
Arithmetic statistics and Iwasawa theory

Sachin Kumar
University of Waterloo, Faculty of Mathematics

Arithmetic statistics (of elliptic curves) is the study of the average behaviour of certain invariants
associated to elliptic curves. It is conjectured that half of elliptic curves have rank 0 and the other half
have rank 1. In particular, 0% of all elliptic curves are expected to have rank ≥ 2. Some results in this
direction are due to Bhargava and Shankar, who studied the average size of Selmer group, a subgroup of
the Tate-Shafarevich group. As a result of analyzing the average size of the 5-Selmer group, they were able
to prove that,

1. The average size of elliptic curves is less than 0.885 (conjectured to be 0.5).

2. Less than 20% of elliptic curves have rank ≥ 2 (conjectured to be 0%).

3. At least 20% of elliptic curves have rank 0 (conjectured to be 50%).

Iwasawa theory is concerned with the structure of certain Galois modules associated to elliptic curves.
These Galois modules arise from the Selmer group, and the study of their structure is the primary moti-
vation of the subject. Unlike the Selmer groups that Bhargava-Shankar work with, the Selmer groups in
Iwasawa theory are defined over certain infinite towers of number fields.

We will now discuss the classic representation related to elliptic curves, the Galois representations. Let E
be an elliptic curve over Q. Fix a prime p, denote by E[pn] the pn-torsion subgroup of E(Q). The p-adic
Tate-module Tp(E) is the inverse limit, ’

Tp(E) = lim
←−

E[pn]

where the inverse limit is taken with respect to multiplication by p maps ×p : E[pn+1] → E[pn]. The
Tate-module Tp(E) is a free Zp-module of rank 2, and is equipped with an action of the absolute Galois
group Gal(Q/Q). To the pair (E, p), the Galois action on the Tate-module is encoded by the Galois
representation,

ρE,p = Gal(Q/Q) → GL2(Zp)

We study two interrelated problems: For a fixed elliptic curve E, we study the invariants associated to the
p-adic Galois representation ρE,p as p ranges over all primes, and for a fixed prime p, we study the average
behaviour of invariants associated to ρE,p as E ranges over all elliptic curves over Q.

The Cyclotomic Zp-extension

Let p be a fixed prime. For n ∈ Z≥1, let Qn be the subfield of Q(µpn+1) such that Gal(Qn/Q) ≃ Z/pn.
Set Q0 := Q. Given a number field K, let Kn be the composite K · Qn. The tower of number fields,
K = K0 ⊆ K1 ⊆ · · · ⊆ Kn ⊆ · · · is called the cyclotomic tower. The field Kcyc is taken to be the union,

Kcyc =
⋃
n≥1

Kn
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The Galois group Gal(Kcyc/K) ∼= Zp. Iwasawa’s early investigation led him to study the variation of
p-class groups of Kn as n → ∞. For n ≥ 1, set An(K) to denote the p-primary part of the class group of
Kn,

An(K) = Cl(Kn)[p
∞]

Iwasawa proved that there are invariants µ, λ, ν such that #An(K) = pµp
n+λn+ν for large values of n. What

did Iwasawa think? There are natural maps An+1(K) → An(K) and the inverse limit Atextcyc(K) =
lim←−An(K) is a module over ΓK = Gal(Kcyc/K). Iwasawa introduced the completed algebra Λ =
lim←− Zp[Gal(Kn/K)] ≃ Zp[[x]]. He proved that Acyc(K) is a finitely generated torsion Zp[[x]]-module and
his theorem is a consequence if the structure theory of such modules.

Vanishing of the µ-invariant

Theorem (Ferrero-Washington). Let K be an abelian extension of Q, the Iwasawa µ-invariant µK,p van-
ishes.

The same is expected fir arbitrary number field extensions K/Q. Mazur initiated the Iwasawa theory
of elliptic curves over Q. Throughout, we let E be an elliptic curves over Q with good ordinary reduction
at p. For a fixed elliptic curve E and prime p, Mazur studied the growth of rank E(Q) as n → ∞.

