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This essay will talk about the famous Chinese remainder theorem and its proof, in both elementary
number theory and ring theory.

Theorem 0.1 (The Chinese Remainder Theorem (Ring Theory vers.)). Let I1, . . . , In be ideals in a ring R
which satisfy Ii + Ij = R for i ̸= j. Then we have I1 ∩ · · · ∩ In = I1 · · · In and the morphism of rings,

R →
n⊕

i=1

R/Ii

is an endomorphism with kernel I1 ∩ · · · ∩ In.

Proof. As a obvious proof method, we will use induction to prove the following theorem. First, note that
for any two ideals I1 and I2, we have that I1I2 ⊂ I1 ∩ I2 and (I1 + I2)(I1 ∩ I2) ⊂ I1I2, because any element
of I1 + I2 multiplied by any element of I1 ∩ I2 will clearly be a sum of products of elements from both I1
and I2. Thus, if I1 and I2 are coprime, ie., I1 + I2 = (1) = R, then (1)(I1 ∩ I2) = (I1 ∩ I2) ⊂ I1I2 ⊂ I1 ∩ I2,
so that I1 ∩ I2 = I1I2. Thus, we proved the result for n = 2.
If the ideals I1, . . . , In are pairwise coprime and the result holds for n− 1, then

n−1⋂
i=1

Ii =
n−1∏
i=1

Ii

Because In + Ii = (1) for each 1 ≤ i ≤ n − 1, there must be xi ∈ In and yi ∈ Ii, such that xi + yi = 1.
Thus,

zn =
n−1∏
i=1

yi =
n−1∏
i=1

(1− xi) ∈
n−1∏
i=1

Ii

clearly, zn + In = 1 + In, since each xi ∈ In. Thus,

In +
n−1∏
i=1

Ii = In +
n−1⋂
i=1

Ii = (1)

and, we now can apply the case n = 2 case to conclude that,

n⋂
i=1

Ii =
n∏

i=1

Ii
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Note that for any i, we can construct a zi with zi ∈ Ij for j ̸= i and zi+Ii = 1+Ii, via the same procedure.
Define ϕ : R →

⊕
R/Ii by ϕ(a) = (a+ I1, . . . , a+ In). The,

kerϕ =
n⋂

i=1

Ii

because a+ Ii = 0+ Ii if and only if a ∈ Ii, so ϕ(a) = (0 + I1, . . . , 0 + In) if and only if a ∈ Ii for all i, ie.,

a ∈
n⋂

i=1

Ii

Combined with our previous result,

kerϕ =
n∏

i=1

Ii

Finally, recall that we constructed zi ∈ R such that zi+ Ii = 1+ Ii, and z+ Ij = 0+ Ij for all i ̸= j, so that
ϕ(zi) = (0 + I1, . . . , 1 + Ii, . . . , 0 + In). Thus, ϕ(a1z1 + · · · + anzn) = (a1 + I1, . . . , an + In), for all ai ∈ R,
so that ϕ is onto. By the first, isomorphism theorem, we have that

R/I1 · · · In ≃
n⊕

i=1

R/Ii

Hence, we have proved the result.

Theorem 0.2 (The Chinese Remainder Theorem (Number Theory vers.)). For all a1, a2 ∈ Z, and m1,m2 ∈
Z+, if gcd(m1,m2) = 1, then the simultaneous linear congruences,

n ≡ a1 (mod m1)

n ≡ a2 (mod m2)

have a unique solution modulo m1m2. Thus, if n = n0 is one particular solution, then the solutions are
given by the set of all n ∈ Z such that,

n ≡ n0 (mod m1m2)

Proof. Let a1 and a2 be arbitrary integers, and m1,m2 ∈ Z+. Assume that gcd(m1,m2) = 1. From the
definition of congruence and divisibility, the set of solutions to the congruence n ≡ a1 (mod m)1 is given
by, {m1x+a1 : x ∈ Z}. An element of this set satisfies the congruence n ≡ a2 (mod m)2 if and only if there
exists x ∈ Z, satsifying the linear congruence, m1x ≡ a2−a1 (mod m)2. Now, we have that gcd(m1,m2) =
1, and hence and hence from the Linear Congruence Theorem with d = 1 and the definitions of congruence
and divisibility, the set of solutions to the above linear congruence is given by {m2y + x0 : y ∈ Z}, where
x0 is one particular solution, that there exists. Hence, replacing x by m2y + x0, the set of solutions to the
simultaneous congruences is given by {m1(m2y + x0) + a1 : y ∈ Z} = {m1m2y + (m1x0 + a1) : y ∈ Z},
which is simply the congruence class [n0] ∈ Zm1m2 , where n0 = m1x0 + a1 is one particular solution.

Can this theorem be generalized?, ie., what if there are n simultaneous linear congruences? Will this
theorem hold? Aparently, yes!

Theorem 0.3. For all k,m1,m2, . . . ,mk ∈ Z+ and a1, . . . , ak ∈ Z, if gcd(mi,mj) = 1 for all i ̸= j, the
simultaneous linear congruences

n ≡ a1 (mod m1)

n ≡ a2 (mod m2)

...

n ≡ ak (mod mk)
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have a unique solution modulo m1m2 · · ·mk. This, if n = n0 is one particular solution, then the solutions
are given by the set of all n ∈ Z such that, n ≡ n0 (mod m1m2 · · ·mk).

What about the proof? It is trivial, by following the technique from previous theorem’s proof.
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