1 Z/nZ,
g 7→ (gn)n≥1. Prove

Im(Φ) = {(an)n≥1 ∈
∏
n≥1

Z/nZ : ∀m | n, an ≡ am mod m}.

Solution Suppose σ ∈ Gal(K/K). If σ acts by an ∈ Z/nZ on Gal/(Fqn/K), that is, if
σ |Fqn

: x 7→ xq
an

, then σ |Fqm
: x 7→ xq

an
, where an is viewed mod m. Thus am ≡ an mod m.

This shows the image of Φ is indeed the set subgroup of
∏

n Z/nZ above.
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7 Give an example of an algebraic extension L/Qp such that pL is not principal (same question
if you replace Qp with a finite extension).

Solution Let L = Qp. Suppose for the sake of contradiction that pL is principal, with
normalized valuation v = vL. Then there is a πL with v(πL) = 1. But

√
πL ∈ L, with v(πL) = 1/2.

Contradiction.

8 Let K/Qp be a finite extension with L/K Galois.

• a) Prove that Gal(L/K)→ Gal(kL/kK) is surjective.

• b) Give an example of L/K where the above map is NOT injective (also, one where it is
injective).

Solution (a) Actually quite annoying given how we defined ”unramified” (our definition of
unramified in lecture assumed the map given was surjective). The idea of the solution is to lift
roots of a miminal polynomial for generator of the residue field and use the fact that Galois is
transitive on roots of an irreducible factor to show the surjectivity. Carefully pass to the limit to
get the result for infinite extensions by doing this lifting compatibly in towers.

(b) A ramified extension of fields is Gal(Qp/Qp). An unramified extension is Gal(Qp(ζn)/Qp)
for n prime to p.

9 Let K/Qp be finite, πK a uniformizer for K. Prove that the following are equivalent:

• a) pL = πKOL

• b) vK(L×) = Z

• c) L/K is unramified (I assume Galois as well, since we only defined unramified for Galois
extensions).

Solution Assume (a). Then every nonzero element of L can be written as an integer power
of πK times a unit in O×L , and v(`) = 0 for any unit ` ∈ O×L . So all elements of L have integral
valuation under vK .

Now assume (b). We need to show that Gal(L/K) → Gal(kL/kK) is an isomorphism, or,
equivalently, that it’s injective. It’s enough to assume L/K is finite, and then pass to a limit. Then
n = [L : K] = ef , where f is residue field degree and where e is such that vL = evK , where vL is
the normalized valuation of L. But e = 1 in our case, so n = f . This proves injectivity in the finite
case.

Finally assume c, and again assume for simplicity that L/K is finite. If pL = πeKOL for some
e > 1, then vL = evK , but this would mean that f < n by the argument above, a contradiction.
So we have e = 1.

10 The compositum of two unramified extensions (of K/Qp finite) is again unramified.

Solution Let L/K, L′/K be two unramified extensions. Then as every element of K1K2 is a
finite sum or product of elements of K1K2, we still have vK((LL′)×) = Z, thus the compositum is
unramified.
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11 Let L/K be an algebraic extension.

• a) There is a unique maximal unramified extension L ⊇M ⊇ K.

• b) Gal(M/K) ' Gal(kM/kK) is (pro-)cyclic.

Solution For part (a), Zorn’s lemma (all chains have upper bound in collection of algebraic
extensions, namely the algebraic closure) guarantees that maximal unramified extensions exist, and
by the previous exercise, there can be only one such maximal unramified extension.

For part b, we know that Galois groups of finite fields are (pro)-cyclic.

2 Day 2

In the following exercises, K/Qp is finite and L/K is Galois.

1 Show that
Knr =

⋃
m≥1,p-m

K(ζm)

where ζm denotes a primitive m-th root of unity. Hint: Consider extensions of kK .

2 If σ ∈ Gal(L/K), then σ(OL) = OL, σ(pL) = pL.

3 Assume IL/K is finite. Show the following.

• a) For all i ≥ 0, IL/K,i is a normal subgroup of IL/K .

• b) For all i ≥ 0, IL/K,i ⊇ IL/K,i+1.

• c) IL/K,i = {1} for i sufficiently large.

• d) IL/K,i/IL/K,i+1
∼= (Z/pZ)ni (some ni ∈ Z≥0), for all i ≥ 1.

4 Give an example of L′/L/K such that IL/K,i is NOT the image of IL′/K,i for some i under the
natural map IL′/K → IL/K .

5 Read Proposition IV.3.14 (or all of IV.3) in Serre’s Local Fields. This is the discussion of the
upper numbering and its behavior under extensions of fields.

6a Show that the jumps of the upper numbering occur at rational numbers

6b (See Serre, Exercise IV.3.2) But jumps don’t have to be at integers! Let G be the group of
quaternions ({±1,±i,±j,±k} subject to relations i2 = j2 = k2 = −1f, ijk = −1). Suppose that G
is the Galois group of a totally ramified extension. Show

• G = G0 = G1.

• {±1} = G2 = G3.

• Gv = G for all v ≤ 1.

• Gv = {±1} for 1 < v ≤ 3/2.

• Gv = {1}, v > 3/2.
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7 The compositum of two tamely ramified (resp, abelian) is tamely ramified (resp, abelian).

8 Composition of abelian extensions need not be abelian: K = Q3, let L be the Galois closure of
K( 4
√

2). Show that Gal(L/K) is not abelian, but that there exists L ⊇M ⊇ K such that M/K is
Galois and Gal(L/M) and Gal(M/K) are abelian.

9 Recall thatKt denotes the maximal tamely ramified extension, andKnr the maximal unramified
extension of K.

• a) Kt = ∪p-m,m≥1K
nr( m
√
πK). Hint: Kummer theory.

• b) Show that
Gal(Knr( m

√
πK/K

nr)/Knr)→ µm

σ 7→
σ( m
√
πK)

m
√
πK

is well-defined and an isomorphism.

10 Recall that Gal(Kt/Knr) = lim←−p-m µm. Check that if σ ←→ ζ under this isomorphism, then

˜Frob ◦ σ ◦ ˜Frob
−1 ←→ ζq, where q = #kK .

11 Show that the following sequence of topological groups splits.

1→ Gal(Kt/Knr)→ Gal(Kt/K)→ Gal(Knr/K)→ 1.

Hint: choosing a lift ˜Frob ∈ Gal(Kt/K) of Frob gives rise to a homomorphism Z → Gal(Kt/K).
Show it extends to all of Ẑ (continuously) (recall that Ẑ = Gal(Knr/K)).

12 Let G be an arbitrary topological group (so multiplication and inversion are continuous.

• a) Show that the closure of the identity is a normal subgroup of G. Call it H.

• b) Show that G/H is a Hausdorff topological group.
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