Selmer Group

The p-primary torsion group E[p∞] ⊂ E(Q) admits an action of the absolute Galois group Gal(Q/Q). For
each number field extension F of Q, the Selmer group Selp∞(E/F ) consists of Galois cohomology classes,

f ∈ H1(Gal(Q/F ), E[p∞])

satisfying suitable local conditions. It fits into a short exact sequence,

0 → E(F )⊗Qp/Zp → Selp∞(E/F ) → X(E/F )[p∞] → 0

The Selmer group over Qcyc is taken to be the direct limit,

Selp∞(E/Qcyc) = lim
→n

Selp∞(E/Qn)

The Pontryagin dual,

Mcyc = Homcnts(Selp∞(E/Qcyc),Qp/Zp)

is a finitely generated and torsion Λ ≃ Zp[[x]] module. We will now discuss some Iwasawa Invariants, by
the structure theory of Zp[[x]] modules, up to a pseudoisomorphism, Mcyc decomposes into cyclic-modules:(⊕

j

Zp[[x]]/(p
µj)

)
⊕

(⊕
j

Zp[[x]]/(fj(x))

)

The µ and λ invariants are as follows,

µE.p =
∑
j

µj

and

λE,p =
∑
j

deg fj(x)
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Greenberg’s Conjecture

Conjecture (Greenberg). Suppose that E[p] is irreducible as a Galois module, then µE,p = 0.

For a fixed elliptic curve E/Q without complex multipication, it follows from Serre’s Open image the-
orem that E[p] is irreducible as a Galois module for all but finitely many primes. Mazur showed that if E
is semistable, then E[p] is irreducible for p > 11. For a fixed prime p, Duke proved that E[p] is irreducible as
a Galois module for 100% of elliptic curve E/Q. The λ-invariant satisfies the inequality λE,p ≥ rankE(Q).
We would like to model the average behaviour of the Iwasawa invarinats µ and λ in two cases:

• When E is fixed and p varies.

• When p is fixed and E varies.

Theorem (Greenberg). Let E be an elliptic curve and rank E(Q) = 0. Then the following equivalent
conditions are satisfied for 100% of the ordinary primes p,

• µE,p = 0 and ΛE,p = 0

• Selp∞(E/Qcyc) = 0

Theorem (D.Kundu). Let E be an elliptic curve with rank E(Q) = 0. Then the following equivalent
conditions are satisfied for all but finitely many primes p at which E has supersingular reduction.

• µ±E,p = 0 and λ±E,p = 0

• Sel±(E/Qcyc) = 0

Here, Sel±(E/Qcyc) are Kobayashi’s signed Selmer groups and µ±E,p, λ
±
E,p the signed Iwasawa invariants.

Recall that Γ = Gal(Qcyc/Q), the Selmer group Selp∞(E/Qcyc) admits an action of Γ. There is a natural
map,

Φ : Sel(E/Qcyc)
Γ → Sel(E/Qcyc)Γ

The generalized Euler characteristic,

χ(Γ, E[p∞]) =
#kerΦ

#cokΦ

We will now discuss the relationship with Iwasawa invariants.

Theorem. The truncated Euler characteristic χ(Γ, E[p∞]) is an integer and the following conditions are
equivalent:

• χ(Γ, E[p∞]) = 1

• µE,p = 0 and λE,p = rank E(Q)

p-adic Birch and Swinnerton-Dyer conjecture

Let E be an elliptic curve over Q and assume that X(E/Q)[p∞] is finite.

Theorem (Perrin-Riou, Schneider). The Euler characteristic χ(Γ, E[p∞]) is equal to the following for-
mula, up to a p-adic unit,

Rp(E/Q)

prank E(Q)
×

#X(E/Q)[p∞]×
∏

ℓ cℓ(E)×
(
#E(Fp)

)2
(#E(Q)[p∞])2
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We can simplify the above formlua,

χ(Γ, E[P∞]) =
RE,p ×XE,p × τE,p × αE,p

(#E(Q)[p∞])2

RE,p is the order of the p-primary part of the p-adic regulator of E/Q. XE,p the order of the p-primary
part of the Tate-Shafarevich group is E. τE,p the order of the p-primary part of the Tamagawa product,∏

ℓ cℓ(E) and αE,p = (#E(Fp)[p
∞])2. Assume that p is an ordinary prime. Have the following implications:

RE,p = 1, XE,p = 1, τE,p = 1, αE,p = 1

=⇒ χ(Γ, E[p∞]) = 1

=⇒ µE,p = 0 and λE,p = rank E(Q)

Let Elliptic curve E be fixed and let p vary. We expect that for 100% of the primes,

µE,p = 0 and λE,p = rank E(Q)

This is the case provided RE,p = 1 for 100% of primes p. Computational evidence shows that this is to be
expected. There are analogues in the case when E has supersingular reduction at p. We are led to make
the following conjecture:

Conjecture. Let E be a fixed elliptic curve over Q. For 100% of the primes p at which E has good
ordinary reduction respectively supersingular µ = 0 and λ = rankE(Q), respectively µ+ = µ− = 0 and
λ+ = λ− = rankE(Q). Fix a prime p. Recall that any elliptic curve E over Q admits a unique Weierstrass
equation, E : y2 = x3 + Ax + B, where A,B ∈ Z and gcd(A3, B2) is not divisible by any twelfth power.
The height of E is defined as follows:

H(E) = max(|A|3, B2)

Let E(X) of elliptic curves of height < X. Fix a primes p ≥ 5. Let Ep(X) ⊂ E(X) be the susbet of elliptic
curves with rankE(Q) = 0, good ordinary reduction at p, either µE,p > 0, or λE,p > 0 (or both)

Theorem (D Kundu). Let p ≥ 5 be a fixed prime. We have that:

lim
X→∞

sup
Ep(X)

E(X)
< fo(p) + (ζ(p)− 1) + ζ(10) · d(p)

p2

Here, f0(p) is the proportion of elliptic curves E of rank 0 for which p | #X(E/Q). Delaunay has shown
that according to Cohen-Lenstra heuristics, one should expect,

f0(p) = 1−
∞∏
j=1

(
1− 1

p2j−1

)
=

1

p
+

1

p3
− 1

p4
+

1

p5
− 1

p6
· · ·

These numbers decrease rapidly as p increases, for instance, f0(2) ≈ 0.58, f0(3) ≈ 0.36 and f0(5) ≈ 0.21.
Here, d(p) be the number of pairs κ = (a, b) ∈ Fp × Fp such that, ∆(κ) ̸= 0 and Eκ : y2 = x3 + ax+ b has
a point over Fp of order p. The number d(p) is closely related to the Kronecker class number of 1 − 4p.

Computations show that the values d(p)
p2

tend to decrease as p increases, however, there is much oscillation
in the data.
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Elliptic curves with large λ-invariant

The λ-invariant λE,p gives an upper bound for rank E(Qn) as n → ∞. On the other hand, the rank bound-
edness Conjecture asks if there exist elliptic curves E/Q with arbitrarily large Mordell-Weil rank. Given
any prime p, Greenberg showed that there exist elliptic curves E/Q for which µE,p + λE,p is arbitrarily
large.

Theorem (D Kundu). Let p ≥ 5 be a prime and N ∈ Z≥1. There is an explicit lower bound dp,N > 0 for
the density of elliptic curves E/Q for which,

µE,p + λE,p ≥ N

The quantity dp,N is given by some explicit infinite sums, which gets smaller as either N or p increases.
We do assume the finiteness of X(E/Q)[p∞] in our arguments. On assuming Greenberg’s conjecture, the
inequality µE,p + λE,p ≥ N may be replaced with λE,p ≥ N .

The results have been extended to anticyclotomic Zp-extension, joint with J. Hatley and D. Kundu. Here,
results are proved when the imaginary quadratic field is allowed to vary. In joint work with L. Baneish and
D. Kundu, we use techniques in Iwasawa theory to study arithmetic statistics for rank jumps and growth
of Selmer groups of elliptic curves in Z/pZ-extensions.
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